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Abstract
Mahadeva Naika and Harishkumar defined @5(n), the number of 5-regular partitions
with the first occurrence of an odd number overlined. They proved many infinite
families of congruences modulo powers of 2 for @s(n). Let G4 5(n) denote the number
of (4, 5)-regular partitions of n with the first occurrence of an odd number overlined.
In this paper, we establish many infinite families of congruences modulo powers of
2 for @4 5(n). For example, for all n > 0 and 8 > 0,

’U1-52B+1+1

Tas <16 522 4 3

) =0 (mod 16),

where vy € {46,94}.

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers
whose sum is n. For positive integer £ > 1, a partition is an ¢-regular partition of
n if none of the parts are divisible by ¢. Let p;(n) denote the number of ¢-regular
partitions of n with py(0) = 1; the generating function for py(n) is given by
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where -
= (G0 = Y, (—1)"g B2
and
(o]
for=1(054") = [] (0= q™).
m=1

For more information about p;(n), one can see [3, 6, 15].

If £,m > 1, a partition is an (¢, m)-regular partition of a positive integer n if none
of the parts are divisible by ¢ or m. For example, the (4,5)-regular partitions of 5
are

3+2, 3+1+1, 24241, 24+14+1+1, 14+14+1+1+1.

In 2004, Corteel and Lovejoy [5] introduced overpartitions. An overpartition of a
non-negative integer n is a non-increasing sequence of natural numbers whose sum
is n, where the first occurrence of parts of each size may be overlined. Let p(n)
denote the number of overpartitions of n with p(0) = 1; the generating function for
p(n) is given by

oo B 0o 14 g
S p)g" = [] o = 1420+ 4> +8¢° + 1dg* + -+ | (1)
n=0 n:ll_qn

An extensive study on the overpartition function p(n) can be found in the work
of Corteel and Lovejoy [5]. Later, Hirschhorn and Sellers [9] proved a number
of arithmetic relations satisfied by p(n) and also obtained many Ramanujan-type
congruences modulo powers of 2 for p(n). For more details about p(n), one can see
1, 10, 12, 13, 17, 20, 21].

Hirschhorn and Sellers [11] defined the partition function p,(n), the number of
overpartitions of n into odd parts. The generating function for p,(n) is given by

007 [e’e} 1+q2n,+1 ) 5 .
D | e R

They proved a number of arithmetic results including several Ramanujan-type con-
gruences satisfied by p,(n) and some easily-stated characterizations of 7, (n) modulo
small powers of 2. For example, for all n > 1,

Po(n)

2 (mod 4) if n is square or n is twice a square, 3)
0 (mod4) otherwise.

For more details about p,(n), one can see [4, 19].
In [14], the authors defined @s(n), the number of 5-regular partitions of n with
the first occurrence of an odd number overlined and they obtained many infinite
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families of congruences modulo powers of 2 for @s(n). For example, for all n > 0
and 8 > 0,

ki-5% —1
_l’_ e —

as <16 520ty 3

) =0 (mod 16),
where ky € {142, 238}.

By the motivation of the above work, in this paper, we define @4 5(n), the number
of (4, 5)-regular partitions of n with the first occurrence of an odd number overlined.
The generating function for a4 5(n) is given by

s 2 r2
;@,5 (n)¢" = J{lg J{Zgo. (4)

For example, (4, 5)-regular partitions of 5 with the first occurrence of an odd number

overlined are

34+42,3+2,3+1+1,34+141,3+1+1,3+1+1,24+2+1, 2+2+1,
2414+1+1, 24 1+1+1, 1+14+1+14+1, T+1+14+1+1.

Also, we establish many infinite families of congruences modulo powers of 2 for
@45(n). For example, for all n > 0 and 8 > 0,

vy - 52T 41

Qa5 (16 52T 4 3

) =0 (mod 16),

where vy € {46,94}.

2. Preliminary Results

In this section, we record some identities which are useful in proving our main
results.

Lemma 1. The following 2-dissection holds:

o fofs o foffs
o FY B
=g g ©)

The identity (5) is the 2-dissection of ¢(—q) [8, 1.9.4]. The identity (6) is the
2-dissection of ¢(—q)? [8, 1.10.1]. Also, one can see [2, p.40].
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Lemma 2. The following 2-dissections hold:
fi  fafsf fi fao

fs  fafihfao _qfsflzo

and

f5 _ fsf50 +quf’flofm

fi fifwo o T f3fsfo’
Equation (7) was proved by Hirschhorn and Sellers [7]; see also [18].

by —¢ in (7) and using the fact that (—¢; —¢)o ff; , we obtain (8).

Lemma 3. We have

1 B 3 f20 2 [fifio
P fihe g TP YR e
2= Fifo - qufjfof” Lo fufgy — agp T0fh0
X IE
1 faf3 f30 2f4f20 3 f2 f30.f30
RE g g TR e PR

and

13 fa £t
20

2 2f4f10f40

+2qf3 f20 — Bafafiy + faf3f3

fifs =

For proofs, see [16].

Lemma 4. [8, p. 85, 8.1.1] We have the following 5-dissection formula

f1= fos(a(d®) — g — ¢ Ja(q?)),
where

2 3.5
9,954
a = a(q) = %
(¢:4%¢°) o
Lemma 5. For any positive integers k and m, we have

=g (mod 2),

4m — me (mod 4)

and
,fm = 51,2” (mod B).

(8)

Replacing ¢
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3. Congruences for @4 5(n)

In this section, we prove many infinite families of congruences modulo powers of 2
for G4 5(n).

Theorem 1. Let vy € {46,94},v5 € {92,188}, v5 € {368,752} and vy € {184,376}.
Then for alln >0 and o, B > 0, we have, modulo 16,

S s (16 5% 4 385?“) ¢ =841 fs. (18)
n=0
i64,5 <16 520+ 4 %'52?1“) q" =8> f1 1y, (19)
n=0
Tus <16 52842y, 4 “152?1“) =0, (20)
2%,5 (32 -520n 4 92'52;“) q" =8¢ f1 f1, (21)
i [ (32 52+ 4 7652?1“) q" =83 fs, (22)
n=0
U5 <32 520+ 4 ””ff“) =0, (23)
ia4,5 (128 -528n + 3685?“) q" =8¢ f1fo; (24)
n=0
i@m (128 520+ 4 W) q" =815 fs, (25)
n=0
aus (128 52641y, 4 ”3’5:%) =0, (26)
Ty 5 <240‘+6n + 24a+37+1> =qy5(4n+3), (27)
i@hs <64 52, 4 1525;”“) =81 s (28)
n=0
i s <64 52y 18452?1“> q" =8¢ f1 [y, (29)
n=0
Tus <64 5242 4 1)452?1“) =0 (30)
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Proof. Employing (8) in (4) and then collecting the coefficients of ¢>**! from both
sides of the resultant equation, we get

f3f10
f2fs

> s (2n+1)¢" =2 (31)
n=0

Using (9) in (31) and then collecting the even and odd terms from both sides, we
obtain

2 i MR o
and
oo 3 6 2
> s (4n+3)q":10f2f55f10 —4f26f1§. (33)
n=0 fl fl f5
Invoking (16) and (17) in (32) and (33), we get, modulo 16,
oo 3
264,5 (An+1)q¢" = 2f{1—|-4qM (34)
o fs
and
oo 3 4,2
264,5(4n+3)q"510f1f5f10+12f2£5. (35)
n=0 f2 fi
Using (6) and (7) in (34), we obtain
oo 2 2
> s Bn+1)q" = ol2 4 gy, N1S2 )5l (36)
= i fa
and
oo 2¢ 3
264,5(8n+5)q”z4f1f4f10+8fg. (37)
= Jaf20
Substituting (5) in (37), we get
o0 3
> s (16n+5)q”54f4f5 +8ff (38)
= Jaf1o
and -
> 4,5 (160 +13) g™ = 85 fs. (39)
n=0

Congruence (39) is the 8 = 0 case of (18). Suppose that Congruence (18) is true
for 8 > 0 and using (13) in (18), we arrive at

s 46 - 52811 11
264,5 <16 52y 4 3) q" =8¢ f1 1. (40)

n=0
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Utilizing (13) in (40) and then collecting the coefficients of ¢5"*3 from both sides
of the resultant equation, we obtain

o0 2642
254,5 (16 52B+2,, 4 385?“) ¢t = 8f27f5, (41)
n=0
which implies that Congruence (18) is true for 8+ 1. Hence, by induction, Congru-
ence (18) holds for all integers 5 > 0.

Using (13) in (18) and then extracting the coefficients of ¢°*™ from both sides
of the resultant equation, we get (19).

From Congruence (19) along with (13), we obtain (20).

Substituting (8) and (12) in (35), we get

0 3
> s (8n+3)q”510f1f2f5 + 124 (42)
n=0 flO
and
0 3
> s (Bn+7)q" = 1pf2fsho 142, (43)
n=0 fl
Substituting (6) and (8) in (43), we have
0 2 2
> s (16n+7)q" = 1p1faf5h0 14%0 (44)
— f20 f3
and
0 342
> ay5(16n+15)¢" = PYL2EELUN 8¢2 fTo. (45)
o Jaf10
Employing (5) in (45), we obtain
- 1 f20
> a5 (3204 15) ¢" = 1277 + 87 (46)
= fa2f1o
and -
> s (320 +31) ¢" = 8¢> f1 £y (47)
n=0

Congruence (47) is the 8 = 0 case of (21). Suppose that Congruence (21) is true
for g > 0, we have

>, 92.5%% +1
Sois (3250 22 o = s (48)

n=0



INTEGERS: (20) 2020 8

Employing (13) in (48) and then collecting the coefficients of ¢°"*3 from both sides,
we get

= 76 - 528+ 11
> s (32 52y 4 3) q" =811 fs. (49)
n=0

Again, using (13) in (49) and then comparing the coefficients of ¢°*** on both sides,
we have - .
254,5 <32 52 4 9253H) 7" =8¢ f1 1, (50)
n=0
which implies that Congruence (21) is true for 8 + 1. Hence, by mathematical
induction, Congruence (21) holds for all integers 8 > 0.
Employing (13) in (21) and then collecting the coefficients of ¢°**3 from both
sides of the resultant equation, we obtain (22).
Employing (13) in (21) and then comparing the coefficients of ¢°**¢ for i = 0,1
on both sides of the resultant equation, we get (23).
Employing (10) in (42), we obtain

o 3
Z g5 (161 +3) ¢" = 6 f + 4qm (51)
— fs
and - ;
> a5 (16n+11)¢" = 6@ +12qf3,. (52)
n=0 2
Utilizing (12) in (52), we get
[e%e] 3 2 £2
> s (320 +11) ¢ _ o1l —|—12qf1J;20 (53)
~ fio f3
and
0 3
D a5 (32n+27)¢" = 1od2fsfi0 | 1412 (54)
n=0 'fl
Employing (6) and (8) in (54), we have
o] 2 2
D s (640 +27) ¢" = il | gy Ti0 (55)
— f20 f3
and
> 3 £2
> a5 (64n+59) ¢" = 12f’;f5 foo | 8> 7. (56)
= 4f10
Using (5) in (56), we arrive at
- f2 fa0 7
> a5 (128n 4 59) g™ = 12 e T 8q fe (57)
2f10

n=0
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and -
> a5 (1280 +123) ¢" = 8¢* f1 1. (58)
n=0
Equation (58) is the 5 = 0 case of (24). The rest of the proofs of the identities
(24)-(26) are similar to the proofs of the identities (21)-(23). So, we omit the details.
Using (7) and (10) in (53) and then collecting the coefficients of ¢"*! from both
sides of the resultant equation, we arrive at

oo 3 4 £2
D s (64n +43) " = 10f”;5f10 + 12%{5. (59)
n=0 2 1
In view of Congruences (35) and (59), we see that
Ga,5(64n + 43) = ay 5(4n + 3). (60)
By induction on «, we arrive at (27).
Employing (6) and (7) in (51), we get
2
Za45 (32n + 3) ¢" f2 2 1+ 12g Nifsfsfn (61)
= fa
and
o) 2 3
> a5 (32n419)¢" = 8f27+4f1 Jafio (62)
s faf20
Utilizing (5) in (62), we obtain
oo 3
Z 5 (64n +19) ¢" = 8f7 + 4 Jafs (63)
n=0 f2f1o0
and
(o)
> a5 (64n +51) " =815 f5. (64)

n=0
Congruence (64) is the 8 = 0 case of (28). The rest of the proofs of the identities
(28)-(30) are similar to the proofs of the identities (18)-(20). So, we omit the
details. 0

Theorem 2. Let vs € {62,158}, v € {166,214}, v; € {82,178}, vs € {332,428},
Vg € {1247316}, V10 € {164,356}, V11 € {1328, 1712}, V12 € {496,1264}, V13 €
{656, 1424}, v14 € {248,632}, v15 € {664,856} and vig € {328,712}. Then for all
n >0 and 8 > 0, we have, modulo 8,

14 520 +1
Za45 (16 5% 3 )q"z4f2f5, (65)
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> 22.528+1 1
254,5 (16 52 4 3> q" = 4f1 fio,
n=0

.528 411
Q45 <16 528+, 4 05534—> =0,
uG~52ﬂ+1+1) _o

5 <16 S5t 4 3

= 26-5%0 41
> s (16 5% + 3) q" =45 + 4} fro,

n=0
S s (16 5 34522““) n = Ay 2+ AgP I3,
n=0
s <16 e 52?1 : 1) =0,
i@ﬁ (32 - 5%n + 4A5j—|—1> q" = 4f1 fio,
n=0
i@m (32 52+, 4 28525;1“> " =4fsfs,
Tus (32 520+, 4 1’S5f+l> =0,
a5 <32 52042, | ”952?1“) =0

= 68520 +1
> s (32 -5%n + 3) q" = 4fof3 +4¢° f5°,

n=0

= _ 52520+ 41\
> s (32 -5 n ) q" =417 fio + 4117,

n=0 3
.528 41
5475 <32 . 52ﬁ+1n+ 71)10 53 * ) = O,

= 176 - 528 +1

Z Q4.5 <128 . 5257L + 3) qn = 4']01']6107

n=0
> 112 - 52/3+1 1
> s (128 52y 4 ha ) =4fafs,
n=0

52ﬁ 1
ay.5 (128 .52ty + )
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Gus (128 52842y 4 1’1252?1“) =0, (82)
i@m (128 5280 4+ 2725325“) Q" = Afof3 + 4218, (83)
n=0
i@lﬁ (128 520+, 4 208'523“1“) "= AF o+ ASI3, (84)
n=0
Gus (128 52+ 4 “1353%) =0, (85)
i@ﬁ (64 526 4 56‘5:2))5+1> = Afofe, (86)
n=0
i64,5 (64 52 4 88522+1H> q" = 4f1 fio, (87)
n=0
Tus <64 528+ ¢ ”““ZMH) =0, (88)
Uy s (64 52+ 4 “55235““) =0, (89)
ia‘lf’ <64'52ﬂn+m.5§6—u> q" = 411° + 417 fro, (90)
n=0
im,s <64 L5284, 4 136523M> "= 4f2f§ + 4q2f513, (91)
n=0
Uy 5 <64 52 4 ”165Q§HH> =0. (92)
Proof. From Equation (38), we have, modulo 8,
i Ga5 (16n+5)¢" =4fafs, (93)

n=0

which is the f = 0 case of (65). Suppose that Congruence (65) is true for 8 > 0
and utilizing (13) in (65), we find that

> 22 . 528+1 41
264,5 (16 . 525+1n =+ 3> qn = 4f1f10. (94)

n=0
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Substituting (13) in (94) and then collecting the coefficients of ¢°*! from both
sides of the resultant equation, we get

ad 14 - 5%6+2 41
Z Q4.5 <16 52 4 3> q" =4fafs, (95)

n=0

which implies that Congruence (65) is true for 8+ 1. So, by induction, Congruence
(65) holds for all integers 5 > 0.

From Congruence (65) along with (13), we obtain (66) and (67).

From Equation (66) along with (13), we arrive at (68).

Equation (36) becomes

254,5 (8n+1)¢" = 2f7 + 4qf1 f2 fr0. (96)
n=0

Using (5) and (10) in (96), we have

254,5 (16n+1)¢" = fl—{‘* + 4qf> (97)
2

n=0

and -
> a5 (160 +9) " = 411 + 417 fro. (98)
n=0

Equation (98) is the 8 = 0 case of (69). Suppose that Congruence (69) is true for
B > 0. Employing (13) in (69), we find that

> 34.528+1 41
Z@,s (16 5% 3> " =A4fofP + 47 f30. (99)

n=0

Utilizing (13) in (99) and then comparing the coefficients of ¢°"*2 on both sides of
the resultant equation, we obtain

oo 26 - 526+2 +1 . .
26475 (16 . 52B+2n + 3> qn = 4.][.11(3 + 4fi3f107 (100)

n=0

which implies that Congruence (69) is true for 8+ 1. So, by induction, Congruence
(69) holds for all integers 5 > 0.

Utilizing (13) in (69) and then extracting the terms involving ¢°"*3 from both
sides of the resultant equation, we obtain (70).

From Equation (70) along with (13), we arrive at (71).

Equation (46) reduce to

254,5 (32n 4 15) ¢" = 4 f1 fio, (101)

n=0
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which is the 5 = 0 case of (72). Suppose that Congruence (72) is true for § > 0
and utilizing (13) in (72), we arrive at

= 28 - 520+1 1
254,5 <32 528+ 4 3) Q" =4fafs. (102)

n=0

Employing (13) in (102) and then extracting the coefficients of ¢°**2 from both
sides of the resultant equation, we obtain

= 44-528+2 11
264’5 (32 . 525+2n + 3) qn = 4f1f107 (103)
n=0

which implies that Congruence (72) is true for § + 1. Hence, by mathematical
induction, Congruence (72) holds for all integers 5 > 0.

Using (13) in (72), we obtain (73) and (74).

Employing (13) in (73) and then comparing the coefficients of ¢°**¢ for i = 1,3
on both sides of the resultant equation, we get (75).

Equation (44) reduces to

> aus (16n+7)q" = 4f7 fofs + 6£2. (104)

n=0

Substituting (5) and (12) in (104), we get

S s (320 +7) " = 4f5 + 672120 (105)
vt fio
and -
> a5 (3204 23) ¢" = 4f2fE + 47 137, (106)

n=0
Equation (106) is the 8 = 0 case of (76). Suppose that Congruence (76) is true for
B > 0 and employing (13) in (76), we obtain

&S] 52. 526+1 +1 i i
> s (32 528+, 4 3> q" = AfEfio + 4f3. (107)

n=0

Substituting (13) in (107) and then collecting the coefficients of ¢°**2 from both
sides of the resultant equation, we get

> 68 -528+2 1
> s (32 L5202 4 3> ¢" =4Aff 447, (108)
n=0

which implies that Congruence (76) is true for 8+ 1. Hence, by induction, Congru-
ence (76) holds for all integer 5 > 0.
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Employing (13) in (76), we obtain (77) and (78).
Equation (57) becomes

Z Q4,5 (128n 4 59) ¢" = 4f1 f10, (109)
n=0

which is the 8 = 0 case of (79). The rest of the proofs of the identities (79)-(82)
are similar to the proofs of the identities (72)-(75). So, we omit the details.
Equation (55) reduces to

> 45 (64n+27) " = 4fP fofs + 62 (110)

n=0

Utilizing (5) and (12) in (110), we arrive at

f5f20
fio

> a5 (1280 +27) ¢ = 4f] +6 (111)

n=0
and -
D s (1280 4 91) ¢" = 4f2f5 + 47 £3°. (112)

n=0
Equation (112) is the 8 = 0 case of (83). The rest of the proofs of the identities
(83)-(85) are similar to the proofs of the identities (76)-(78). So, we omit the details.
Equation (63) becomes

Z Tu5 (640 +19) ¢" = 4fo fs, (113)

n=0

which is the 8 = 0 case of (86). The rest of the proofs of the identities (86)-(89)
are similar to the proofs of the identities (65)-(68). So, we omit the details.
From Equation (61), we arrive at

> aus(32n+3) " = 67 +4af1f3 fro. (114)
n=0

Using (5) and (10) in (114), we have

— n_ af1f
> a5 (64n +3)¢" =6 };‘ +4qf (115)
n=0 2
and -
> a5 (64n 4 35) ¢ = 4£{° + 4f} fro. (116)
n=0

Congruence (116) is the 8 = 0 case of (90). The rest of the proofs of the identities
(90)-(92) are similar to the proofs of the identities (69)-(71). So, we omit the
details. O
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Theorem 3. For all n > 0, we have, modulo 4,

_ 2 if n is a pentagonal number,
ass (16n+1) = { 0 fthemsep J (117)
G45(32(5n+14)+7) =0, wherei=1,2,3,4, (118)
_ 2 if n is a pentagonal number,
a5 (160n +7) = { 0 ftherwisezj g (119)
a5 (128(5n +14) +27) = 0, wherei=1,2,3,4, (120)
_ 2 if n is a pentagonal number,
a5 (6400 4 27) = { 0 £herwz’sep g (121)
_ 2 if n is a pentagonal number,
G5 (64n +3) = { 0 oj:fherwisg ! (122)
Proof. From Equation (97), we have, modulo 4,
> aus(16n+1)¢" = 2f1. (123)
n=0
Result (117) follows from Equation (123).
Equation (105) becomes
> s (3204 7) " = 2f5. (124)

n=0

Extracting the coefficients of ¢°"+% for i = 1,2,3,4 from both sides of the above
equation, we arrive at (118).
Equation (124) implies

> a5 (1600 +7) ¢" = 2f1. (125)

n=0

From Equation (125), we get (119).
Equation (111) becomes

> a5 (1280 +27) ¢" = 2fs. (126)

n=0

Collecting the coefficients of ¢°*1* for 4 = 1,2,3,4 from both sides of the above
equation, we arrive at (120).
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Equation (126) implies

> a5 (6400 +27) ¢" = 21 (127)

n=0

From Equation (127), we obtain (121).
Equation (115) reduces to

> a5 (64n+3) " = 2f1. (128)
n=0
Result (122) follows from Equation (128). O
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