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Abstract

Given a finite set A ⊆ R, define the sum set A + A = {ai + aj | ai, aj ∈ A} and
the difference set A − A = {ai − aj | ai, aj ∈ A}. The set A is said to be sum-
dominant if |A + A| > |A−A|. In the literature, sum-dominant sets are also called
more-sum-than-difference (MSTD) sets. We prove the following results:

1. The union of two arithmetic progressions with the same common difference is
not sum-dominant. This result partially proves a conjecture proposed by the
author in a previous paper; that is, the union of any two arbitrary arithmetic
progressions is not sum-dominant.

2. Hegarty proved that a sum-dominant set of integers must have at least 8
elements with computers’ help. The author of the current paper provided
a human-verifiable proof that a sum-dominant set of integers must have at
least 7 elements. A natural question is about the largest cardinality of sum-
dominant subsets of an arithmetic progression. Fix n ≥ 16. Let N be the
cardinality of the largest sum-dominant subset(s) of {0, 1, . . . , n − 1}. Then
n− 7 ≤ N ≤ n− 4; that is, from an arithmetic progression of length n ≥ 16,
we need to discard at least 4 and at most 7 elements (in a clever way) to have
the largest sum-dominant set(s).

3. Let R ∈ N have the property that for all r ≥ R, {1, 2, . . . , r} can be partitioned
into 3 sum-dominant subsets, while {1, 2, . . . , R− 1} cannot. Then 24 ≤ R ≤
145. This result answers a question by the author et al. in another paper on
whether we can find a stricter upper bound for R.

1. Introduction

1.1. Background and Main Results

Given a finite set A ⊆ R, define A + A = {ai + aj | ai, aj ∈ A} and A − A =

{ai − aj | ai, aj ∈ A}. The set A is said to be

• sum-dominant, if |A + A| > |A−A|;
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• balanced, if |A + A| = |A−A|; and

• difference-dominant, if |A + A| < |A−A|.

Sum-dominant sets are also called more-sum-than-difference (MSTD) sets. Because

addition is commutative, while subtraction is not, sum-dominant sets are very rare.

However, it was first proved by Martin and O’Bryant [13] that as n → ∞, the

proportion of sum-dominant subsets of {0, 1, 2, . . . , n − 1} is bounded below by a

positive constant (about 2 · 10−7), which was later improved by Zhao [25] to about

4 · 10−4. However, these works used the probabilistic method and did not give

explicit constructions of sum-dominant sets. Later, Miller et al. [15] constructed a

family of density Θ(1/n4)1 and Zhao [24] gave a family of density Θ(1/n). The last

few years have seen an explosion of papers exploring properties of sum-dominant

sets: see [7, 10, 12, 18, 20, 21, 22] for history and overview, [8, 14, 15, 18, 24] for

explicit constructions, [5, 9, 13, 25] for positive lower bounds for the percentage of

sum-dominant sets, [11, 16] for generalized sum-dominant sets, and [1, 4, 6, 25] for

extensions to other settings.

We know that an arithmetic progression is not a sum-dominant set (see Corollary

2.2 below). It is natural to ask whether numbers from the union of several arithmetic

progressions produce a sum-dominant set. Our first result is that the union of two

arithmetic progressions with the same common difference is not sum-dominant.

Theorem 1.1. The union of two arithmetic progressions P1 and P2 with the same

common difference is not sum-dominant.

This result partially proves the conjecture by the author of the current paper [2]

that the union of any two arbitrary arithmetic progressions is not sum-dominant.

Note that {0, 2}∪{3, 7, 11, . . . , 4k−1}∪{4k, 4k+2} for k ≥ 5 is sum-dominant [18],

and the set is the union of three arithmetic progressions. Hence, [2, Conjecture 17]

is the most we can do.

Our next result concerns the cardinality of a sum-dominant set. Hegarty [8]

proved that a sum-dominant set of integers must have at least 8 elements with the

help of computers. The author of the current paper provided a human-understandable

proof that a sum-dominant set of integers must have at least 7 elements [2, 3]. An-

other natural question is about the largest cardinality of a sum-dominant set of

integers. It is well-known that a sum-dominant set can be arbitrarily large, so we

put a restriction on the size of the set to have the following result

Theorem 1.2. Fix n ≥ 16. Let N be the cardinality of the largest sum-dominant

subset(s) of {0, 1, . . . , n− 1}. Then n− 7 ≤ N ≤ n− 4.

The theorem implies that from an arithmetic progression of length at least 16,

we need to discard at least 4 elements and not more than 7 elements (in a clever

1A more refined analysis improves the bound to Θ(1/n2) [11].
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way) to have the largest sum-dominant set(s). A corollary is that if we want to

search for all sum-dominant subsets of {0, 1, . . . , n − 1}, we only need to look for

subsets of size between 8 and n− 4.

Conjecture 1.3. Fix n ≥ 16. Let N be the cardinality of the largest sum-dominant

subset(s) of {0, 1, . . . , n− 1}. Then N = n− 7.

We run a computer program to find that the conjecture holds for all 16 ≤ n ≤ 34.

For n ≤ 14, N does not exist. For n = 15, N = 9, corresponding to the set

{0, 1, 2, 4, 5, 9, 12, 13, 14}; that is, we discard 6 elements.

Our final result is related to the partition of an arithmetic progression into sum-

dominant subsets. Asada et al. proved that as r → ∞, the proportion of 2-

decompositions of {1, 2, . . . , r} into sum-dominant subsets is bounded below by a

positive constant [1]. Continuing the work, the author of the current paper with

Luntzlara, Miller, and Shao proved that it is possible to partition {1, 2 . . . , r} (for

r sufficiently large) into k ≥ 3 sum-dominant subsets [4]. By defining R := R(k) to

be the smallest integer such that for all r ≥ R, {1, 2, . . . , r} can be k-decomposed

into MSTD subsets, while {1, 2, . . . , R − 1} cannot, the authors established rough

lower and upper bounds for R. However, the upper bound when k = 3 is very loose

because it depends on a sum-dominant subset A with |A + A| − |A − A| ≥ 10|A|.
In particular, [4, Theorem 1.4] gives an upper bound equal to 4 min{maxA : |A +

A| − |A−A| ≥ 10|A|}+ 24. Due to [8, Theorem 1] and [19, Theorem 22], we know

that |A| ≥ 10, which implies that |A + A| ≥ 10|A| + |A − A| ≥ 12|A| − 1 ≥ 119.

Because 2 maxA − 1 ≥ |A + A|, we have that maxA ≥ 60, which gives an upper

bound of R of at least 264. Our next theorem gives an upper bound of 145.

Theorem 1.4. Let R ∈ N have the property that for r ≥ R, {1, 2, . . . , r} can

be partitioned into 3 sum-dominant subsets, while {1, 2, . . . , R − 1} cannot. Then

24 ≤ R ≤ 145.

This theorem answers a question raised by the author of the current paper et al.

about whether we can find a more efficient way to decompose {1, 2, . . . , r} into 3

sum-dominant sets. We find a smaller upper bound by a new way of partitioning

{1, 2, . . . , n} into 3 sum-dominant subsets. Our construction is similar to that of

Miller et al. [15] and utilizes the fact that their construction allows a long run of

missing elements. The long run of missing elements is where we can insert a fixed

sum-dominant set.

1.2. Notation

We introduce some notation. Let A and B be sets. We write A → B to mean the

introduction of elements in A to B. We also use a different notation to write a

set, which was first introduced by Spohn [23]. Given a set S = {m1,m2, . . . ,mn},
we arrange its elements in increasing order and find the differences between two
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consecutive numbers to form a sequence. Suppose that m1 < m2 < · · · < mn,

then our sequence is m2−m1,m3−m2,m4−m3, . . . ,mn−mn−1, and we represent

S = (m1 |m2−m1,m3−m2,m4−m3, . . . ,mn−mn−1) = (m1 | a1, . . . , an−1), where

ai = mi+1−mi. Any positive difference in S−S must be equal to a sum ai+ · · ·+aj
for some 1 ≤ i ≤ j ≤ n− 1. Take S = {3, 2, 15, 10, 9}, for example. We arrange the

elements in increasing order to have 2, 3, 9, 10, 15, form a sequence by looking at the

difference between two consecutive numbers: 1, 6, 1, 5, and write S = (2 | 1, 6, 1, 5).

All information about a set is preserved in this notation.

An arithmetic progression is a sequence of the form (a, a+d, a+2d, a+3d, . . . , a+

kd) for any arbitrary numbers a, k, and the common difference d. Because sum-

dominance is preserved under affine transformations, we can safely assume that our

arithmetic progressions contain nonnegative numbers with 1 being the common dif-

ference. To emphasize, all arithmetic progressions we consider will have nonnegative

numbers and have the same common difference, which is 1.

2. Important Results

We use the definition of a symmetric set given by Nathanson [17]: a set A is

symmetric if there exists a number a such that a−A = A. If so, we say that the set

A is symmetric about a. The following proposition was proved by Nathanson [17].

Proposition 2.1. A symmetric set is balanced.

Proof. Let A be a symmetric set about a. We have |A + A| = |A + (a − A)| =

|a + (A−A)| = |A−A|. Hence, A is balanced.

Though symmetric sets are not sum-dominant, adding a few numbers into these

sets (in a clever way) can produce sum-dominant sets. Examples of such a technique

were provided by Hegarty [8] and Nathanson [18].

Corollary 2.2. An arithmetic progression is not sum-dominant.

Note that a set of numbers from an arithmetic progression is symmetric about

the sum of the maximum and the minimum of the arithmetic progression. For

example, the set E = {3, 5, 7, 9, 11} is symmetric about 14. The following lemma is

proved by Macdonald and Street [14].

Lemma 2.3. Given a finite set A = (0 | a1, a2, . . . , an), the following claims hold.

(1) If ai ∈ {1, 2} for all i, then A is not sum-dominant.

(2) If ai ∈ {1, k} and the first and last times that 1 occurs as a difference, it occurs

in a block of at least k−1 consecutive differences, then A is not sum-dominant.
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The following lemma is trivial but very useful in our proof of Theorem 1.1.

Lemma 2.4. Let P1 and P2 be arithmetic progressions with common difference 1.

The following claims hold.

(1) Given an arithmetic progression P1, {maxP1 + 1} → P1 gives 2 new sums.

(2) Given arithmetic progressions P1 and P2, {maxP1 + 1} → (P1 ∪ P2) gives at

most 3 new sums.

Proof. We first prove item 1. Without loss of generality, assume P1 = {0, 1, . . . , n}
for some n ≥ 0. Denote Q1 = P1 ∪ {n + 1}. Then P1 + P1 = {0, 1, . . . , 2n} and

Q1 + Q1 = {0, 1, . . . , 2n + 2}. Clearly, |Q1 + Q1| − |P1 + P1| = 2.

We proceed to prove item 2. New sums come from the interactions of maxP1 +1

with P1, with P2, and with itself. By item 1, the interactions of maxP1 + 1 with P1

and itself give at most 2 new sums. We consider the interactions of maxP1 +1 with

P2. We have (maxP1 + 1 +P2)\(maxP1 +P2) = {maxP1 + maxP2 + 1}. Therefore,

the interactions of {maxP1 +1} with P2 gives at most 1 new sum. In total, we have

at most 3 new sums, as desired.

3. Proof of Theorem 1.1

Because sum-dominance is preserved under affine transformations, without loss of

generality, assume that 0 = minP1 ≤ minP2 and |P1| ≥ |P2|. Let mi and Mi denote

minPi and maxPi, respectively. Finally, we only consider P1 ∩ P2 = ∅ because if

P1 ∩ P2 6= ∅, P1 ∪ P2 is an arithmetic progression2, which does not form a sum-

dominant set by Corollary 2.2. Our proof considers P1 as the original set and sees

how P2 → P1 changes the number of sums and differences.

3.1. Part I. max P1 < min P2

Let k = minP2 − maxP1. If k = 1, P1 ∪ P2 is an arithmetic progression, not a

sum-dominant set. We consider two cases corresponding to k < 1 and k > 1.

Case I.1: k < 1. We consider P2 → P1. The set of new positive and distinct

differences includes k < k + 1 < · · · < k + |P1| + |P2| − 2. Hence, the number

of new differences is at least 2(|P1|+ |P2| − 1). Now, we count the number of new

sums. Consider m2 → P1. We have exactly |P1| + 1 new sums. Due to Lemma

2.4, m2 + j → P1 ∪ {m2, . . . ,m2 + j − 1} gives at most 3 new sums for all j ≥ 1.

Therefore, P2 → P1 gives at most (|P1|+ 1) + 3(|P2| − 1) = |P1|+ 3|P2| − 2 new

sums.

2Recall that P1 and P2 have the same common difference.
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Because |P1| ≥ |P2|, we have 2(|P1| + |P2| − 1) ≥ |P1| + 3|P2| − 2, and so, we

do not have a sum-dominant set.

Case I.2: k > 1. If k is not an integer, then with the same reasoning as Case I.1,

we are done. If k is an integer, we consider two following subcases.

Subcase I.2.1: k > maxP1. Then m2 → P1 gives |P1| new positive differences

m2 −maxP1 < m2 −maxP1 + 1 < · · · < m2

while at most |P1|+ 1 new sums. Due to Lemma 2.4, m2 + j → P1 ∪{m2, . . . ,m2 +

j − 1} gives at most 3 new sums and at least 2 new differences ±(m2 + j) for all

j ≥ 1. Therefore, P2 → P1 gives at most |P1| + 1 + 3(|P2| − 1) new sums while

at least 2|P1| + 2(|P2| − 1) new differences. Because |P1| ≥ |P2|, the number of

new differences is not smaller than the number of new sums, and so, P1 ∪ P2 is not

sum-dominant.

Subcase I.2.2: k ≤ maxP1. If |P2| ≥ k, we are done due to item 2 of Lemma

2.3. So, we consider |P2| ≤ k − 1. Consider m2 → P1. It is easily checked that

m2 → P1 gives 2k new differences and k + 1 new sums. Due to Lemma 2.4,

m2 + j → P1∪{m2, . . . ,m2 + j−1} gives at most 3 new sums and 2 new differences

±(m2 +j) for all j ≥ 1. The total number of new sums is at most k+1+3(|P2|−1),

while the number of new differences is at least 2k + 2(|P2| − 1). We have

2k + 2(|P2| − 1)− (k + 1 + 3(|P2| − 1)) = k − |P2| ≥ 1.

Hence, P1 ∪ P2 is difference-dominant.

3.2. Part II. max P1 > min P2

If m2 − 1/2 ∈ Z, we consider 2(P1 ∪ P2). Because the difference between any two

consecutive numbers in increasing order is either 1 or 2, by item 1 of Lemma 2.3,

we do not have a sum-dominant set. Hence, we assume that m2−1/2 /∈ Z. Suppose

that n < m2 < n + 1 for some n ∈ P1. The following are new and pairwise distinct

positive differences from m2 → P1

m2 − n < m2 − (n− 1) < · · · < m2 − 0,

n + 1−m2 < n + 2−m2 < · · · < maxP1 −m2.

Hence, we have at least 2|P1| new differences. On the other hand, m2 → P1 gives

at most |P1|+ 1 new sums. Due to Lemma 2.4, m2 + j → P1∪{m2, . . . ,m2 + j−1}
gives at most 3 new sums and at least 2 new differences ±(m2 + j) for all j ≥ 1.

Hence, the total number of new sums as a result of P2 → P1 is at most

|P1|+ 1 + 3(|P2| − 1) = |P1|+ 3|P2| − 2,

while the number of new differences is at least

2|P1|+ 2(|P2| − 1) = 2|P1|+ 2|P2| − 2.
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Because |P1| ≥ |P2|, we have |P1|+3|P2|−2 ≤ 2|P1|+2|P2|−2. Therefore, P1∪P2

is not sum-dominant and our proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

Lemma 4.1. For m ≥ 9, the set

K = {0, 1, . . . ,m + 7}\{3, 5, 6,m + 1,m + 2,m + 3,m + 5}
= {0, 1, 2, 4} ∪ {7, 8, . . . ,m} ∪ {m + 4,m + 6,m + 7}

is sum-dominant. Note that K is a sum-dominant subset of {0, 1, . . . ,m + 7} after

we discard 7 numbers from the arithmetic progression.

Proof. Observe that K−K = {±0,±1, . . . ,±(m+ 7)}\{±(m+ 1)}, while K +K =

{0, 1, . . . , 2m + 14}\{2m + 9}. Hence, |K + K| − |K −K| = 1.

We now prove Theorem 1.2. Fix n ≥ 16. Let N be the cardinality of the largest

sum-dominant subset(s) of {0, 1, . . . , n− 1}. Lemma 4.1 proves the lower bound for

N in Theorem 1.2; that is, N ≥ n− 7. We proceed to show that N ≤ n− 4.

If N = n, we have the arithmetic progression {0, 1, . . . , n − 1}, which is not

sum-dominant.

If N = n− 1, we do not have a sum-dominant set due to item 1 of Lemma 2.3.

If N = n − 2, we have two cases. If the two missing numbers are not next to

each other, we do not have a sum-dominant set due to item 1 of Lemma 2.3. If the

two missing numbers are next to each other, we do not have a sum-dominant set

due to Theorem 1.1.

If N = n− 3, we have three cases.

1. Case 4.1: If the three missing numbers are consecutive, then we do not have

a sum-dominant set due to Theorem 1.1.

2. Case 4.2: If no two numbers are next to each other, then we do not have a

sum-dominant set due to item 1 of Lemma 2.3.

3. Case 4.3: Two numbers are next to each other, while the other is not next to

any of these numbers. Let the two numbers that are next to each other be k

and k + 1 for some k ≥ 0. Without loss of generality, assume that the third

number is k + p such that k + p > k + 2.

(a) If k = 0, we have the set {2, 3, . . . , n − 1}\{k + p}, which is not sum-

dominant due to item 1 of Lemma 2.3.

(b) If k + p = n− 1, we are back to the case N = n− 2.
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(c) Suppose that k > 0 and k + p < n − 1. We have all differences in

{0, 1, . . . , n− 1}\{k, k + 1, k + p} by looking at {0, 1, . . . , n− 1}\{k, k +

1, k+p}−0. If we do not have any missing differences, then we are done.

If k = 1, because n ≥ 16 and we miss only 3 numbers, it must be that

we have three consecutive numbers in our set. So, we have differences of

1 and 2, and so, k and k + 1 are in the difference set. Hence, we miss at

most 2 differences, which are ±(k + p). However, we also miss at least

2 sums, which are 1 and 2. Therefore, we do not have a sum-dominant

set.

If k = 2, then 1 is in our set. We have k + p by looking at (k + p+ 1)− 1

and k + 1 by looking at (k + 2)− 1. Because n ≥ 16 and we miss only 3

numbers, it must be that we have three consecutive numbers in our set.

So, we have a difference of 2, and so, k is in the difference set. We are

done.

If k > 2, then 1 and 2 are in our set. We have k + p by looking at

(k + p + 1) − 1, k + 1 by looking at (k + 2) − 1, and k by looking at

(k + 2)− 2. We are done.

5. Proof of Theorem 1.4

We will use the construction discussed in [4, Theorem 1.1] to partition {1, 2, . . . , r}
into 3 sum-dominant subsets. Following the construction, we fix n = k = 20 and

set

L1 = {1, 2, 3, 4, 8, 9, 11, 13, 14, 15, 20},
R1 = {21, 26, 27, 28, 31, 33, 37, 38, 39, 40},
L2 = {5, 6, 7, 10, 12, 16, 17, 18, 19},
R2 = {22, 23, 24, 25, 29, 30, 32, 34, 35, 36}.

Note that in [4, Theorem 1.1], A1 = L1 ∪R1 and A2 = L2 ∪R2. Pick m ≥ 21. Set

R′1 = R1 + m + 84,

R′2 = R2 + m + 84,

O11 = {24} ∪ {25, 27, 29, . . . , 61} ∪ {62},
O12 = {63 + m} ∪ {64 + m, 66 + m, 68 + m, . . . , 100 + m} ∪ {101 + m},
O21 = {21, 22, 23} ∪ {26, 28, 30, . . . , 60} ∪ {63, 64, 65},
O22 = {60 + m, 61 + m, 62 + m} ∪ {65 + m, 67 + m, . . . , 99 + m}

∪ {102 + m, 103 + m, 104 + m}.
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Let M1 ⊆ {66, 67, . . . , 59+m}\{66, 68, 69, 70, 73, 77, 78, 80} such that within M1,

there exists a sequence of pairs of consecutive elements, where consecutive pairs are

not more than 39 apart and the sequence starts with a pair in {66, 67, . . . , 101} and

ends with a pair in {24 + m, 25 + m, . . . , 59 + m}. Let M2 ⊆ {66, 67, . . . , 59 + m}
such that within M2, there exists a sequence of triplets of consecutive elements,

where consecutive triplets are not more than 40 apart and the sequence starts with

a triplet in {66, 67, . . . , 105} and ends with a triplet in {20+m, 21+m, . . . , 59+m}.
Also, M1∩M2 = ∅ and M1∪M2 = {66, 67, . . . , 59+m}\{66, 68, 69, 70, 73, 77, 78, 80}.
By [4, Theorem 1.1], we know that

A′1 = L1 ∪O11 ∪M1 ∪O12 ∪R′1

A′2 = L2 ∪O21 ∪M2 ∪O22 ∪R′2

are both sum-dominant and along with S = {66, 68, 69, 70, 73, 77, 78, 80} partition

{1, 124+m}. Note that S is sum-dominant because it is a translation of the smallest

sum-dominant set S′ = {0, 2, 3, 4, 7, 11, 12, 14}.

Example 5.1. Let m = 21. Set

M1 = {71, 72}
M2 = {67, 74, 75, 76, 79}.

We partition {1, 145} into the following three sum-dominant sets

A′1 = L1 ∪O11 ∪M1 ∪O12 ∪R′1

= {1, 2, 3, 4, 8, 9, 11, 13, 14, 15, 20, 24} ∪ {25, 27, 29, . . . , 61}
∪ {62, 71, 72, 84} ∪ {85, 87, . . . , 121}
∪ {122, 126, 131, 132, 133, 136, 138, 142, 143, 144, 145}
with |A′1 + A′1| − |A′1 −A′1| = 2,

A′2 = L2 ∪O21 ∪M2 ∪O22 ∪R′2

= {5, 6, 7, 10, 12, 16, 17, 18, 19, 21, 22, 23} ∪ {26, 28, 30, . . . , 60}
∪ {63, 64, 65, 67, 74, 75, 76, 79, 81, 82, 83} ∪ {86, 88, . . . , 120} ∪ {123, 124, 125}
∪ {127, 128, 129, 130, 134, 135, 137, 139, 140, 141}
with |A′2 + A′2| − |A′2 −A′2| = 2,

S = {66, 68, 69, 70, 73, 77, 78, 80} with |S + S| − |S − S| = 1.

Example 5.1 proves the upper bound of 145 for R in our Theorem 1.4.

Acknowledgement. I thank the referee for helpful comments on an earlier draft.
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Birkhäuser, Boston, 1984, pp. 267-273.

[22] I. Z. Ruzsa, On the number of sums and differences, Acta Math. Hungar. 59 (1992), 439-447.

[23] W. G. Spohn, On Conway’s conjecture for integer sets, Canad. Math. Bull 14 (1971), 461-462.

[24] Y. Zhao, Constructing MSTD sets using bidirectional ballot sequences, J. Number Theory
130 (2010), 1212-1220.

[25] Y. Zhao, Sets characterized by missing sums and differences, J. Number Theory 131 (2011),
2107-2134.


	Introduction
	Background and Main Results
	Notation

	Important Results
	Proof of Theorem 1.1
	Part I. maxP1 < minP2
	Part II. maxP1 > minP2

	Proof of Theorem 1.2
	Proof of Theorem 1.4

