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Abstract

Mahadeva Naika and Harishkumar defined a5(n), the number of 5-regular partitions
with the first occurrence of an odd number overlined. They proved many infinite
families of congruences modulo powers of 2 for a5(n). Let a4,5(n) denote the number
of (4, 5)-regular partitions of n with the first occurrence of an odd number overlined.
In this paper, we establish many infinite families of congruences modulo powers of
2 for a4,5(n). For example, for all n ≥ 0 and β ≥ 0,

a4,5

(
16 · 52β+2n+

v1 · 52β+1 + 1

3

)
≡ 0 (mod 16),

where v1 ∈ {46, 94}.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers

whose sum is n. For positive integer ` > 1, a partition is an `-regular partition of

n if none of the parts are divisible by `. Let p`(n) denote the number of `-regular

partitions of n with p`(0) = 1; the generating function for p`(n) is given by

∞∑
n=0

p`(n)qn =
f`
f1
,
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where

f1 := (q; q)∞ =

∞∑
n=−∞

(−1)nqn(3n−1)/2

and

f` := (q`; q`)∞ =

∞∏
m=1

(1− qm`).

For more information about p`(n), one can see [3, 6, 15].

If `,m > 1, a partition is an (`,m)-regular partition of a positive integer n if none

of the parts are divisible by ` or m. For example, the (4, 5)-regular partitions of 5

are

3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

In 2004, Corteel and Lovejoy [5] introduced overpartitions. An overpartition of a

non-negative integer n is a non-increasing sequence of natural numbers whose sum

is n, where the first occurrence of parts of each size may be overlined. Let p(n)

denote the number of overpartitions of n with p(0) = 1; the generating function for

p(n) is given by

∞∑
n=0

p(n)qn =

∞∏
n=1

1 + qn

1− qn
= 1 + 2q + 4q2 + 8q3 + 14q4 + · · · . (1)

An extensive study on the overpartition function p(n) can be found in the work

of Corteel and Lovejoy [5]. Later, Hirschhorn and Sellers [9] proved a number

of arithmetic relations satisfied by p(n) and also obtained many Ramanujan-type

congruences modulo powers of 2 for p(n). For more details about p(n), one can see

[1, 10, 12, 13, 17, 20, 21].

Hirschhorn and Sellers [11] defined the partition function po(n), the number of

overpartitions of n into odd parts. The generating function for po(n) is given by

∞∑
n=0

po(n)qn =
∞∏
n=1

1 + q2n+1

1− q2n−1
= 1 + 2q + 2q2 + 4q3 + 6q4 + · · · . (2)

They proved a number of arithmetic results including several Ramanujan-type con-

gruences satisfied by po(n) and some easily-stated characterizations of po(n) modulo

small powers of 2. For example, for all n ≥ 1,

po(n) ≡
{

2 (mod 4) if n is square or n is twice a square,
0 (mod 4) otherwise.

(3)

For more details about po(n), one can see [4, 19].

In [14], the authors defined a5(n), the number of 5-regular partitions of n with

the first occurrence of an odd number overlined and they obtained many infinite
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families of congruences modulo powers of 2 for a5(n). For example, for all n ≥ 0

and β ≥ 0,

a5

(
16 · 52β+1n+

k1 · 52β − 1

3

)
≡ 0 (mod 16),

where k1 ∈ {142, 238}.
By the motivation of the above work, in this paper, we define a4,5(n), the number

of (4, 5)-regular partitions of n with the first occurrence of an odd number overlined.

The generating function for a4,5(n) is given by

∞∑
n=0

a4,5 (n) qn =
f22 f

2
5

f21 f
2
10

. (4)

For example, (4, 5)-regular partitions of 5 with the first occurrence of an odd number

overlined are

3 + 2, 3 + 2, 3 + 1 + 1, 3 + 1 + 1, 3 + 1 + 1, 3 + 1 + 1, 2 + 2 + 1, 2 + 2 + 1,

2 + 1 + 1 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Also, we establish many infinite families of congruences modulo powers of 2 for

a4,5(n). For example, for all n ≥ 0 and β ≥ 0,

a4,5

(
16 · 52β+2n+

v1 · 52β+1 + 1

3

)
≡ 0 (mod 16),

where v1 ∈ {46, 94}.

2. Preliminary Results

In this section, we record some identities which are useful in proving our main

results.

Lemma 1. The following 2-dissection holds:

f21 =
f2f

5
8

f24 f
2
16

− 2q
f2f

2
16

f8
, (5)

f41 =
f104
f22 f

4
8

− 4q
f22 f

4
8

f24
. (6)

The identity (5) is the 2-dissection of φ(−q) [8, 1.9.4]. The identity (6) is the

2-dissection of φ(−q)2 [8, 1.10.1]. Also, one can see [2, p.40].
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Lemma 2. The following 2-dissections hold:

f1
f5

=
f2f8f

3
20

f4f310f40
− q f

2
4 f40
f8f210

(7)

and
f5
f1

=
f8f

2
20

f22 f40
+ q

f34 f10f40
f32 f8f20

. (8)

Equation (7) was proved by Hirschhorn and Sellers [7]; see also [18]. Replacing q

by −q in (7) and using the fact that (−q;−q)∞ =
f3
2

f1f4
, we obtain (8).

Lemma 3. We have

1

f31 f5
=

f44
f72 f10

− 2q
f64 f

2
20

f92 f
3
10

+ 5q
f34 f20
f82

+ 2q2
f94 f

2
40

f102 f28 f
2
10f20

, (9)

f1f
3
5 = f32 f10 − q

f22 f
2
10f20
f4

+ 2q2f4f
3
20 − 2q3

f44 f10f
2
40

f2f28
, (10)

1

f1f35
=
f4f

3
20

f810
+ q

f420
f2f710

+ 2q2
f24 f

6
20

f32 f
9
10

+ 2q3
f54 f

3
20f

2
40

f42 f
2
8 f

8
10

(11)

and

f31 f5 =
f22 f4f

2
10

f20
+ 2qf34 f20 − 5qf2f

3
10 + 2q2

f64 f10f
2
40

f2f28 f
2
20

. (12)

For proofs, see [16].

Lemma 4. [8, p. 85, 8.1.1] We have the following 5-dissection formula

f1 = f25(a(q5)− q − q2/a(q5)), (13)

where

a := a(q) :=
(q2, q3; q5)∞
(q, q4; q5)∞

. (14)

Lemma 5. For any positive integers k and m, we have

f2mk ≡ fm2k (mod 2), (15)

f4mk ≡ f2m2k (mod 4) (16)

and

f8mk ≡ f4m2k (mod 8). (17)
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3. Congruences for a4,5(n)

In this section, we prove many infinite families of congruences modulo powers of 2

for a4,5(n).

Theorem 1. Let v1 ∈ {46, 94}, v2 ∈ {92, 188}, v3 ∈ {368, 752} and v4 ∈ {184, 376}.
Then for all n ≥ 0 and α, β ≥ 0, we have, modulo 16,

∞∑
n=0

a4,5

(
16 · 52βn+

38 · 52β + 1

3

)
qn ≡ 8f72 f5, (18)

∞∑
n=0

a4,5

(
16 · 52β+1n+

46 · 52β+1 + 1

3

)
qn ≡ 8q2f1f

7
10, (19)

a4,5

(
16 · 52β+2n+

v1 · 52β+1 + 1

3

)
≡ 0, (20)

∞∑
n=0

a4,5

(
32 · 52βn+

92 · 52β + 1

3

)
qn ≡ 8q2f1f

7
10, (21)

∞∑
n=0

a4,5

(
32 · 52β+1n+

76 · 52β+1 + 1

3

)
qn ≡ 8f72 f5, (22)

a4,5

(
32 · 52β+1n+

v2 · 52β + 1

3

)
≡ 0, (23)

∞∑
n=0

a4,5

(
128 · 52βn+

368 · 52β + 1

3

)
qn ≡ 8q2f1f

7
10, (24)

∞∑
n=0

a4,5

(
128 · 52β+1n+

304 · 52β+1 + 1

3

)
qn ≡ 8f72 f5, (25)

a4,5

(
128 · 52β+1n+

v3 · 52β + 1

3

)
≡ 0, (26)

a4,5

(
24α+6n+

24α+7 + 1

3

)
≡ a4,5 (4n+ 3) , (27)

∞∑
n=0

a4,5

(
64 · 52βn+

152 · 52β + 1

3

)
qn ≡ 8f72 f5, (28)

∞∑
n=0

a4,5

(
64 · 52β+1n+

184 · 52β+1 + 1

3

)
qn ≡ 8q2f1f

7
10, (29)

a4,5

(
64 · 52β+2n+

v4 · 52β+1 + 1

3

)
≡ 0. (30)
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Proof. Employing (8) in (4) and then collecting the coefficients of q2n+1 from both

sides of the resultant equation, we get

∞∑
n=0

a4,5 (2n+ 1) qn = 2
f32 f10
f31 f5

. (31)

Using (9) in (31) and then collecting the even and odd terms from both sides, we

obtain
∞∑
n=0

a4,5 (4n+ 1) qn = 2
f42
f41

+ 4q
f92 f

2
20

f71 f
2
4 f5f10

(32)

and
∞∑
n=0

a4,5 (4n+ 3) qn = 10
f32 f5f10
f51

− 4
f62 f

2
10

f61 f
2
5

. (33)

Invoking (16) and (17) in (32) and (33), we get, modulo 16,

∞∑
n=0

a4,5 (4n+ 1) qn ≡ 2f41 + 4q
f1f2f

3
10

f5
(34)

and
∞∑
n=0

a4,5 (4n+ 3) qn ≡ 10
f31 f5f10
f2

+ 12
f42 f

2
5

f21
. (35)

Using (6) and (7) in (34), we obtain

∞∑
n=0

a4,5 (8n+ 1) qn ≡ 2
f22
f21

+ 12q
f1f

2
2 f5f20
f4

(36)

and
∞∑
n=0

a4,5 (8n+ 5) qn ≡ 4
f21 f4f

3
10

f2f20
+ 8f72 . (37)

Substituting (5) in (37), we get

∞∑
n=0

a4,5 (16n+ 5) qn ≡ 4
f4f

3
5

f2f10
+ 8f71 (38)

and
∞∑
n=0

a4,5 (16n+ 13) qn ≡ 8f72 f5. (39)

Congruence (39) is the β = 0 case of (18). Suppose that Congruence (18) is true

for β ≥ 0 and using (13) in (18), we arrive at

∞∑
n=0

a4,5

(
16 · 52β+1n+

46 · 52β+1 + 1

3

)
qn ≡ 8q2f1f

7
10. (40)
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Utilizing (13) in (40) and then collecting the coefficients of q5n+3 from both sides

of the resultant equation, we obtain

∞∑
n=0

a4,5

(
16 · 52β+2n+

38 · 52β+2 + 1

3

)
qn ≡ 8f72 f5, (41)

which implies that Congruence (18) is true for β+ 1. Hence, by induction, Congru-

ence (18) holds for all integers β ≥ 0.

Using (13) in (18) and then extracting the coefficients of q5n+4 from both sides

of the resultant equation, we get (19).

From Congruence (19) along with (13), we obtain (20).

Substituting (8) and (12) in (35), we get

∞∑
n=0

a4,5 (8n+ 3) qn ≡ 10
f1f2f

3
5

f10
+ 12f42 (42)

and
∞∑
n=0

a4,5 (8n+ 7) qn ≡ 12
f32 f5f10
f1

+ 14f45 . (43)

Substituting (6) and (8) in (43), we have

∞∑
n=0

a4,5 (16n+ 7) qn ≡ 12
f1f4f5f

2
10

f20
+ 14

f210
f25

(44)

and
∞∑
n=0

a4,5 (16n+ 15) qn ≡ 12
f32 f

2
5 f20

f4f10
+ 8q2f710. (45)

Employing (5) in (45), we obtain

∞∑
n=0

a4,5 (32n+ 15) qn ≡ 12
f31 f20
f2f10

+ 8qf75 (46)

and
∞∑
n=0

a4,5 (32n+ 31) qn ≡ 8q2f1f
7
10. (47)

Congruence (47) is the β = 0 case of (21). Suppose that Congruence (21) is true

for β ≥ 0, we have

∞∑
n=0

a4,5

(
32 · 52βn+

92 · 52β + 1

3

)
qn ≡ 8q2f1f

7
10. (48)
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Employing (13) in (48) and then collecting the coefficients of q5n+3 from both sides,

we get
∞∑
n=0

a4,5

(
32 · 52β+1n+

76 · 52β+1 + 1

3

)
qn ≡ 8f72 f5. (49)

Again, using (13) in (49) and then comparing the coefficients of q5n+4 on both sides,

we have
∞∑
n=0

a4,5

(
32 · 52β+2n+

92 · 52β+2 + 1

3

)
qn ≡ 8q2f1f

7
10, (50)

which implies that Congruence (21) is true for β + 1. Hence, by mathematical

induction, Congruence (21) holds for all integers β ≥ 0.

Employing (13) in (21) and then collecting the coefficients of q5n+3 from both

sides of the resultant equation, we obtain (22).

Employing (13) in (21) and then comparing the coefficients of q5n+i for i = 0, 1

on both sides of the resultant equation, we get (23).

Employing (10) in (42), we obtain

∞∑
n=0

a4,5 (16n+ 3) qn ≡ 6f41 + 4q
f1f2f

3
10

f5
(51)

and
∞∑
n=0

a4,5 (16n+ 11) qn ≡ 6
f31 f5f10
f2

+ 12qf220. (52)

Utilizing (12) in (52), we get

∞∑
n=0

a4,5 (32n+ 11) qn ≡ 6
f1f2f

3
5

f10
+ 12q

f21 f
2
20

f25
(53)

and
∞∑
n=0

a4,5 (32n+ 27) qn ≡ 12
f32 f5f10
f1

+ 14f45 . (54)

Employing (6) and (8) in (54), we have

∞∑
n=0

a4,5 (64n+ 27) qn ≡ 12
f1f4f5f

2
10

f20
+ 14

f210
f25

(55)

and
∞∑
n=0

a4,5 (64n+ 59) qn ≡ 12
f32 f

2
5 f20

f4f10
+ 8q2f710. (56)

Using (5) in (56), we arrive at

∞∑
n=0

a4,5 (128n+ 59) qn ≡ 12
f31 f20
f2f10

+ 8qf75 (57)
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and
∞∑
n=0

a4,5 (128n+ 123) qn ≡ 8q2f1f
7
10. (58)

Equation (58) is the β = 0 case of (24). The rest of the proofs of the identities

(24)-(26) are similar to the proofs of the identities (21)-(23). So, we omit the details.

Using (7) and (10) in (53) and then collecting the coefficients of q2n+1 from both

sides of the resultant equation, we arrive at

∞∑
n=0

a4,5 (64n+ 43) qn ≡ 10
f31 f5f10
f2

+ 12
f42 f

2
5

f21
. (59)

In view of Congruences (35) and (59), we see that

a4,5(64n+ 43) ≡ a4,5(4n+ 3). (60)

By induction on α, we arrive at (27).

Employing (6) and (7) in (51), we get

∞∑
n=0

a4,5 (32n+ 3) qn ≡ 6
f22
f21

+ 12q
f1f

2
2 f5f20
f4

(61)

and
∞∑
n=0

a4,5 (32n+ 19) qn ≡ 8f72 + 4
f21 f4f

3
10

f2f20
. (62)

Utilizing (5) in (62), we obtain

∞∑
n=0

a4,5 (64n+ 19) qn ≡ 8f71 + 4
f4f

3
5

f2f10
(63)

and
∞∑
n=0

a4,5 (64n+ 51) qn ≡ 8f72 f5. (64)

Congruence (64) is the β = 0 case of (28). The rest of the proofs of the identities

(28)-(30) are similar to the proofs of the identities (18)-(20). So, we omit the

details.

Theorem 2. Let v5 ∈ {62, 158}, v6 ∈ {166, 214}, v7 ∈ {82, 178}, v8 ∈ {332, 428},
v9 ∈ {124, 316}, v10 ∈ {164, 356}, v11 ∈ {1328, 1712}, v12 ∈ {496, 1264}, v13 ∈
{656, 1424}, v14 ∈ {248, 632}, v15 ∈ {664, 856} and v16 ∈ {328, 712}. Then for all

n ≥ 0 and β ≥ 0, we have, modulo 8,

∞∑
n=0

a4,5

(
16 · 52βn+

14 · 52β + 1

3

)
qn ≡ 4f2f5, (65)
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∞∑
n=0

a4,5

(
16 · 52β+1n+

22 · 52β+1 + 1

3

)
qn ≡ 4f1f10, (66)

a4,5

(
16 · 52β+1n+

v5 · 52β + 1

3

)
≡ 0, (67)

a4,5

(
16 · 52β+2n+

v6 · 52β+1 + 1

3

)
≡ 0, (68)

∞∑
n=0

a4,5

(
16 · 52βn+

26 · 52β + 1

3

)
qn ≡ 4f131 + 4f31 f10, (69)

∞∑
n=0

a4,5

(
16 · 52β+1n+

34 · 52β+1 + 1

3

)
qn ≡ 4f2f

3
5 + 4q2f135 , (70)

a4,5

(
16 · 52β+2n+

v7 · 52β+1 + 1

3

)
≡ 0, (71)

∞∑
n=0

a4,5

(
32 · 52βn+

44 · 52β + 1

3

)
qn ≡ 4f1f10, (72)

∞∑
n=0

a4,5

(
32 · 52β+1n+

28 · 52β+1 + 1

3

)
qn ≡ 4f2f5, (73)

a4,5

(
32 · 52β+1n+

v8 · 52β + 1

3

)
≡ 0, (74)

a4,5

(
32 · 52β+2n+

v9 · 52β+1 + 1

3

)
≡ 0, (75)

∞∑
n=0

a4,5

(
32 · 52βn+

68 · 52β + 1

3

)
qn ≡ 4f2f

3
5 + 4q2f135 , (76)

∞∑
n=0

a4,5

(
32 · 52β+1n+

52 · 52β+1 + 1

3

)
qn ≡ 4f31 f10 + 4f131 , (77)

a4,5

(
32 · 52β+1n+

v10 · 52β + 1

3

)
≡ 0, (78)

∞∑
n=0

a4,5

(
128 · 52βn+

176 · 52β + 1

3

)
qn ≡ 4f1f10, (79)

∞∑
n=0

a4,5

(
128 · 52β+1n+

112 · 52β+1 + 1

3

)
qn ≡ 4f2f5, (80)

a4,5

(
128 · 52β+1n+

v11 · 52β + 1

3

)
≡ 0, (81)
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a4,5

(
128 · 52β+2n+

v12 · 52β+1 + 1

3

)
≡ 0, (82)

∞∑
n=0

a4,5

(
128 · 52βn+

272 · 52β + 1

3

)
qn ≡ 4f2f

3
5 + 4q2f135 , (83)

∞∑
n=0

a4,5

(
128 · 52β+1n+

208 · 52β+1 + 1

3

)
qn ≡ 4f31 f10 + 4f131 , (84)

a4,5

(
128 · 52β+1n+

v13 · 52β + 1

3

)
≡ 0, (85)

∞∑
n=0

a4,5

(
64 · 52βn+

56 · 52β + 1

3

)
qn ≡ 4f2f5, (86)

∞∑
n=0

a4,5

(
64 · 52β+1n+

88 · 52β+1 + 1

3

)
qn ≡ 4f1f10, (87)

a4,5

(
64 · 52β+1n+

v14 · 52β + 1

3

)
≡ 0, (88)

a4,5

(
64 · 52β+2n+

v15 · 52β+1 + 1

3

)
≡ 0, (89)

∞∑
n=0

a4,5

(
64 · 52βn+

104 · 52β + 1

3

)
qn ≡ 4f131 + 4f31 f10, (90)

∞∑
n=0

a4,5

(
64 · 52β+1n+

136 · 52β+1 + 1

3

)
qn ≡ 4f2f

3
5 + 4q2f135 , (91)

a4,5

(
64 · 52β+2n+

v16 · 52β+1 + 1

3

)
≡ 0. (92)

Proof. From Equation (38), we have, modulo 8,

∞∑
n=0

a4,5 (16n+ 5) qn ≡ 4f2f5, (93)

which is the β = 0 case of (65). Suppose that Congruence (65) is true for β ≥ 0

and utilizing (13) in (65), we find that

∞∑
n=0

a4,5

(
16 · 52β+1n+

22 · 52β+1 + 1

3

)
qn ≡ 4f1f10. (94)
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Substituting (13) in (94) and then collecting the coefficients of q5n+1 from both

sides of the resultant equation, we get

∞∑
n=0

a4,5

(
16 · 52β+2n+

14 · 52β+2 + 1

3

)
qn ≡ 4f2f5, (95)

which implies that Congruence (65) is true for β+ 1. So, by induction, Congruence

(65) holds for all integers β ≥ 0.

From Congruence (65) along with (13), we obtain (66) and (67).

From Equation (66) along with (13), we arrive at (68).

Equation (36) becomes

∞∑
n=0

a4,5 (8n+ 1) qn ≡ 2f21 + 4qf1f
3
5 f10. (96)

Using (5) and (10) in (96), we have

∞∑
n=0

a4,5 (16n+ 1) qn ≡ 2
f1f4
f22

+ 4qf55 (97)

and
∞∑
n=0

a4,5 (16n+ 9) qn ≡ 4f131 + 4f31 f10. (98)

Equation (98) is the β = 0 case of (69). Suppose that Congruence (69) is true for

β ≥ 0. Employing (13) in (69), we find that

∞∑
n=0

a4,5

(
16 · 52β+1n+

34 · 52β+1 + 1

3

)
qn ≡ 4f2f

3
5 + 4q2f135 . (99)

Utilizing (13) in (99) and then comparing the coefficients of q5n+2 on both sides of

the resultant equation, we obtain

∞∑
n=0

a4,5

(
16 · 52β+2n+

26 · 52β+2 + 1

3

)
qn ≡ 4f131 + 4f31 f10, (100)

which implies that Congruence (69) is true for β+ 1. So, by induction, Congruence

(69) holds for all integers β ≥ 0.

Utilizing (13) in (69) and then extracting the terms involving q5n+3 from both

sides of the resultant equation, we obtain (70).

From Equation (70) along with (13), we arrive at (71).

Equation (46) reduce to

∞∑
n=0

a4,5 (32n+ 15) qn ≡ 4f1f10, (101)



INTEGERS: (20) 2020 13

which is the β = 0 case of (72). Suppose that Congruence (72) is true for β ≥ 0

and utilizing (13) in (72), we arrive at

∞∑
n=0

a4,5

(
32 · 52β+1n+

28 · 52β+1 + 1

3

)
qn ≡ 4f2f5. (102)

Employing (13) in (102) and then extracting the coefficients of q5n+2 from both

sides of the resultant equation, we obtain

∞∑
n=0

a4,5

(
32 · 52β+2n+

44 · 52β+2 + 1

3

)
qn ≡ 4f1f10, (103)

which implies that Congruence (72) is true for β + 1. Hence, by mathematical

induction, Congruence (72) holds for all integers β ≥ 0.

Using (13) in (72), we obtain (73) and (74).

Employing (13) in (73) and then comparing the coefficients of q5n+i for i = 1, 3

on both sides of the resultant equation, we get (75).

Equation (44) reduces to

∞∑
n=0

a4,5 (16n+ 7) qn ≡ 4f31 f2f5 + 6f25 . (104)

Substituting (5) and (12) in (104), we get

∞∑
n=0

a4,5 (32n+ 7) qn ≡ 4f51 + 6
f5f20
f210

(105)

and
∞∑
n=0

a4,5 (32n+ 23) qn ≡ 4f2f
3
5 + 4q2f135 . (106)

Equation (106) is the β = 0 case of (76). Suppose that Congruence (76) is true for

β ≥ 0 and employing (13) in (76), we obtain

∞∑
n=0

a4,5

(
32 · 52β+1n+

52 · 52β+1 + 1

3

)
qn ≡ 4f31 f10 + 4f131 . (107)

Substituting (13) in (107) and then collecting the coefficients of q5n+3 from both

sides of the resultant equation, we get

∞∑
n=0

a4,5

(
32 · 52β+2n+

68 · 52β+2 + 1

3

)
qn ≡ 4f2f

3
5 + 4q2f135 , (108)

which implies that Congruence (76) is true for β+ 1. Hence, by induction, Congru-

ence (76) holds for all integer β ≥ 0.
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Employing (13) in (76), we obtain (77) and (78).

Equation (57) becomes

∞∑
n=0

a4,5 (128n+ 59) qn ≡ 4f1f10, (109)

which is the β = 0 case of (79). The rest of the proofs of the identities (79)-(82)

are similar to the proofs of the identities (72)-(75). So, we omit the details.

Equation (55) reduces to

∞∑
n=0

a4,5 (64n+ 27) qn ≡ 4f31 f2f5 + 6f25 . (110)

Utilizing (5) and (12) in (110), we arrive at

∞∑
n=0

a4,5 (128n+ 27) qn ≡ 4f51 + 6
f5f20
f210

(111)

and
∞∑
n=0

a4,5 (128n+ 91) qn ≡ 4f2f
3
5 + 4q2f135 . (112)

Equation (112) is the β = 0 case of (83). The rest of the proofs of the identities

(83)-(85) are similar to the proofs of the identities (76)-(78). So, we omit the details.

Equation (63) becomes

∞∑
n=0

a4,5 (64n+ 19) qn ≡ 4f2f5, (113)

which is the β = 0 case of (86). The rest of the proofs of the identities (86)-(89)

are similar to the proofs of the identities (65)-(68). So, we omit the details.

From Equation (61), we arrive at

∞∑
n=0

a4,5 (32n+ 3) qn ≡ 6f21 + 4qf1f
3
5 f10. (114)

Using (5) and (10) in (114), we have

∞∑
n=0

a4,5 (64n+ 3) qn ≡ 6
f1f4
f22

+ 4qf55 (115)

and
∞∑
n=0

a4,5 (64n+ 35) qn ≡ 4f131 + 4f31 f10. (116)

Congruence (116) is the β = 0 case of (90). The rest of the proofs of the identities

(90)-(92) are similar to the proofs of the identities (69)-(71). So, we omit the

details.
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Theorem 3. For all n ≥ 0, we have, modulo 4,

a4,5 (16n+ 1) ≡
{

2 if n is a pentagonal number,
0 otherwise,

(117)

a4,5 (32(5n+ i) + 7) ≡ 0, where i = 1, 2, 3, 4, (118)

a4,5 (160n+ 7) ≡
{

2 if n is a pentagonal number,
0 otherwise,

(119)

a4,5 (128(5n+ i) + 27) ≡ 0, where i = 1, 2, 3, 4, (120)

a4,5 (640n+ 27) ≡
{

2 if n is a pentagonal number,
0 otherwise,

(121)

a4,5 (64n+ 3) ≡
{

2 if n is a pentagonal number,
0 otherwise.

(122)

Proof. From Equation (97), we have, modulo 4,

∞∑
n=0

a4,5 (16n+ 1) qn ≡ 2f1. (123)

Result (117) follows from Equation (123).

Equation (105) becomes

∞∑
n=0

a4,5 (32n+ 7) qn ≡ 2f5. (124)

Extracting the coefficients of q5n+i for i = 1, 2, 3, 4 from both sides of the above

equation, we arrive at (118).

Equation (124) implies

∞∑
n=0

a4,5 (160n+ 7) qn ≡ 2f1. (125)

From Equation (125), we get (119).

Equation (111) becomes

∞∑
n=0

a4,5 (128n+ 27) qn ≡ 2f5. (126)

Collecting the coefficients of q5n+i for i = 1, 2, 3, 4 from both sides of the above

equation, we arrive at (120).
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Equation (126) implies

∞∑
n=0

a4,5 (640n+ 27) qn ≡ 2f1. (127)

From Equation (127), we obtain (121).

Equation (115) reduces to

∞∑
n=0

a4,5 (64n+ 3) qn ≡ 2f1. (128)

Result (122) follows from Equation (128).
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