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Abstract

We introduce the cyclemaster matrix, which is defined in terms of the composition
of an integer M into N parts, and prove that the existence of an N -cycle of index M
for the “3x+1” problem implies the divisibility of the determinant of the cyclemaster
matrix by 2M − 3N . The cyclemaster matrix is shown to be a unifying concept for
all “ax + 1” problems. Finally, we show that the non-existence of a solution to
a polynomial equation of the form F (x1, . . . , xN ) = 0 in powers of 2 implies the
non-existence of N -cycles for the original 3x+ 1 problem.

1. Introduction

Let O denote the set of all odd integers. For r, q ∈ O, define the map S : O×O → O
by

S(r, q) =
3r + q

2n(r,q)
,

where the exponent n(r, q) denotes the integer power of 2 which is necessary in

order to ensure that S(r, q) is an odd integer. This definition is often referenced in

the literature as the “shortcut” definition of the Syracuse function.

We shall refer to the exponent n(r, q) as the indicial exponent belonging to the

lattice point (r, q). These exponents have an importance that has been overlooked

in the literature. We introduce the cyclemaster matrix, which is defined in terms

of the indicial exponents, and prove a divisibility property for its determinant. The

cyclemaster matrix will be shown to have additional value as a unifying concept

for all of the “ax + 1” problems. Surprisingly, we also show that the cyclemaster

matrix is, in a very real sense, a bridge between all of the “ax + 1” problems and

the theory of algebraic varieties.

To achieve these goals, we examine the entire collection of maps

T : O ×O → O ×O
1Emeritus Professor of Mathematics
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defined by T (r, q) = (S(r, q), q) and their iterations. If r2 = S(r1, q), then we shall

write T (r1, q) = (r2, q) to denote a single interation of T , which maps the row of

the lattice indexed by q into itself. Equivalently, we shall write

(r1, q)
n1→ (r2, q),

where n1 = n(r1, q). Iterations of T will be denoted by T k(r1, q) = (rk+1, q), or

equivalently, as

(r1, q)
n1→ (r2, q)

n2→ · · · nk→ (rk+1, q).

The ultimate objective of our efforts is to illuminate the behavior of all sequences

{T k(r, q)}∞k=1 of lattice points in O × O, although we only discuss cyclic behavior

in this paper.

Three possibilities for these sequences naturally arise:

1. Some successor of (r, q) equals (r, q). A least integer N ≥ 1 exists such that

TN (r, q) = (r, q), in which case we say that the set {(r, q), . . . , TN−1(r, q)} of

N lattice points constitutes an N -cycle in the row of the lattice indexed by q.

This N -cycle can be represented more explicitly as

(r1, q)
n1→ (r2, q)

n2→ · · · nN−1→ (rN , q)
nN→ (r1, q).

We shall also say that this N -cycle is of index M , where M = n1 + · · ·+ nN
is the sum of all of the indicial exponents belonging to that cycle, in the order

in which they are generated.

2. Some successor of (r, q) equals another successor of (r, q). Integers N and k

exist such that T k(r, q) = TN+k(r, q), i.e., the sequence eventually enters into

an N -cycle.

3. No successor of (r, q) equals (r, q) or any other successor of (r, q). In this case,

the sequence is necessarily unbounded.

In particular, if q = 1, the special sequence

{T k(r, 1)}∞k=1 = {(Sk(r, 1), 1)}∞k=1

has been studied extensively by many authors. Since S(r, 1) assumes the form

S(r, 1) =
3r + 1

2n(r,1)
,

the investigation of this special sequence has been referred to in the literature as

the “3x + 1” problem. It has also been referred to as the Collatz problem, the

Syracuse problem, Kakutani’s problem, Ulam’s problem, and Hasse’s algorithm.
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Here, we choose to refer to it as the original Collatz problem, since its inception is

traditionally credited to Lothar Collatz in 1937. [3]

The original Collatz conjecture states that, for every odd positive integer r, there

exists an integer Nr such that SNr (r, 1) = 1. This conjecture can be interpreted in

view of the three possibilities listed above.

1. The only N -cycle consisting of odd positive integers that exists in the row of

the lattice indexed by q = 1 is the 1-cycle of index 2 which can be represented

as (1, 1)
2→ (1, 1). The existence of N -cycles of positive integers with N ≥ 2

is explicitly excluded.

2. Every Collatz sequence of odd positive integers eventually enters the 1-cycle

(1, 1)
2→ (1, 1).

3. Every Collatz sequence is bounded.

After rephrasing, there are two conjectures of interest.

The Collatz Cycle Conjecture: For the original Collatz problem, there are no

N -cycles of index M consisting of odd positive integers, other than the 1-cycle of

index 2 which can be represented as (1, 1)
2→ (1, 1).

The Collatz Entrance Conjecture: For the original Collatz problem, every

Collatz sequence of positive integers eventually enters the 1-cycle of index 2 which

can be represented as (1, 1)
2→ (1, 1).

The Collatz Entrance Conjecture excludes the possibility that a Collatz sequence

might be unbounded.

For the original Collatz problem, four known cycles have been discovered and are

usually represented in the following way:

1. +1→ +1

2. −1→ −1

3. −5→ −7→ −5

4. −17→ −25→ −37→ −55→ −41→ −61→ −91→ −17

However, these representations shed no light on their genesis.

In this paper, we show that these cycles, where q = 2M − 3N , are represented

alternately as follows:

1. (1, 1)
2→ (1, 1): This cycle is a 1-cycle of index 2, natural to the row indexed

by q = 22 − 31 = 1.
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2. (1,−1)
1→ (1,−1): This cycle is a 1-cycle of index 1, natural to the row indexed

by q = 21 − 31 = −1.

3. (5,−1)
1→ (7,−1)

2→ (5,−1): This is a 2-cycle of index 3, natural to the row

indexed by q = 23 − 32 = −1.

4. (2363,−139)
1→ (3475,−139)

1→ (5143,−139)
1→ (7645,−139)

2→

(5699,−139)
1→ (8479,−139)

1→ (12649,−139)
4→ (2363,−139): This is a

7-cycle of index 11, natural to the row indexed by q = 211 − 37 = −139.

If we divide the cycle elements by −139, we obtain (−17, 1)
1→ (−25, 1)

1→
(−37, 1)

1→ (−55, 1)
2→ (−41, 1)

1→ (−61, 1)
1→ (−91, 1)

4→ (−17, 1).

The main point here is that there is a significant difference between where a cycle

is created and where it exists. These four cycles were created in the rows indexed

by q = 1,−1,−1, and − 139; by division or multiplication of q and the entries ri,

they can exist in infinitely many other rows.

When considering the more general “3r + q” problem, we will find that there

exist infinitely many N -cycles of some index M , and that at least one cycle can be

created in every row indexed by q. Thus, for this more general problem, there is

really only one conjecture of interest which excludes unbounded cycles.

The Lattice Entrance Conjecture: For the “3r + q” problem, every sequence

{(ri, q)}∞i=1 in the qth row of the lattice O × O eventually enters some N -cycle of

index M in that row.

A given row indexed by q may have many cycles within it. It would be of interest

to determine into which of these cycles a sequence enters and why. For example, in

the row indexed by q = −1, does a sequence terminate at the fixed point (1,−1),

or does it enter the 2-cycle (5,−1)
1→ (7,−1)

2→ (5,−1)? If a sequence enters the

2-cycle, does it enter at (5,−1) or at (7,−1), and why?

Since no N -cycles of positive integers (N ≥ 2) have been observed when q = 1, it

is rather difficult to formulate or prove any conjectures regarding their theoretical

genesis, existence, structure, or behavior. We shall see that there is a distinct

advantage in generalizing the original Collatz problem to the “3r + q” problem in

order to understand these issues more fully. Indeed, it is the author’s contention that

the original Collatz problem can only be understood in this more general context.

At this point, we introduce the cyclemaster matrix, in order to understand better

all Collatz sequences throughout the lattice O×O. At first, this matrix may seem

to be entirely irrelevant to the present discussion. However, we shall see that it is

actually a central idea in the exposition to follow.

For N ≥ 2, let {n1, . . . , nN} denote an ordered set of positive integers, with
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n1 + · · ·+ nN = M . If N = 2, then the 2× 2 cyclemaster matrix is defined as

C2,M (n1, n2) =

(
1 1

2n1 2n2

)
.

Note that det (C2,M (n1, n2)) = 0 if and only if n1 = n2.

If N = 3, then the 3× 3 cyclemaster matrix is defined as

C3,M (n1, n2, n3) =

 1 1 1
2n1 2n2 2n3

2n1+n2 2n2+n3 2n3+n1

 .

Note that det (C3,M (n1, n2, n3)) = 0 if and only if n1 = n2 = n3, since

det (C3,M (n1, n2, n3)) = 3 · 2n1+n2+n3 − 2n1+2n2 − 2n2+2n3 − 2n3+2n1

= 3 · 2n1+n2+n3

(
1− 2n2−n3 + 2n3−n1 + 2n1−n2

3

)
≤ 0

by the Arithmetic-Geometric Mean Inequality.

If N = 4, then the 4× 4 cyclemaster matrix is defined as

C4,M (n1, n2, n3, n4) =


1 1 1 1

2n1 2n2 2n3 2n4

2n1+n2 2n2+n3 2n3+n4 2n4+n1

2n1+n2+n3 2n2+n3+n4 2n3+n4+n1 2n4+n1+n2

 .

This determinant clearly vanishes if n1 = n2 = n3 = n4. Note that if n1 = n3 and

n2 = n4, then det (C4,M (n1, n2, n1, n2)) = 0, since the 3rd row is a multiple of the

1st row. Thus, periodicity in the set {n1, n2, n3, n4} is significant in this regard.

These three matrices were defined explicitly in order to highlight the pattern

evidenced by the exponents ni. To define CN,M (n1, . . . , nN ) generally, we introduce

additional notation for the partial sums of indicial exponents in the order in which

they are given. For j ≥ 1, the summary exponent mij is the sum of j indicial

exponents starting with ni, and is defined formally as

mij = ni + · · ·+ ni+j−1 =

j−1∑
k=0

ni+k.

For example, mi1 = ni for each i. If the subscript i+ k > N , then ni+k is replaced

by ni+k−N . Thus, m33 = n3 + n4 + n5; but if N = 4, then m33 = n3 + n4 + n1, as

n5 is replaced by n1. Rephrased, if i+ k > N , then the sum “wraps around” to the

beginning. The summary exponents are important because they will also be used

to define the elements of N -cycles.
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In general, the cyclemaster matrix CN,M (n1, . . . , nN ) is the N ×N matrix whose

ijth entry is Cij = 2mj,i−1 . Specifically,

CN,M (n1, . . . , nN ) =


1 1 1 · · · 1

2m11 2m21 2m31 · · · 2mN1

2m12 2m22 2m32 · · · 2mN2

...
...

...
. . .

...
2m1,N−1 2m2,N−1 2m3,N−1 · · · 2mN,N−1

 .

We have seen above that if N = 2, 3, or 4, then the determinant of a cyclemaster

matrix can vanish. More generally, suppose that the set {n1, . . . , nN} has period D,

where D properly divides N . Observe that if the subset {n1, . . . , nD} is repeated

N/D times, then the (D + 1)st row of the matrix CN,M (n1, . . . , nD, nD+1, . . . , nN )

is a scalar multiple of the first row, since every entry in the (D + 1)st row is equal

to 2MD , where MD = n1 + · · ·+ nD. Consequently, det (CN,M (n1, . . . , nN )) = 0.

Remark. At first glance, the cyclemaster matrix, which is defined here in terms

of the composition of an integer M into N summands, appears to have nothing

whatsoever to do with the Collatz problem or any generalization of it. However,

we shall show that the divisibility of its determinant by 2M − 3N is significant and

relevant in any discussion of the existence of N -cycles of index M for the original

Collatz problem. At this point, it is informative and motivational to mention three

observations regarding divisibility.

1. If N = 2, M = 3, and {n1, n2} = {1, 2}, then 23 − 32 = −1 divides

det (C2,3(1, 2)) = 2. This observation corresponds to the known 2-cycle of

index 3 which was noted above.

2. If N = 7, M = 11, and {n1, n2, n3, n4, n5, n6, n7} = {1, 1, 1, 2, 1, 1, 4}, then

211 − 37 = −139 divides det (C7,11(1, 1, 1, 2, 1, 1, 4)) = −225 · 5 · 79 · 139. This

observation corresponds to the known 7-cycle of index 11 that was noted

above.

3. If N = 6, M = 12, and {n1, n2, n3, n4, n5, n6} = {1, 1, 1, 6, 1, 2}, then 212 −
36 = 3367 = 7 · 13 · 37 divides det (C6,12(1, 1, 1, 6, 1, 2)) = 217 · 32 · 7 · 132 · 372.

This observation, due to Leonard K. Jones, does correspond to a 6-cycle of

index 12, but does not correspond to a cycle for the original Collatz problem.

The main theorem of this paper, Theorem 1, explains the significance and relevance

of these observations.

In Section 2, we discuss the genesis and structure of all N -cycles of index M

in the lattice O × O. We indicate how the cyclemaster matrix naturally arises

from the generation of N -cycles and we establish a key divisibility property of the
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determinant of a cyclemaster matrix, namely that the gcd of the cycle elements ri
always divides this determinant.

In Section 3, we show how to construct all natural N -cycles of index M in the

lattice O × O, and then we prove the following result which is the main theorem

in this paper. It illustrates a strong and direct connection between the existence

of N -cycles for the original Collatz problem and the divisibility properties of the

determinant of the cyclemaster matrix.

Theorem 1. With q = 2M − 3N , let {(ri, q)}Ni=1 denote an N -cycle of index M

with the associated indicial exponents {n1, . . . , nN} in the row indexed by q and let

ρN = gcd{r1, . . . , rN}. Then the following statements are equivalent:

1. ρN = q;

2. each ri/q is an integer;

3. {(ri/q, 1)}Ni=1 constitutes a completely reduced N -cycle of index M with the

same indicial exponents.

Furthermore, if these statements hold, then the cycle index q = 2M −3N divides the

determinant det (CN,M (n1, . . . , nN )), but the converse does not hold.

We also introduce extremal N -cycles and discuss their properties. In a sense, an

extremal N -cycle in a row will “bracket” all of the other N -cycles in that row. The

divisibility properties of q, ri, and the determinant of the cyclemaster matrix are

treated. Exponential congruences, primitive roots, Mersenne primes, and the Beal

Conjecture arise in an interesting way when discussing these properties.

In Section 4, we show how the cyclemaster matrix is a unifying concept for all of

the “ax+ 1” problems. In particular, we show how it is related to the computation

of the known cycles for the “5x+ 1” problem and the “181x+ 1” problem.

In Section 5, we discuss the variable cyclemaster matrix, which is defined by

replacing 2ni with the variable xi, and show how the “ax+ 1” problems are related

to the theory of algebraic varieties. This will be established by showing that the

existence of N -cycles implies the existence of solutions to polynomial equations or

systems of polynomial equations in N variables.

In Section 6, we present some directions for further research.

2. The Genesis and Structure of N-cycles of Index M

Recall that an N -cycle of index M in the qth row of the lattice O × O consists of

N lattice points with the representation

(r1, q)
n1→ (r2, q)

n2→ · · · nN−1→ (rN , q)
nN→ (r1, q).
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Lagarias [4] and other authors have previously discussed the structure of N -cycles.

It is necessary to briefly discuss it again here in order to highight the genesis of the

cyclemaster matrix and one of its main properties.

2.1. The Genesis and Structure of 1-Cycles of Index M

Theorem 2. Let (r, q) ∈ O ×O. The point (r, q) constitutes a 1-cycle of index M

if and only if there exists an integer M ≥ 1 such that
(
2M − 3

)
r = q.

Proof. If (r, q) constitutes a 1-cycle of index M , then

(r, q)
M→ (r, q)

for some integer M ≥ 1. Equivalently, we have

r = S(r, q) =
3r + q

2M
,

from which we obtain the necessary condition
(
2M − 3

)
r = q.

This condition is also sufficient. For if the condition holds, then

S(r, q) = S(r, 2M − 3) =
3r + (2M − 3)r

2M
= r.

Remark. A 1-cycle for T is also known as a fixed point of T . For example, if

M = 1, then q = −r, so that (r,−r) is a fixed point of T . If M = 2, then q = r,

so that (r, r) is also a fixed point of T . In general,
(
r, (2M − 3)r

)
is a fixed point of

T . A row may contain more than two fixed points. For example, (−65, 65), (5, 65),

(13, 65), and (65, 65) are all fixed points in the 65th row of the lattice.

2.2. The Genesis and Structure of 2-Cycles of Index M

The discussion continues with the following result.

Theorem 3. Let (r, q) ∈ O × O. Then (ri, q) belongs to a 2-cycle of index M if

and only if there exist integers M and m1, with M > m1 ≥ 1, such that(
2M − 32

)
r = (2m1 + 3) q.

Proof. If (r1, q) and (r2, q) belong to a 2-cycle of index M , then

(r1, q)
n1→ (r2, q)

n2→ (r1, q),

where M = n1 + n2. Equivalently, we have the equations

r2 =
3r1 + q

2n1
and r1 =

3r2 + q

2n2
.
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Eliminating r2 from these equations yields(
2n1+n2 − 32

)
r1 = (2n1 + 3) q, (2.1)

while eliminating r1 from these equations yields(
2n1+n2 − 32

)
r2 = (2n2 + 3) q. (2.2)

In these two equations, m1 = n1 or n2 and M = n1 + n2. (Note that if n1 = n2,

then r1 = r2, so that this 2-cycle is actually a repeated 1-cycle.)

Conversely, we must use the necessary condition given above to define the initial

exponents ni, for i = 1 and 2, in order to ensure that S(ri, q) is an odd integer. If

we set n1 = m1, then

S(r1, q) =
3r1 + q

2ni
=

32r1 + 3q

3 · 2mi
=

2Mri − 2miq

3 · 2mi
=

2M−mir1 − q
3

,

where the necessary condition stated above is used here in the third equality. After

cross multiplication, we have

3(3r1 + q) = 2ni(2M−m1r1 − q),

which implies that 3 divides the odd integer 2M−mir1 − q. Thus, r2 = S(r1, q) is

an odd integer and we may set

r2 =
2M−m1r1 − q

3
,

or equivalently,

r1 =
3r2 + q

2M−m1
.

Since r1 is an odd integer, we define n2 = M −m1 = M − n1. Explicitly, for i = 1

or 2, we have

S2(ri, q) = S(S(ri, q), q) =
32ri + (2ni + 3)q

2n1+n2
=

32ri + (2M − 32)ri
2M

= ri,

showing that (ri, q) belongs to a 2-cycle of index M .

Remark. It is advantageous here to introduce some definitions for the quantities

that appeared in the proof of this theorem.

It is clear from equations (2.1) and (2.2) that every 2-cycle is determined by q

and the indicial exponents n1 and n2. These essential equations are called the cycle

conditions of order 2.

The integers g2i = 2ni + 3 are called the cycle generators of order 2.
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If we define 2

ρ2 = gcd{r1, r2} and γ2 = gcd{g21, g22},

then the cycle conditions imply that(
2M − 32

)
ρ2 = γ2q,

where M = n1 + n2. This relation is called the gcd condition of order 2. Note that

if q = 2M − 32, then ρ2 = γ2.

Theorem 4. If q = 2M − 32, then γ2 divides the determinant of the cyclemaster

matrix C2,M (n1, n2), where M = n1 + n2.

Proof. If q = 2M − 32, then the cycle conditions above can be recast explicitly in

matrix form as (
r1 r2

)
=
(
3 1

)( 1 1
2n1 2n2

)
,

or more compactly as

~r2 = ~t2 C2,M (n1, n2),

where obvious assignments have been made. The matrix C2,M (n1, n2) here is the

2× 2 cyclemaster matrix that was defined in Section 1.

If det (C2,M (n1, n2)) = 0, then it is trivially divisible by γ2.

If det (C2,M (n1, n2)) 6= 0, then C2,M (n1, n2) is invertible, so that

~r2 C−12,M (n1, n2) = ~t2.

In terms of its adjoint and determinant, this equation becomes

~r2 adj (C2,M (n1, n2)) = ~t2 det (C2,M (n1, n2)) ,

or more explicitly,(
r1 r2

) (c11 c12
c21 c22

)
=
(
3 1

)
det (C2,M (n1, n2)) .

By equating the second entries on both sides of this equation, we get

r1c12 + r2c22 = det (C2,M (n1, n2)) .

Since ri = ρ2 hi for i = 1, 2, this equation can be recast as

ρ2 (h1c12 + h2c22) = det (C2,M (n1, n2)) .

If q = 2M − 32, then ρ2 = γ2. Thus, ρ2 = γ2 divides det (C2,M (n1, n2)).

2Generally, the gcd is only defined for a set of positive integers and is therefore positive. Since
the cycle elements ri of an N -cycle are either all positive or all negative, it is reasonable to extend
the definition of the gcd to be negative if all cycle elements are negative. Thus, ρ is positive if all
of the cycle elements are positive and ρ is negative if all of the cycle elements are negative.
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2.3. The Genesis and Structure of 3-Cycles of Index M

The discussion continues with the following result.

Theorem 5. Let (r, q) ∈ O × O. Then (ri, q) belongs to a 3-cycle of index M if

and only if there exist integers m3 > m2 > m1 ≥ 1 such that(
2m3 − 33

)
r =

(
2m2 + 2m1 · 3 + 32

)
q. (2.3)

Proof. If (r1, q), (r2, q), and (r3, q) belong to a 3-cycle of index M , then

(r1, q)
n1→ (r2, q)

n2→ (r3, q)
n3→ (r1, q),

where M = n1 + n2 + n3. Equivalently, we have the equations

r2 =
3r1 + q

2n1
, r3 =

3r2 + q

2n2
and r1 =

3r3 + q

2n3
.

Eliminating r2 and r3 from these equations yields(
2n1+n2+n3 − 33

)
r1 =

(
2n1+n2 + 2n1 · 3 + 32

)
q. (2.4)

Similarly, we obtain(
2n2+n3+n1 − 33

)
r2 =

(
2n2+n3 + 2n2 · 3 + 32

)
q (2.5)

and (
2n3+n1+n2 − 33

)
r3 =

(
2n3+n1 + 2n3 · 3 + 32

)
q. (2.6)

By employing the notation for summary exponents which were defined earlier, all

three of these equations follow the prescription(
2mi3 − 33

)
ri =

(
2mi2 + 2mi1 · 3 + 32

)
q, (2.7)

and mi3 > mi2 > mi1 ≥ 1 in every case. (Note that if n1 = n2 = n3, then

r1 = r2 = r3, so that this 3-cycle is actually a repeated 1-cycle.)

Conversely, suppose that the condition holds. If we define ni = mi1 = m1,

ni + ni+1 = mi2 = m2 and ni + ni+1 + ni+2 = mi3 = m3, then equation (2.3)

becomes equation (2.7) for each i = 1, 2, 3. A short argument similar to the one in

the proof of Theorem 3 can be constructed to show that Sk(ri, q) is an odd integer

for each value of k.

If i = 1, then

S3(r1, q) =
33 r1 +

(
2n1+n2 + 2n1 · 3 + 32

)
q

2n1+n2+n3

=
33 r1 +

(
2n1+n2+n3 − 33

)
r1

2n1+n2+n3

= r1,

(2.8)

which shows that (r1, q) belongs to a 3-cycle of index M = m13 = m3. Similar

calculations show that (r2, q) and (r3, q) belong to the same 3-cycle of index M .
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Remark. Some additional definitions are appropriate.

It should be clear from equation (2.7) that every element of every 3-cycle is

completely determined by q and the indicial exponents n1, n2, and n3. These

essential equations are called the cycle conditions of order 3.

The quantities

g3i = 2mi2 + 2mi1 · 3 + 32

will be called cycle generators of order 3.

If we define

ρ3 = gcd{r1, r2, r3} and γ3 = gcd{g31, g32, g33},

then the cycle conditions imply that(
2M − 33

)
ρ3 = γ3q,

where M = n1 + n2 + n3. This relation is called the gcd condition of order 3. Note

that if q = 2M − 33, then ρ3 = γ3.

Theorem 6. If q = 2M − 33, then γ3 divides det (C3,M (n1, n2, n3)), where M =

n1 + n2 + n3.

Proof. If q = 2M − 33, then the cycle conditions (2.4), (2.5), and (2.6) can be

explicitly recast in matrix form as

(
r1 r2 r3

)
=
(
32 3 1

) 1 1 1
2n1 2n2 2n3

2n1+n2 2n2+n3 2n3+n1

 ,

or more compactly as

~r3 = ~t3 C3,M (n1, n2, n3),

where obvious assignments have been made. The matrix C3,M (n1, n2, n3) here is

the 3× 3 cyclemaster matrix that was defined in Section 1.

If det (C3,M (n1, n2, n3)) = 0, then it is trivially divisible by γ3.

If det (C3,M (n1, n2, n3)) 6= 0, then C3,M (n1, n2, n3) is invertible, so that

~r3 C−13,M (n1, n2, n3) = ~t3.

In terms of its adjoint and determinant, this equation becomes

~r3 adj (C3,M (n1, n2, n3)) = ~t3 det (C3,M (n1, n2, n3)) ,

or more explicitly,

(
r1 r2 r3

) c11 c12 c13
c21 c22 c23
c31 c32 c33

 =
(
32 3 1

)
det (C3,M (n1, n2, n3)) .



INTEGERS: 20 (2020) 13

By equating the third entries on both sides of this equation, we get

r1c13 + r2c23 + r3c33 = det (C3,M (n1, n2, n3)) .

Since ri = ρ3 hi for i = 1, 2, 3, this equation can be recast as

ρ3 (h1c13 + h2c23 + h3c33) = det (C3,M (n1, n2, n3)) .

If q = 2M − 32, then ρ3 = γ3. Thus, ρ3 = γ3 divides det (C3,M (n1, n2, n3)).

2.4. The Genesis and Structure of N-Cycles of Index M

We continue the discussion with the following general result.

Theorem 7. Let (r, q) ∈ O ×O. Then (ri, q) belongs to an N -cycle of index M if

and only if there exist integers mN > · · · > m1 ≥ 1 with m0 = 0 such that

(
2mN − 3N

)
r =

N−1∑
j=0

2mN−j−1 · 3j
 q. (2.9)

Proof. Without loss of generality, we may assume that the cycle element (r, q) =

(r1, q) in the N -cycle

(r1, q)
n1→ (r2, q)

n2→ · · · nN−1→ (rN , q)
nN→ (r1, q),

where M = n1 + · · ·+ nN . At each step of the iterative process, an equation of the

form

2ni ri+1 = 3ri + q

holds, with the convention that rN+1 = r1. If we eliminate all variables except ri
from these N equations, we obtain

(
2miN − 3N

)
ri =

N−1∑
j=0

2mi,N−j−1 · 3j
 q, (2.10)

where we have used the summary exponents mik to simplify the notation. If we

set mk = mik, then the sequence {mk} is increasing, and every lattice point (ri, q)

satisfies a cycle condition of the required form, where miN = mN = M .

Conversely, suppose that equation (2.9) holds. Choose i and define mik = mk

for all k = 0, 1, . . . , N . Since mik is increasing, the indicial exponents for the N -

cycle beginning with (ri, q) can be defined by the relation ni+k = mi,k+1−mi,k for

k = 0, 1, . . . , N − 1. An argument similar to the one in the proof of Theorem 3 can
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be constructed to show that Sk(ri, q) is an odd integer for each value of k. After

repeated iteration of the Syracuse function S, we observe that

SN (ri, q) =
3N ri +

(∑N−1
j=0 2mi,N−j−1 · 3j

)
q

2mN

=
3N ri +

(
2mN − 3N

)
ri

2mN

= ri,

(2.11)

which shows that (ri, q) belongs to an N -cycle of index M = mN for every i.

Remark. Some additional definitions naturally generalize previously presented

definitions.

It should be clear from the equation (2.9) that the elements of every N -cycle

are completely determined by q and the indicial exponents {n1, . . . , nN}. These

essential equations are called the cycle conditions of order N .

The quantities

gNi =

N−1∑
j=0

2mi,N−j−1 · 3j

will be called cycle generators of order N . With this notation, equations (2.9) can

be written in the simplified form(
2M − 3N

)
ri = gNi q

for each i, where M = mN .

If we define

ρN = gcd{r1, . . . , rN} and γN = gcd{gN1, . . . , gNN},

it follows that (
2M − 3N

)
ρN = γN q.

This condition is called the gcd condition for the N -cycle of index M .

Equations (2.10) can be rewritten in the form

ri = q
gNi

2M − 3N
,

from which we conclude that ri belongs to an N -cycle of index M if and only if

q gNi is divisible by 2M − 3N for i = 1, . . . , N . From this observation, Kaneda

[2, pages 172-173] noted that the cycle conjectures for the “3x + 1” and “3x + q”

problems can be interpreted as purely arithmetic conjectures involving divisibility,

rather than as algorithmic conjectures.
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Theorem 8. If q = 2M − 3N , then γN divides det (CN,M (n1, . . . , nN )), where M =

n1 + · · ·+ nN .

Proof. If q = 2M − 3N , then the cycle conditions (2.10) for i = 1, . . . , N can be

recast in the form(
r1 r2 · · · rN

)

=
(
3N−1 3N−2 · · · 3 1

)


1 1 1 · · · 1
2m11 2m21 2m31 · · · 2mN1

2m12 2m22 2m32 · · · 2mN2

...
...

...
. . .

...
2m1,N−1 2m2,N−1 2m3,N−1 · · · 2mN,N−1

 ,

or more concisely as

~rN = ~tN CN,M (n1, . . . , nN ),

where obvious assignments have been made. The matrix CN,M (n1, . . . , nN ) here is

the N ×N cyclemaster matrix that was defined in Section 1.

If det (CN,M (n1, . . . , nN )) = 0, then it is trivially divisible by γN .

If det (CN,M (n1, . . . , nN )) 6= 0, then CN,M (n1, . . . , nN ) is invertible, so that

~rN C−1N,M (n1, . . . , nN ) = ~tN .

In terms of its adjoint and determinant, this equation becomes

~rN adj (CN,M (n1, . . . , nN )) = ~tN det (CN,M (n1, . . . , nN )) ,

or more explicitly, as

(
r1 r2 . . . rN

)

c11 c12 . . . c1N
c21 c22 . . . c2N
c31 c32 . . . c3N

. . . . . .
. . . . . .

cN1 cN2 . . . cNN


=
(
3N−1 3N−2 . . . 1

)
det (CN,M (n1, . . . , nN )) .

By equating the last entries on both sides of this equation, we get

N∑
i=1

riciN = det (CN,M (n1, . . . , nN )) .

Since ri = ρN hi for i = 1, . . . , N , this equation can be recast as

ρN

(
N∑
i=1

hiciN

)
= det (CN,M (n1, . . . , nN )) .

If q = 2M −3N , then ρN = γN . Thus, ρN = γN divides det (CN,M (n1, . . . , nN )).
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3. The Construction of All N-Cycles of Index M

In the previous section, we established the gcd condition(
2M − 3N

)
ρN = γN q,

where

ρN = gcd{r1, . . . , rN},

γN = gcd{gN1, . . . , gNN},

and

gNi =

N−1∑
j=0

2mi,N−j−1 · 3j .

The cycle generators gNi can be used to create all N -cycles of index M in the

lattice O ×O.

3.1. Natural Cycles

A natural N -cycle of index M is an N -cycle of index M for which q = 2M − 3N .

For natural N -cycles, ri = gNi.

All natural N -cycles can be constructed by means of the following four-step

process:

1. Compute q: Choose the cycle length N and the cycle index M ≥ N , and then

set q = 2M − 3N .

2. Specify the Indicial Exponents: Choose an ordered set {n1, . . . , nN} of N

positive integers for which n1 + · · ·+ nN = M .

3. Compute the Summary Exponents: Compute the necessary values of mij from

the previously chosen indicial exponents.

4. Compute the Cycle Generators: Compute the values of gNi in terms of the

summary exponents according to the prescription given in Section 2.

Illustrative Example. Suppose that we wish to construct a natural 3-cycle of

index 11. This can be done in four steps:

1. With N = 3 and M = 11, the value of q will be

q = 211 − 33 = 2048− 27 = 2021 = 43× 47.

2. Choose three integers to serve as indicial exponents whose sum is 11. In this

example, we choose n1 = 1, n2 = 4, and n3 = 6.
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3. Based upon this choice, we easily compute the summary exponents to be

m11 = 1, m12 = 5, m21 = 4, m22 = 10, m31 = 6, and m32 = 7.

4. By following the prescriptions given in Section 2, compute

r1 = 25 + 21 · 31 + 32 = 47 = 1× 47

r2 = 210 + 24 · 31 + 32 = 1081 = 23× 47

r3 = 27 + 26 · 31 + 32 = 329 = 7× 47.

The construction of the desired 3-cycle of index 11 is now complete and is given by

(47, 2021)
1→ (1081, 2021)

4→ (329, 2021)
6→ (47, 2021).

Note that by canceling a factor of 47 throughout the computed 3-cycle, we obtain

(1, 43)
1→ (23, 43)

4→ (7, 43)
6→ (1, 43),

which exists in the 43rd row of the lattice O×O. By Theorem 13, it will be shown

that 43 6= 2m − 3n for any admissible choices of m and n, so that this reduced

3-cycle is not, by definition, natural.

All possible 3-cycles are given here, arranged by increasing value of r1.

(19, 2021)
1→ (1039, 2021)

1→ (2569, 2021)
9→ (19, 2021)

(23, 2021)
1→ (1045, 2021)

2→ (1289, 2021)
8→ (23, 2021)

(29, 2021)
2→ (527, 2021)

1→ (1801, 2021)
8→ (29, 2021)

(31, 2021)
1→ (1057, 2021)

3→ (649, 2021)
7→ (31, 2021)

(37, 2021)
2→ (533, 2021)

2→ (905, 2021)
7→ (37, 2021)

(47, 2021)
1→ (1081, 2021)

4→ (329, 2021)
6→ (47, 2021)

(49, 2021)
3→ (271, 2021)

1→ (1417, 2021)
7→ (49, 2021)

(53, 2021)
2→ (545, 2021)

3→ (457, 2021)
6→ (53, 2021)

(65, 2021)
3→ (277, 2021)

2→ (713, 2021)
6→ (65, 2021)

(79, 2021)
1→ (1129, 2021)

5→ (169, 2021)
5→ (79, 2021)

(85, 2021)
2→ (569, 2021)

4→ (233, 2021)
5→ (85, 2021)

(89, 2021)
4→ (143, 2021)

1→ (1225, 2021)
6→ (89, 2021)

(97, 2021)
3→ (289, 2021)

3→ (361, 2021)
5→ (97, 2021)

(121, 2021)
4→ (149, 2021)

2→ (617, 2021)
5→ (121, 2021)

(161, 2021)
3→ (313, 2021)

4→ (185, 2021)
4→ (161, 2021)



INTEGERS: 20 (2020) 18

It was previously shown in Theorem 6 that the cycle gcd γ3 always divides the

determinant of the cyclemaster matrix. In this example, γ3 = 47 and

det (C3,11(1, 4, 6)) = det

 1 1 1
21 24 26

25 210 27

 = −28 · 5 · 47,

showing that 47 is a factor of the determinant of the cyclemaster matrix.

Since there are (
11− 1

3− 1

)
=

(
10

2

)
= 45

solutions to the equation n1 + n2 + n3 = 11 in positive integers and three of these

are used to form a 3 cycle of index 11, a total of 15 such cycles can be constructed,

so that the list given above is complete.

Remark. In general, prime numbers need not appear in N -cycles. However, it is

curious to note in this example that at least one cycle element in each of the 14

additional 3-cycles is a prime number. Note that the smallest cycle element 19 is

prime, the largest cycle element is 2569 = 7× 367 is not prime, and that they both

appear in the same 3-cycle.

3.2. Scalar Multiplication and Scalar Division

These two processes will permit the production of infinitely many N -cycles.

Let {(ri, q) : i = 1, . . . , N} be an N -cycle of index M whose indicial exponents

are given as {n1, . . . , nN}. If a is an odd integer, then the N -cycle of index M with

the same indicial exponents with the representation {(ari, aq) : i = 1, . . . , N} will

be termed a scalar multiple of the given N -cycle. The process of multiplying each

ri and q by a will be called scalar multiplication.

Analogously, if b is an integer and each cycle element ri/b is also an integer, then

the N -cycle of index M with the same indicial exponents with the representation

{(ri/b, q/b) : i = 1, . . . , N} will be termed a scalar quotient of the given N -cycle.

The process of dividing each ri and q by the integer b, when possible, will be called

scalar division. If scalar division is possible, the cycle will be called reducible, and

when it is not possible the cycle will be called irreducible. If b = q, then the cycle

is completely reducible.

Remark. The indicial exponents are invariant under these processes.

The N -cycle {(ri, q)}Ni=1 is always subject to scalar division by ρN . For if ρN
divides ri and ri+1, then it divides q as well, since 2ni ri+1 = 3ri + q. Thus, the

N -cycle {(ri/ρN , q/ρN )}Ni=1 with the same index M and same indicial exponents

will belong to the row indexed by q/ρN . If ρN = q, then the N -cycle is completely

reducible.
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Theorem 9. Every N -cycle of index M in the lattice O × O is either a natural

N -cycle of index M or an N -cycle of index M obtained from a natural N -cycle of

index M by scalar multiplication, scalar division, or both processes.

Proof. Let {(ri, q) : i = 1, . . . , N} be an N -cycle of index M in the qth row of the

lattice O ×O. The cycle generators gNi satisfy equations of the form(
2M − 3N

)
ri = gNi q,

as shown in Section 2. Thus, q divides
(
2M − 3N

)
ri for each i = 1, . . . , N .

If q = 2M − 3N , then the given cycle is natural by definition.

If q 6= 2M − 3N , then we may factor q as q = q1q2, where q1 divides 2M − 3N and

q2 divides ri for all i. Let a q1 = 2M − 3N and ri = q2 bi, so that (ri, q) = (ri, q1 q2).

After scalar multiplication by a, we get

(a ri, a q1 q2) =
(
a ri,

(
2M − 3N

)
q2
)
.

After scalar division by q2, we get(
a ri/q2, 2

M − 3N
)

=
(
a bi, 2

M − 3N
)
,

which shows that the given N -cycle was obtained from a natural N -cycle by scalar

multiplication and division.

The next result is the main theorem in this paper. It illustrates a strong and

direct connection between the existence of N -cycles for the original Collatz problem

and the divisibility properties of the determinant of the cyclemaster matrix.

Theorem 10. With q = 2M − 3N , let {(ri, q)}Ni=1 denote an N -cycle of index M

with the associated indicial exponents {n1, . . . , nN} in the row indexed by q and let

ρN = gcd{r1, . . . , rN}. Then the following statements are equivalent:

1. ρN = q;

2. each ri/q is an integer;

3. {(ri/q, 1)}Ni=1 constitutes a completely reduced N -cycle of index M with the

same indicial exponents.

Furthermore, if these statements hold, then the cycle index q = 2M −3N divides the

determinant det (CN,M (n1, . . . , nN )), but the converse does not hold.

Proof. Given the definitions of the quantities involved, the equivalence statement

is clear.

Suppose that the natural N -cycle {(ri, q)}Ni=1 of index M with its associated

set of indicial exponents {n1, . . . , nN} can be completely reduced by scalar division
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to produce the N -cycle {(ri/q, 1)}Ni=1 of index M with the same associated set of

indicial exponents. Then, ρN = q = 2M − 3N . After noting that the gcd condition(
2M − 3N

)
ρN = γN q now implies that ρN = γN , the conclusion of the theorem

follows by invoking Theorem 8, which states that γN = ρN = 2M − 3N always

divides the determinant det (CN,M (n1, . . . , nN )). The counterexample provided in

Section 1 with N = 6, M = 12, and {n1, . . . , n6} = {1, 1, 1, 6, 1, 2} shows that the

converse does not hold.

Remark. If 2M − 3N does not divide the determinant of the cyclemaster matrix

for every choice of indicial exponents, then no N -cycle of index M in the row of the

lattice indexed by q can be reduced by scalar division to an N -cycle of index M in

the row of the lattice indexed by 1. Thus, there will be no N -cycles of index M for

the original Collatz problem.

3.3. Periodic Indicial Exponents

In this section, we will show that natural N -cycles of index M with an associated set

of periodic indicial exponents can be neglected. It will also be noted by example that

the determinant of a cyclemaster matrix with periodic indicial exponents vanishes.

Suppose that D is a proper divisor of N and that the subset {n1, . . . , nD} of

{n1, . . . , nN} repeats d = N/D times, so that ni+D = ni for all i. Then N = dD

and M = dMD, where MD = n1 + · · ·+ nD.

The periodicity of the indicial exponents is reflected in the summary exponents

in the formula

mi,jD+k = j MD +mik.

Given this formula, the cycle generators can be factored as

ri =
(

2MD(d−1) + 2MD(d−2) · 3D + · · ·+ 2MD · 3(d−2)D + 3(d−1)D
)

×
(
2mi,D−1 + 2mi,D−2 31 + · · ·+ 2mi,1 · 3D−2 + 3D−1

)
=

(
d−1∑
k=0

2MD(d−k−1) 3kD

) D−1∑
j=0

2mi,D−j−1 · 3j
 .

But we also have

q = 2M − 3N

=
(
2MD

)d − (3D)d
=

(
d−1∑
k=0

2MD(d−k−1) 3kD

) (
2MD − 3D

)
.
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Remark. Thus, the natural N -cycle of index MN with periodic indicial exponents

is essentially a natural D-cycle of index MD that has been repeated N/D times.

A simple example will assist the reader to understand repeated cycles.

Illustrative Example. Consider the 6-cycle of index 12 whose indicial exponents

are {1, 2, 3, 1, 2, 3}. This natural cycle is created in the row indexed by q = 212−36 =

(26 − 33)(26 + 33) = 37 × 91. By using the process described at the beginning of

this section, the cycle elements are determined to be

r1 = r4 = 2093 = 23× 91,

r2 = r5 = 4823 = 53× 91,

and

r3 = r6 = 4459 = 49× 91.

By doing so, we have constructed a natural 6-cycle which consists of the repeated

3-cycle

(2093, 3367)
1→ (4823, 3367)

2→ (4459, 3367)
3→ (2093, 3367).

After scalar division by 91, we have also produced the natural 3-cycle of index 6

given by

(23, 37)
1→ (53, 37)

2→ (49, 37)
3→ (23, 37).

We can also observe that det (C6,12(1, 2, 3, 1, 2, 3)) = 0, since every entry in the

4th row of C6,12(1, 2, 3, 1, 2, 3) is equal to 26, so that the 4th row is a scalar multiple

of the 1st row. However, det (C3,6(1, 2, 3)) = −27 6= 0.

Remark. It is possible to count the number of natural N -cycles of index M in a

row of the lattice by employing elementary combinatorial principles.

If M and N are relatively prime, then the number N (N,M) of natural N -cycles

of index M in the qth row of the lattice O ×O, where q = 2M − 3N , is equal to

N (N,M) =
1

N

(
M − 1

N − 1

)
.

This follows because there are
(
M−1
N−1

)
solutions to the equation n1 + · · ·+ nN = M

in positive integers, and each solution {n1, . . . , nN} and its N rotations correspond

to the N cycle generators used to prescribe one cycle.

If M and N are not relatively prime, then the situation can be considerably

more complicated if M and N have many prime factors. The discussion above

shows that repetition is possible when M and N are not relatively prime. For

example, if N = 10, a 10-cycle may consist of two repeated 5-cycles, five repeated

2-cycles, or 10 repeated 1-cycles.

In any eventuality, the Inclusion/Exclusion Principle can be successfully used to

count the number of repeated subcycles.
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3.4. Extremal Natural N-cycles of index M

For N ≥ 2, an extremal natural N -cycle of index M is a natural N -cycle of index

M for which n1 = · · · = nN−1 = 1 and nN = M − N + 1. Since extremality is

determined by indicial exponents, all scalar multiples and scalar quotients of these

cycles are also considered to be extremal. Rotations of extremal N -cycles are also

considered to be extremal.

Technically, 1-cycles can, by definition, be extremal. If N = 1 and n1 = 1, then

q = −1 and r1 = 1, yielding the fixed point (1,−1), which can be reduced by scalar

division by −1 to the fixed point (−1, 1) in the row indexed by q = 1. If n1 = 2,

then q = 1 and r1 = 1, yielding the fixed point (1, 1).

If N = 2, then {n1, n2} = {1, a}, M = 1 + a, q = 21+a − 32, r1 = 5, and

r2 = 2a + 3, yielding the extremal natural 2-cycle of index 1 + a

(5, 21+a − 9)
1→ (2a + 3, 21+a − 9)

a→ (5, 21+a − 9).

For this extremal 2-cycle to be subject to scalar division by 21+a − 9, thereby

producing an extremal 2-cycle in the row indexed by q = 1, it is necessary either

that 21+a − 9 = −5, in which case a = 1, or that 21+a − 9 = −1, in which case

a = 2. If a = 1, then the 2-cycle is actually the fixed point (5,−5), which can be

reduced to (−1, 1). If a = 2, then M = 3, q = −1, r1 = 5, and r2 = 7. After scalar

division by −1, we obtain the known 2-cycle

(−5, 1)
1→ (−7, 1)

2→ (−5, 1).

In general, extremal natural cycles may be either reducible or irreducible. As

previously shown, any natural cycle can be at least partially reduced by ρN =

gcd{r1, . . . , rN}. For an extremal natural N -cycle of index M to exist in the row

indexed by q = 1, it must be the scalar quotient of a completely reducible N -cycle

of index M previously created in the row indexed by q = 2M − 3N .

Theorem 11. For q = 2M − 3N , we define C(N,M) to be the set of all elements

of all natural N -cycles of index M . Then the smallest rmin and largest rmax cycle

generators have the following properties:

1. If (ri, q) ∈ C(N,M) is any element of any natural N -cycle of index M , then

0 < rmin ≤ ri ≤ rmax.

2. rmin = 3N − 2N

3. rmax = 2M−N+1
(
3N−1 − 2N−1

)
+ 3N−1

4. rmax − rmin = 2
(
3N−1 − 2N−1

) (
2M−N − 1

)
5. rmin and rmax belong to the same N -cycle and S(rmax, q) = rmin
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Proof.

1. This is clear from the definition.

2. From all choices of indicial exponents, choose the set {1, 1, . . . , 1,M −N + 1}.
The generator

rmin = 2N−1 + 2N−2 · 3 + · · ·+ 21 · 3N−2 + 3N−1 = 3N − 2N

is the smallest possible generator, since the choice of indicial and summary

exponents is the smallest possible.

3. From all choices of indicial exponents, choose the set {M −N + 1, 1, . . . , 1}.
The generator

rmax = 2M−1 + 2M−2 · 3 + · · ·+ 2M−N+1 · 3N−2 + 3N−1

= 2M−N+1
(
3N−1 − 2N−1

)
+ 3N−1

is the largest possible generator, since the summary exponents are the largest

possible.

4. This follows by direct computation.

5. By direct computation, we have

rmax
M−N+1→ rmin,

implying that rmin and rmax belong to the same cycle.

Remark. The use of the term extremal natural N -cycle is justified by this theorem,

since the N -cycle generated by choosing the indicial exponents {1, . . . , 1,M−N+1}
contains the largest and smallest elements of C(N,M).

Extremal N -cycles have some interesting properties.

Theorem 12. Let {(ri, q) : i = 1, . . . , N} be an extremal natural N -cycle of index

M with M > N ≥ 2. Then the following properties of its cycle elements ri are

valid:

1. rmin = r1 < r2 < · · · < rN = rmax

2.
(
2M−N − 1

)
divides (ri+1 − ri) for all i = 1, . . . , N − 1
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Proof. First, note that

r2 − r1 =
3r1 + q

2
− r1

=
r1 + q

2

=

(
3N − 2N

)
+
(
2M − 3N

)
2

= 2N−1
(
2M−N − 1

)
This equation shows that r1 < r2 and that

(
2M−N − 1

)
divides the difference r2−r1.

Finally, note that

ri+1 − ri =
i−1∑
k=1

(
rk+1 − rk

2

)
+
r1 + q

2
,

so that ri < ri+1 and
(
2M−N − 1

)
divides the difference ri+1 − ri for all i by an

elementary induction argument.

Remark. Although
(
2M−N − 1

)
divides each of the differences ri+1 − ri, it does

not necessarily divide each cycle element ri. Consider the extremal natural 3-cycle

of index 11 with indicial exponents {1, 1, 9} that was presented in the Illustrative

Example in Section 3.1:

(19, 2021)
1→ (1039, 2021)

1→ (2569, 2021)
9→ (19, 2021).

Here, 2M−N − 1 = 211−3 − 1 = 28 − 1 = 255. Note that

r2 − r1 = 1039− 19 = 1020 = 4× 255

r3 − r2 = 2569− 1038 = 1530 = 6× 255

r4 − r3 = r1 − r3 = 19− 2569 = −2550 = −10× 255,

but that 255 does not divide ri for any i. This shows that there must be some

minimal spacing between cycle elements, depending upon N and M .

3.5. Divisibility

Theorem 1 involves the divisibility of the determinant of the cyclemaster matrix by

the cycle indicator q = 2M − 3N . The process of scalar division, whether partial or

complete, is also concerned with the divisibility of the cycle elements ri by q or its

prime power factors.

In this subsection, we therefore investigate the prime power factors pα of q, ri,

and the determinant of the cyclemaster matrix. Divisibility by pα will involve the

existence of primitive roots modulo pα. Exponential congruences will also play an

important role.
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3.5.1. The Prime Power Factors of q = 2M − 3N .

A known result [5] details some of the elementary restrictions on the values of q.

Theorem 13. Let N ≥ 1, M ≥ 3, and I = 2M − 3N . Then

I ≡


5 (mod 24) if M is odd and N is odd

7 (mod 24) if M is even and N is even

13 (mod 24) if M is even and N is odd

23 (mod 24) if M is odd and N is even

Proof. We prove the first case; the proofs of the other three cases are similar.

If M is odd and N is odd, then there exist non-negative integers k and j such

that M = 3 + 2k and N = 1 + 2j.

If k = j = 0, then I = 23 − 31 = 5.

If k = 1 and j = 0, then M = 5, N = 1, and I = 25 − 31 = 29 ≡ 5 (mod 24).

If k = 0 and j = 1, then M = 3, N = 3, and I = 23 − 33 = −19 ≡ 5 (mod 24).

If k ≥ 1 and j ≥ 1, then

I = 23+2k − 31+2j = (23 − 31) + 23(22k − 1)− 31(32j − 1) ≡ 5 (mod 24).

Since 22k − 1 is divisible by 3 and 32j − 1 is divisible by 23, these two terms taken

together are a multiple of 24.

Remark. If I ≡ 5, 7, 13, or 23 (mod 24), then I2k ≡ 1 (mod 24). Therefore,

I2k 6≡ 2M − 3N (mod 24) for any choices of M and N , implying that no natural

N -cycles of index M can be created in a row indexed by I2k, unless I = ±1.

Note that I 6≡ 1, 11, 17, or 19 (mod 24), unless I = 1. For these values, I 6≡
2M − 3N for any choices of M and N . The same observation is true for the power

of any integer congruent to these values of I, unless I = 1. For if k is odd, then

Ik ≡ I (mod 24) and if k is even, then Ik ≡ 1 (mod 24).

There are additional restrictions on M and N if I is a prime number. The proofs

of the following corollaries were previously published in [5]. This theorem and its

two corollaries show that if the difference 2M − 3N is prime, then M and N are

usually relatively prime, with very few exceptions. Note that if M = N = d, then

the corresponding N -cycle is actually a 1-cycle that is repeated N times.

Corollary 1. Suppose that I = 2M − 3N > 0 is a prime number.

1. If I ≡ 5 (mod 24), then M and N are relatively prime. The converse need

not hold.

2. If I ≡ 7 (mod 24), then I = 7. (M = 4 and N = 2)
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3. If I ≡ 13 (mod 24), then either M and N are relatively prime, or M = 2d

and N = d, where d is an odd prime. The converse need not hold.

4. If I ≡ 23 (mod 24), then M and N are relatively prime. The converse need

not hold.

Corollary 2. Suppose that −I = 2M − 3N < 0 is a prime number.

1. If −I ≡ 5 (mod 24), then either M and N are relatively prime or M = N = d,

where d is an odd prime. The converse need not hold.

2. If −I ≡ 7 (mod 24), then −I = −17. (M = 6 and N = 4)

3. If −I ≡ 13 (mod 24), then M and N are relatively prime. The converse need

not hold.

4. If −I ≡ 23 (mod 24), then either M and N are relatively prime, or M = 3d

and N = 2d, where d is an odd prime. The converse need not hold.

The next theorem, which appeared in [5], shows that there exist infinitely many

exponents M and N for which a prime power pα divides 2M − 3N . In this theorem,

the roles of the primitive roots of pα and the Euler totient ϕ are critical.

Theorem 14. Let pα be a prime power factor of 2M − 3N , with p ≥ 5 and α ≥ 1.

Let g be any of the ϕ(ϕ(pα)) primitive roots modulo pα, and let y and x be the

unique exponents such that gy ≡ 2 (mod pα) and gx ≡ 3 (mod pα). Also, let

e2 and e3 be the exponents that 2 and 3 (mod pα) belong to, respectively. 3 If

M = M(g) = e2a + xk and N = N(g) = e3b + yk, where a, b, and k are non-

negative integers, then 2M − 3N ≡ 0 (mod pα).

Proof. For the given values of M and N , we have

2M ≡ 2e2a+xk ≡ 2xk ≡ gyxk ≡ 3yk ≡ 3e3b+yk ≡ 3N (mod pα).

Remark. If g = 2, then e2 = ϕ(pα) and y = 1. If g = 3, then e3 = ϕ(pα) and

x = 1.

If 2M − 3N = pα1
1 . . . pαn

n , then M and N must satisfy the requirements stated in

the theorem for each of the prime power factors.

Illustrative Example. To illustrate this theorem, we choose p = 19, α = 1,

a = 2, b = 1, and k = 1. The ϕ(ϕ(19)) = 6 primitive roots of 19 are g =

2, 3, 10, 13, 14, and 15. Note that 218 ≡ 1 and 318 ≡ 1 (mod 19) by Fermat’s Little

Theorem.

3That is, e2 and e3 are the smallest integers such that 2e2 ≡ 1 (mod pα) and 3e3 ≡ 1 (mod pα).
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If g = 2, then 21 ≡ 2 and 213 ≡ 3 (mod 19). With M(2) = 36 + 13 and

N(2) = 18 + 1, we have

2M(2) − 3N(2) ≡ 213 − 31 ≡ 8189 ≡ 19× 431 ≡ 0 (mod 19).

If g = 3, then 31 ≡ 2 and 31 ≡ 3 (mod 19). With M(3) = 36 + 1 and N(3) =

18 + 7, we have

2M(3) − 3N(3) ≡ 21 − 37 ≡ −2185 ≡ −5× 19× 23 ≡ 0 (mod 19).

If g = 10, then 1017 ≡ 2 and 105 ≡ 3 (mod 19). With M(10) = 36 + 5 and

N(10) = 18 + 17, we have

2M(10) − 3N(10) ≡ 25 − 317 ≡ −129, 140, 131 ≡ −19× 6, 796, 849 ≡ 0 (mod 19).

If g = 13, then 1311 ≡ 2 and 1317 ≡ 3 (mod 19). With M(13) = 36 + 17 and

N(13) = 18 + 11, we have

2M(13) − 3N(13) ≡ 217 − 311 ≡ −46075 ≡ −52 × 19× 97 ≡ 0 (mod 19).

If g = 14, then 1413 ≡ 2 and 147 ≡ 3 (mod 19). With M(14) = 36 + 7 and

N(14) = 18 + 13, we have

2M(14) − 3N(14) ≡ 27 − 313 ≡ −1, 594, 195 ≡ −5× 19× 97× 173 ≡ 0 (mod 19).

If g = 15, then 155 ≡ 2 and 1511 ≡ 3 (mod 19). With M(15) = 36 + 11 and

N(15) = 18 + 5, we have

2M(15) − 3N(15) ≡ 211 − 35 ≡ 1805 ≡ 5× 192 ≡ 0 (mod 19).

3.5.2. The Prime Power Factors of the Cycle Generators ri

Previously, we have seen that the possible values of the length N and index M of a

cycle are strongly dependent upon the prime power divisors of the cycle indicator

2M − 3N , in the sense that the primitive roots of these prime power divisors play a

crucial role in their values.

If q and ri have no prime power divisors in common, then no scalar division

by prime powers is possible. This is also true if ri and ri+1 have no prime power

factors in common. Here, we show that the primitive roots of prime powers play

a crucial role in determining the prime power divisors of cycle generators ri and

the value of the index M of the cycles to which they belong. To illustrate the role

of primitive roots with respect to this issue, we consider the possibility of scalar

division of 2-cycles and 3-cycles, and then mention the general case.
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Consider the process of scalar division for natural 2-cycles of index M . The

natural 2-cycle of index M = n1 + n2 has the general form

(2n1 + 3, 2M − 32)
n1→ (2n2 + 3, 2M − 32)

n2→ (2n1 + 3, 2M − 32).

If scalar division by pα is possible here, then there will simultaneously exist n1 and

n2 such that

2n1 ≡ −3 (mod pα) and 2n2 ≡ −3 (mod pα)

and it will necessarily follow that

2M ≡ 2n1+n2 ≡ (−3)2 ≡ 32 (mod pα).

If 2 is a primitive root modulo pα, then the congruence equation

2x ≡ −3 (mod pα) (3.1)

always has solutions. If n1 and n2 are any two of these solutions, then we have

n1 ≡ n2 (mod ϕ(pα)), where ϕ is the Euler totient. Thus, n2 = n1 + kϕ(pα) and

M = 2n1 + kϕ(pα) for some non-negative integer k. If k = 0, then 2M − 32 =

(2n1 + 3)(2n1 − 3), and the generic 2-cycle above can be reduced by scalar division

to the repeated 1-cycle

(1, 2n1 − 3)
n1→ (1, 2n1 − 3)

as prescribed in Section 2.2.

If 2 is not a primitive root modulo pα, then equation (3.1) may or may not have

solutions.

If equation (3.1) does have solutions, then scalar division is still possible. For

example, 2 is not a primitive root modulo 7, but 22 ≡ −3 (mod 7) and 25 ≡ −3

(mod 7). If n1 = n2 = 2, then the computed 2-cycle is just a repeated 1-cycle. If

n1 = 2 and n2 = 5, then M = 7, q = 27 − 32 = 119 = 7 × 17, and the computed

2-cycle

(7, 119)
2→ (35, 119)

5→ (7, 119)

is subject to scalar division by 7, yielding the reduced 2-cycle

(1, 17)
2→ (5, 17)

5→ (1, 17).

Note also that det(C2,7(2, 5)) = 22 · 7, so that this determinant and q have the

common factor of 7.

If equation (3.1) does not have solutions, then scalar division is not possible.

This situation occurs if p = 17, 23, 31, 41, 43, 47, . . . .

Primitive roots also play a significant role in the scalar division of 3-cycles of

index M . As seen in Section 2.3, the natural 3-cycle of index M = n1 +n2 +n3 has

the general form

(r1, q)
n1→ (r2, q)

n2→ (r3, q)
n3→ (r1, q),
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where

r1 = 2n1+n2 + 2n1 · 3 + 32 (3.2)

r2 = 2n2+n3 + 2n2 · 3 + 32 (3.3)

and

r3 = 2n3+n1 + 2n3 · 3 + 32. (3.4)

If scalar division by the prime power pα is possible, then the system of congruence

equations

2n1+n2 ≡ −3(2n1 + 3) (mod pα) (3.5)

2n2+n3 ≡ −3(2n2 + 3) (mod pα) (3.6)

2n3+n1 ≡ −3(2n3 + 3) (mod pα) (3.7)

has a solution {n1, n2, n3}, and 2n1+n2+n3 ≡ 33 (mod pα). From these congruence

equations, we deduce that if 2ni + 3 ≡ 0 (mod pα) for any i, then a solution to

this system cannot exist. Hence, for a solution to exist, we require that 2ni 6≡ −3

(mod pα) for all i = 1, 2, 3.

If 2 is a primitive root modulo pα, then this system of congruence equations

always has at least one solution. To see this, choose n1 arbitrarily from all possible

integers for which 2ni 6≡ −3 (mod pα). Then there must exist a positive integer y

which solves the congruence

2n1+y ≡ −3(2n1 + 3) (mod pα).

Let n2 = y. Once n2 is chosen, we may compute r1 and rewrite the first congruence

equation in the form

2n1(2n2 + 3) + 32 ≡ 0 (mod pα).

If 2n2 + 3 ≡ 0 (mod pα), then 32 ≡ 0 (mod pα), an impossibility. Therefore,

2n2 6≡ −3 (mod pα), so that the congruence

2z+n2 ≡ −3(2n2 + 3) (mod pα)

has a solution z. Let n3 = z. Once n3 is chosen, we may compute r2 and q = 2M−33.

Since 2n1r2 = 3r1 + q, it follows that pα divides q, from which it also follows that

pα divides r3 as well. Hence, the given 3-cycle is subject to scalar division by pα.

A well chosen example for 3-cycles will illustrate the process that we have just

discussed.
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Illustrative Example. Let p = 13. Since 2 is a primitive root modulo 13, we may

choose any value of n1 (1 ≤ n1 ≤ 12), except n1 = 10 since 210 + 3 ≡ 0 (mod 13).

Choosing n = 1, 5, or 6 leads to the 3-cycle of index 12

(143, 4069)
1→ (2249, 4069)

6→ (169, 4069)
5→ (143, 4069)

with q = 212 − 33 = 4069 = 13 × 313, which may be reduced by scalar division by

13 to

(11, 313)
1→ (173, 313)

6→ (13, 313)
5→ (11, 313).

Note also that det(C3,12(1, 6, 5)) = −27 · 13 · 37.

Choosing n1 = 2, 3, or 7 leads to the 3-cycle of index 12

(533, 4069)
2→ (1417, 4069)

7→ (65, 4069)
3→ (533, 4069)

which can be reduced by scalar division by 13 to

(41, 313)
2→ (109, 313)

7→ (5, 313)
3→ (41, 313).

Note also that det(C3,12(2, 7, 3)) = −27 · 13 · 37.

Choosing n1 = 4, 9, or 11 leads to the 3-cycle of index 24

(9737, 16777189)
4→ (1054729, 16777189)

11→ (32825, 16777189)
9→ (9737, 16777189)

which can be reduced by scalar division by 13 to

(749, 1290553)
4→ (81133, 1290553)

11→ (2525, 1290553)
9→ (749, 1290553).

Note also that det(C3,24(4, 11, 9)) = −217 · 52 · 132.

Choosing n1 = 8 leads to a 3-cycle of index 24, which is actually the repeated

1-cycle of index 8

(1, 28 − 3)
8→ (1, 28 − 3).

Choosing n1 = 12 leads to a 3-cycle of index 36, which is actually the repeated

1-cycle of index 12

(1, 212 − 3)
12→ (1, 212 − 3).

In this example, M = n1 + n2 + n3 is always a multiple of 12. An application of

Theorem 14 explains this observation. With 212 ≡ 1 (mod 13), 33 ≡ 1 (mod 13),

21 ≡ 2 (mod 13), and 24 ≡ 3 (mod 13), M and N will have the representations

M = 12a+ 4k and N = 3b+ k. Since N = 3, we must have b = 1 and k = 0, which

implies that M = 12a, or b = 0 and k = 3, which implies that M = 12(a+ 1).

We turn to the general case. The analysis given above suggests that a system ofN

exponential congruence equations modulo pα needs to have a solution {n1, . . . , nN}
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consisting of indicial exponents if scalar division by pα of the corresponding N -cycle

if index M is to occur. To be more specific, if scalar division by pα is possible for

the natural N -cycle

(r1, 2
M − 3N )→ (r2, 2

M − 3N )→ · · · → (rN , 2
M − 3N ),

where

ri = gNi =

N−1∑
j=0

2mi,N−j−1 · 3j ,

then there must exist positive integers {n1, . . . , nN} such that gNi ≡ 0 (mod pα),

or equivalently,

2mi,N−1 ≡ −3

N−1∑
j=1

2mi,N−j−1 · 3j−1
 (mod pα)

for all i = 1, . . . , N , with 2M ≡ 2n1+···+nN ≡ 3N (mod pα). We have shown above

that this is possible if N = 2 or N = 3 and 2 is a primitive root of pα, but the

general case is unresolved.

Remark. Suppose that q = 2M − 3N = ±pα for some integers M > N ≥ 2, p ≥ 5,

and α ≥ 1, where p is an odd prime. Then either 2M + pα = 3N or 3N + pα = 2M .

A few solutions to these Diophantine equations are: 33 + 51 = 25, 34 + 471 = 27,

211 + 1391 = 37, and 25 + 72 = 34. In these examples, α = 1 or 2.

The Beal Conjecture (a generalized version of Fermat’s Last Theorem) states

that the Diophantine equation xm + yn = zk has no solutions if x, y and z are

positive coprime integers and m, n and k are greater than 2.

If the Beal Conjecture is true, then the Diophantine equations 2M − 3N = ±pα
have no solutions if N ≥ 3, M ≥ N and α ≥ 3. Under this assumption, no natural

N -cycles (with N ≥ 3) of index M (with M > N) could be created in any row

indexed by q = ±pα, if p ≥ 5 and α ≥ 3. Of course, N -cycles can still exist in these

rows. Note that the solution 31 + 53 = 27 is not a counterexample, as N = 1.

3.5.3. Some Factors of the Determinant of the Cyclemaster Matrix

Theorem 15. Let {(ri, q) : i = 1, . . . , N} be an extremal natural N -cycle of index

M with the associated set of indicial exponents {1, . . . , 1,M −N + 1}. Then

det (CN,M (1, . . . , 1,M −N + 1)) = ±2N(N−1)/2 (2M−N − 1
)N−1

, (3.8)

where the sign of the determinant is positive if N ≡ 1 (mod 4) or N ≡ 2 (mod 4),

and is negative if N ≡ 3 (mod 4) or N ≡ 4 (mod 4).

The proof of this theorem follows by an application of elementary row operations.
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Corollary 3. If n is an odd integer, then nN−1 divides the determinant

det (CN,M (1, . . . , 1, 1 + ϕ(n))) = ±2N(N−1)/2
(

2ϕ(n) − 1
)N−1

.

In particular, if p is prime, then pN−1 divides the determinant

det (CN,M (1, . . . , 1, p)) = ±2N(N−1)/2 (2p−1 − 1
)N−1

.

Proof. The Euler-Fermat Theorem states that if a and n are relatively prime, then

aϕ(n) ≡ 1 (mod n). Given this choice of indicial exponents, M = N+ϕ(n). Choose

a = 2. Also, if p is prime, then ϕ(p) = p− 1.

Corollary 4. Let M = N + p.

1. det (CN,M (1, . . . , 1, 1 + p)) = ±2N(N−1)/2 (2p − 1)
N−1

2. If 2p − 1 is a Mersenne prime and N ≥ 3, then 2M − 3N does not divide this

determinant.

3. If 2p−1 is a Mersenne prime and N ≥ 3, then there are no extremal N -cycles

of index M for the original Collatz problem.

Proof. Recall that a Mersenne prime is a prime of the form 2p − 1. If 2p − 1 is

prime, then so is p.

1. Apply the theorem with M −N = p.

2. If 2M − 3N divides the determinant, then it also divides 2 or 2p− 1. But then

2M − 3N = ±1 or ±(2p − 1).

If 2M − 3N = +1, then N = 1, M = 2, p = 1, and 2p − 1 = 1.

If 2M − 3N = −1, then N = 2, M = 3, and p = 1.

If 2M − 3N = 2N+p − 3N = +(2p − 1), then 2p(2N − 1) = 3N − 1. If N is

even, then 3 divides the left hand side of this equation, but not the right. If

N is odd, then the largest power of 2 that divides the right hand side of this

equation is 21, implying that p = 1, 2p − 1 = 1.

If 2M − 3N = −(2p − 1), then 2p(2N + 1) = 3N + 1. The highest power of 2

that divides the right hand side of this equation is 21 or 22, so that p = 1 or

p = 2. If p = 2, then 2p − 1 = 3, and 2M − 3N = −3, an impossibility.

3. This follows as a corollary to Theorem 1.

Remark. The difference M −N can be used to eliminate N -cycles for the original

Collatz problem. If M − N = 3, then det (CN,M (1, . . . , 1, 4)) = ±2N(N−1)/27N−1.

If 2M − 3N divides this determinant, then 2M − 3N = ±1 or ±7d, where d is an

integer such that 1 ≤ d ≤ N − 1. If d = 1, then N = 2, M = 4, and q = 7, but

M −N = 2, not 3. The other choices are similar.
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4. The “5x + 1” Problem and Similar Problems

It is of interest to compare the strong similarities between the “3x + 1” problem

and the “5x + 1” problem. The analysis presented in the previous sections can be

repeated nearly verbatim to establish the following correspondences between these

two problems:

1. The cycle indicator 2M − 3N corresponds to 2M − 5N .

2. The cycle generators

gNi = 2mi,N−1 + · · ·+ 2mi1 · 3N−2 + 3N−1

correspond to

gNi = 2mi,N−1 + · · ·+ 2mi1 · 5N−2 + 5N−1.

3. The cyclemaster matrix is the same for both problems.

4. Theorem 1 analogizes appropriately, but the divisor 2M−3N must be replaced

by 2M − 5N .

5. The known N -cycles are different.

To highlight the four known N -cycles of index M for the “5x + 1” problem, we

discuss their genesis and structure here in terms of the vocabulary introduced in

the previous sections.

1. The first known cycle is a 1-cycle of index 2, with N = 1, n1 = 2 = M , and

q = 22 − 51 = −1. The only element in this 1-cycle can be determined from

the equation
5r1 − 1

22
= r1

to be r1 = 1. Thus, this natural cycle has the representation

(1,−1)
2→ (1,−1).

After scalar division by −1 the cycle becomes

(−1, 1)
2→ (−1, 1),

which is why it previously appeared in the literature simply as −1 → −1.

This cycle fits the technical definition of an extremal natural 1-cycle.
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2. The second known cycle is an extremal natural 2-cycle of index 5, with N = 2,

M = 5, q = 25 − 52 = 7, and the associated indicial exponents {n1, n2} =

{1, 4}. The cycle elements are r1 = 21 + 5 = 7 and r2 = 24 + 5 = 21. Thus,

this 2-cycle has the representation

(7, 7)
1→ (21, 7)

4→ (7, 7).

After scalar division by q = 7, we obtain the completely reduced extremal

2-cycle

(1, 1)
1→ (3, 1)

4→ (1, 1),

which is why it previously appeared in the literature as 1→ 3→ 1. Note that

25 − 52 = 7 divides the determinant

det (C2,5(1, 4)) = 14,

in accordance with the obvious analog (with a = 5) to Theorem 1.

3. The third known cycle is an extremal natural 3-cycle of index 7, with q =

27−53 = 3 and the associated indicial exponents {n1, n2, n3} = {1, 1, 5}. The

cycle elements are computed to be

r1 = 22 + 21 · 5 + 52 = 39

r2 = 26 + 21 · 5 + 52 = 99

r3 = 26 + 25 · 5 + 52 = 249

Thus, this 3-cycle can be represented as

(39, 3)
1→ (99, 3)

1→ (249, 3)
5→ (39, 3).

After scalar division by q = 3, we obtain the completely reduced 3-cycle

(13, 1)
1→ (33, 1)

1→ (83, 1)
5→ (13, 1),

which is why it previously appeared in the literature as 13→ 33→ 83→ 13.

Note that q = 3 divides the determinant

det (C3,7(1, 1, 5)) = det

 1 1 1
21 21 25

22 26 26

 = −23 · 32 · 52,

in accordance with the obvious analog to Theorem 1.

4. The fourth known cycle is a natural 3-cycle of index 7, with q = 27−53 = 3 and

the associated indicial exponents {n1, n2, n3} = {1, 3, 3}. After computing the

cycle elements, this 3-cycle can be represented as

(51, 3)
1→ (129, 3)

3→ (81, 3)
3→ (51, 3).
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After scalar division by q = 3, we obtain the completely reduced 3-cycle

(17, 1)
1→ (43, 1)

3→ (27, 1)
3→ (17, 1),

which is why it previously appeared in the literature as 17→ 43→ 27→ 17.

Note that q = 3 divides the determinant det (C3,7(1, 3, 3)) = −26 · 32, in

accordance with the obvious analog to Theorem 1.

Crandall [1] discovered a 2-cycle of index 15 for the “181x + 1” problem. With

N = 2, M = 15, q = 215 − 1812 = 7, and the associated indicial exponents

{n1, n2} = {3, 12}, the cycle elements are r1 = 23 + 181 = 189 = 7 · 27 and

r2 = 212+181 = 4277 = 7·611. Thus, this 2-cycle of index 15 has the representation

(189, 7)
3→ (4277, 7)

12→ (189, 7).

After scalar division by q = 7, we obtain the completely reduced 2-cycle of index 15

(27, 1)
3→ (611, 1)

12→ (27, 1),

which is why it previously appeared in the literature as 27→ 611→ 27. Note that

215 − 1812 = 7 divides the determinant

det (C2,15(3, 12)) = 23 · 7 · 73,

in accordance with the obvious analog (with a = 181) to Theorem 1.

Remark. The essential observation here is that the cyclemaster matrix is the same

for all of these problems. Thus, the cyclemaster matrix is an essential unifying

feature in any approach to N -cycles for all of the “ax+ 1” problems.

5. The Variable Cyclemaster Matrix and Algebraic Varieties

The variable cyclemaster matrix is the matrix that results by replacing 2ni with xi
in the cyclemaster matrix. For example,

V2(x1, x2) =

(
1 1
x1 x2

)
, V3(x1, x2, x3) =

 1 1 1
x1 x2 x3
x1x2 x2x3 x3x1


and

V4(x1, x2, x3, x4) =


1 1 1 1
x1 x2 x3 x4
x1x2 x2x3 x3x4 x4x1
x1x2x3 x2x3x4 x3x4x1 x4x1x2

 .
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In order to define VN (x1, . . . , xN ) generally, we must introduce some notation

for the partial products of the variables xi in the given order. Let

uij = xixi+1 · · ·xi+j−1 =

j−1∏
k=0

xi+k.

There are j terms in each of these products, starting with xi. If the subscript

i + k > N , then xi+k is replaced by xi+k−N ; i.e., if i + k > N , the product wraps

around to the beginning variables.

The variable cyclemaster matrix VN (x1, . . . , xN ) is the N ×N matrix whose ijth

entry is vij = uj,i−1 for i ≥ 2 and v1j = 1.

The determinant of a variable cyclemaster matrix is a polynomial in N variables.

Its degree is N(N − 1)/2 and it enjoys the homogeneity property

det (VN (dx1, . . . , dxN )) = dN(N−1)/2 det (VN (x1, . . . , xN )) .

For example,

det (V2(x1, x2)) = x2 − x1,

det (V3(x1, x2, x3)) = 3x1x2x3 − (x11x
2
2 + x12x

2
3 + x13x

2
1),

and

det (V4(x1, x2, x3, x4)) = +2(x11x
2
2x

1
3x

2
4 − x21x12x23x14)

+ 4(x11x
1
2x

2
3x

2
4 − x11x22x23x14 + x21x

2
2x

1
3x

1
4 − x21x12x13x24)

+ (x11x
2
2x

3
3 − x12x23x34 + x13x

2
4x

3
1 − x14x21x32).

Note that the determinant of a variable cyclemaster matrix can vanish whenever

the variables are periodic. For example, det (V4(x1, x2, x1, x2)) = 0.

With the assignment xi = 2ni , it follows that x1 · · ·xN = 2n1+···+nN = 2M , so

that
det (CN,M (n1, . . . , nN ))

2M − aN
=

det (VN (x1, x2, . . . , xN ))

x1 · · ·xN − aN
.

Remark. There are four relevant interpretations for this observation, if a = 3.

First, if the quotient is not an integer, then Theorem 1 implies that there does

not exist an N -cycle of index M with this ordered set of indicial exponents for the

original Collatz problem.

Second, if this quotient is an integer, then an N -cycle of index M may or may

not exist for the original Collatz problem, as indicated by the examples presented

in Section 1.

Third, if this quotient is not an integer, then the polynomial equation

P (x1, . . . , xN ) = det (VN (x1, x2, . . . , xN ))− k(x1 · · ·xN − aN ) = 0
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does not have a solution in positive powers of 2 for any integer k.

Fourth, if this quotient has an integer value, then this polynomial equation has

at least one solution for each such value. Some of these solutions may correspond

to N -cycles of index M for the original Collatz problem, but some may not, again

as indicated by the examples presented in Section 1.

An algebraic variety is the solution set for a multivariable polynomial equation

or for a system of multivariable polynomial equations. Recently, there has been

a great deal of activity in the theory of algebraic varieties. How many solutions

to these polynomial equations or systems of polynomial equations are there? The

answer to this question has consequences for the problem under consideration.

Of course, the polynomial equation above will always have the trival solution

x1 = · · · = xN = a, but there are non-trivial solutions as well. For a fixed value

of M , the determinant of the cyclemaster matrix can only have a finite number of

values corresponding to all choices of the indicial exponents. If a is large enough, the

quotient cannot be an integer. Thus, there can only be a finite number of N -cycles

of index M for all of the “ax+ 1” problems.

Illustrative Examples.

1. If k = −2, a = 3, N = 2 and M = 3, then

P (21, 22) = det
(
V2(21, 22)

)
+ 2(23 − 32) = 2 + 2(−1) = 0.

This solution corresponds to the extremal natural 2-cycle of index 3

(5,−1)
1→ (7,−1)

2→ (5,−1)

for the “3x+ 1” problem, as q = −1, x1 = 2n1 = 21 and x2 = 2n2 = 22.

2. If k = 225 · 5 · 79, a = 3, N = 7 and M = 11, then

P (21, 21, 21, 22, 21, 21, 24)

= det
(
V7(21, 21, 21, 22, 21, 21, 24)

)
− 225 · 5 · 79(211 − 37)

= 0.

This solution corresponds to the natural 7-cycle of index 11 given in Section

1 for the “3x + 1” problem, where x1 = x2 = x3 = x5 = x6 = 21, x4 = 22,

and x7 = 24.

3. If k = 217 · 32 · 7 · 132 · 372, a = 3, N = 6 and M = 12, then

P (21, 21, 21, 26, 21, 22)

= det
(
V6(21, 21, 21, 26, 21, 22)

)
− 217 · 32 · 13 · 37(212 − 36)

= 0.
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This solution does not correspond to a 6-cycle of index 12 for the original

Collatz problem.

4. If k = 2, a = 5, N = 2, and M = 5, then

P (21, 22) = det
(
V2(21, 24)

)
− 2(25 − 52) = 14− 2 · 7 = 0.

This solution corresponds to the extremal natural 2-cycle of index 5

(7, 7)
1→ (21, 7)

4→ (7, 7)

given in Section 4 for the “5x + 1” problem, with q = 7, x1 = 2n1 = 21 and

x2 = 2n2 = 4. After scalar division by 7, this 2-cycle can be reduced to the

cycle

(1, 1)
1→ (3, 1)

4→ (1, 1).

5. If k = −600, a = 5, N = 3 and M = 7, then

P (21, 21, 25) = det
(
V3(21, 21, 25)

)
+ 600(27 − 53) = −1800 + 600 · 3 = 0.

This solution corresponds to the extremal natural 3-cycle of index 7

(39, 3)
1→ (99, 3)

1→ (249, 3)
5→ (39, 3)

given in Section 4 for the “5x+ 1” problem, with q = 27− 53 = 3, x1 = 2n1 =

21, x2 = 2n2 = 21, and x3 = 2n3 = 25. After scalar division by 3, this 3-cycle

can be reduced to the cycle

(13, 1)
1→ (33, 1)

1→ (83, 1)
5→ (13, 1).

6. If k = −192, a = 5, N = 3 and M = 7, then

P (21, 23, 23) = det
(
V3(21, 23, 23)

)
+ 192(27 − 53) = −576 + 192 · 3 = 0.

This solution corresponds to the natural 3-cycle of index 7

(51, 3)
1→ (129, 3)

3→ (81, 3)
3→ (51, 3)

given in Section 4 for the “5x + 1” problem, which can be reduced to the

3-cycle

(17, 1)
1→ (43, 1)

3→ (27, 1)
3→ (17, 1).

7. If k = 23 · 73, a = 181, N = 2 and M = 15, then

P (23, 212) = det
(
V2(23, 212)

)
− 23 · 73(215 − 1812) = 0.
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This solution corresponds to the natural 2-cycle of index 15

(189, 7)
3→ (4277, 7)

12→ (189, 7)

given in Section 4 for the “181x+1” problem, where q = 7, x1 = 2n1 = 23 and

x2 = 2n2 = 212. After scalar division by q = 7, this 2-cycle can be reduced to

(27, 1)
3→ (611, 1)

12→ (27, 1)

Remark. These seven examples illustrate how the solutions to the polynomial

equation P (x1, . . . , xN ) = 0 correspond in some cases to the existence of N -cycles

for the “ax + 1” problems. Since the graph of this equation is a level surface in

N -dimensional space, the existence of N -cycles for some of the “ax + 1” problems

also corresponds in some cases to the existence of points on that level surface with

coordinates that are positive powers of 2.

Another formulation in terms of a simple system of polynomial equations is

possible.

If {(ri, q) : i = 1, . . . , N} is a natural N -cycle, then ri = gNi for all i. If this

N -cycle is subject to scalar division by q = 2M − aN , thereby yielding an N -cycle

in the row indexed by q = 1, then

gNi
q

=

∑N−1
j=0 2mi,N−j−1 · aj

2M − aN
= ki

for all i = 1, . . . , N , where ki is an odd integer.

If we replace 2ni with xi in this quotient, then we obtain a variable version of

these N requirements. For example, if N = 3, then the generators gNi become

hN1(x1, x2, x3) = x1x2 + ax1 + a2

hN2(x1, x2, x3) = x2x3 + ax2 + a2

hN3(x1, x2, x3) = x3x1 + ax3 + a2

and q(x1, x2, x3) = x1x2x3 − a3. It follows that the solutions to the system

P1(x1, x2, x3) = x1x2 + ax1 + a2 − k1(x1x2x3 − a3) = 0

P2(x1, x2, x3) = x2x3 + ax2 + a2 − k2(x1x2x3 − a3) = 0

P3(x1, x2, x3) = x3x1 + ax3 + a2 − k3(x1x2x3 − a3) = 0

in positive powers of 2 give rise to candidates for indicial exponents which can be

used to create 3-cycles in some cases for an “ax+ 1” problem, if there are any. The

graphs of these equations are level surfaces in R3. The intersections of all of these

surfaces may give rise to points in R3 which belong simultaneously to all three level

surfaces. The coordinates of these points of intersection are positive powers of 2,

if they correspond to 3-cycles. There may be other points of intersections that are

not positive powers of 2.
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6. Further Research

There are several promising areas for further research.

1. A Mersenne prime is a prime number of the form 2M − 1. Mersenne primes

have been generalized in various ways. Given the results presented in Corollary 1

and Corollary 2, it is of independent interest to study prime numbers of the form

2M − 3N , when M and N are relatively prime with N ≥ 1.

2. It was noted in Section 1 that if the set {n1, . . . , nN} has period D, where D is

a proper divisor of N , then det (CN,M (n1, . . . , nN )) = 0. The converse does not hold.

This determinant vanishes if N = 4, M = 4n1, n1 = n3, and 2n1 = n2 + n4. For

example, det (C4,12(3, 2, 3, 4)) = 0. It follows from Theorem 15 that the determinant

of the cyclemaster matrix does not vanish if the indicial exponents correspond to

an extremal N -cycle with M > N . What can be said in general?

3. The non-existence of N -cycles of index M for all “ax+ 1” problems depends

upon the divisibility properties of det (CN,M (n1, . . . , nN )) by the cycle indicator

2M − aN . Since the divisibility properties of this determinant depend completely

upon the composition n1 + · · · + nN = M , a study of the divisibility properties of

this determinant can be conducted independently.

In addition, the cyclemaster matrix has interesting properties in its own right

which deserve attention. For instance, the product of all elements in the second

row of the cyclemaster matrix is 2M ; the product of all elements in the third row is

22M , and so forth.

4. Let

NN,M = {{n1, . . . , nN} : ni ≥ 1 and n1 + · · ·+ nN = M}

denote the set of all indicial exponents for all N -cycles of index M .

For 2 ≤ N < M , let

δN,M = min
NN,M

|det (CN,M (n1, . . . , nN ))| .

If ni = a for all i = 1, . . . , N , then M = aN and δN,aN = 0. However, if δN,M > 0,

then δN,M ≥ 2N(N−1)/2. To see this, simply note that a factor of 21 can be factored

from the second row of the cyclemaster matrix; a factor of 22 from the third row,

etc. All of these factors result in an aggregate factor of 21+2+···+(N−1) = 2N(N−1)/2

being removed. By Theorem 15, equality holds for every extremal N -cycle of index

M for which M = N + 1. Determine δN,M for all values of N and M .

For 2 ≤ N < M , let

∆N,M = max
NN,M

|det (CN,M (n1, . . . , nN ))| .
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It was mentioned in Section 4 that the cyclemaster matrix is the same for all of

the “ax + 1” problems. If a is so large that |2M − aN | > ∆N,M , then complete

scalar division of any N -cycle of index M is not possible. For smaller values of a,

complete scalar division may be possible. It is for this reason that it is important

to determine ∆N,M in terms of N and M only.

5. The problem of determining ∆N,M is clearly equivalent to the problem of

determining the set(s) of indicial exponents in NN,M for which the maximum is

attained. Consequently, maps from NN,M to NN,M are of interest.

It was noted previously that the rotation maps

{n1, . . . , nN} → {n2, . . . , nN , n1} and {n1, . . . , nN} → {nN , n1, . . . , nN−1}

do not generate different N -cycles, but merely relabel existing N -cycles. Also, the

magnitude of the determinant of the corresponding N -cycles does not change, but

its sign may change.

However, transposition maps, that is maps of the form

{n1, . . . , ni, ni+1, . . . , nN} → {n1, . . . , ni+1, ni, . . . , nN}

generate different N -cycles and the determinant of the cyclemaster matrix can

change in magnitude as a result. Due to the action of the rotation maps, it is

sufficient only to consider the action of transposition maps of the form

{n1, . . . , nN−1, nN} → {n1, . . . , nN , nN−1}.

When does the action of a transposition map lead to an increase (decrease) in the

value of the determinant of the corresponding cyclemaster matrix?

Adjacency maps, that is maps of the form

{n1, . . . , ni, ni+1, . . . , nN} → {n1, . . . , ni + 1, ni+1 − 1, . . . , nN}

and

{n1, . . . , ni, ni+1, . . . , nN} → {n1, . . . , ni − 1, ni+1 + 1, . . . , nN},

generate different N -cycles, and the determinant of the cyclemaster matrix can

change in magnitude as a result. It is sufficient to consider adjacency maps of the

form

{n1, . . . , nN−1, nN} → {n1, . . . , nN−1 + 1, nN − 1}

or

{n1, . . . , nN−1, nN} → {n1, . . . , nN−1 − 1, nN + 1},

due to the action of rotation maps. When does the action of an adjacency map

lead to an increase (decrease) in the value of the determinant of the corresponding

cyclemaster matrix?
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6. All of the elements of NN,M can be considered to be points in the N -

dimensional plane x1 + · · · + xN = M . Every element of NN,M belongs to the

closed convex hull co(NN,M ) of NN,M in that plane; thus, all of its elements can be

written as convex combinations of its extreme points. Also, every element of NN,M
is the image of the element {1, . . . , 1,M −N − 1} under a composition of the maps

defined above. Are the points {1, . . . , 1,M − N − 1} and all of its rotations the

extreme points of co(NN,M )? Is the maximum value ∆N,M attained there?

7. It was observed in Section 3.5.2 that if N = 2 or N = 3, then an N -cycle which

is subject to scalar division by pα can be constructed, where pα is a prime power

divisor of 2M − 3N and 2 is a primitive root of pα. Is this construction possible for

all N ≥ 4? Do primitive roots always play a role in the construction of N -cycles?

8. How do the indicial exponents {n1, . . . , nN} determine the factorization of

det (CN,M (n1, . . . , nN )) into prime powers?
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