

THE UNION OF TWO ARITHMETIC PROGRESSIONS WITH THE SAME COMMON DIFFERENCE IS NOT SUM-DOMINANT

Hùng Việt Chu

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois hungchu2@illinois.edu

Received: 3/27/20, Revised: 8/30/20, Accepted: 10/9/20, Published: 10/19/20

Abstract

Given a finite set $A \subseteq \mathbb{R}$, define the sum set $A + A = \{a_i + a_j \mid a_i, a_j \in A\}$ and the difference set $A - A = \{a_i - a_j \mid a_i, a_j \in A\}$. The set A is said to be sumdominant if |A + A| > |A - A|. In the literature, sum-dominant sets are also called more-sum-than-difference (MSTD) sets. We prove the following results:

- 1. The union of two arithmetic progressions with the same common difference is not sum-dominant. This result partially proves a conjecture proposed by the author in a previous paper; that is, the union of any two arbitrary arithmetic progressions is not sum-dominant.
- 2. Hegarty proved that a sum-dominant set of integers must have at least 8 elements with computers' help. The author of the current paper provided a human-verifiable proof that a sum-dominant set of integers must have at least 7 elements. A natural question is about the largest cardinality of sum-dominant subsets of an arithmetic progression. Fix $n \ge 16$. Let N be the cardinality of the largest sum-dominant subset(s) of $\{0, 1, \ldots, n-1\}$. Then $n-7 \le N \le n-4$; that is, from an arithmetic progression of length $n \ge 16$, we need to discard at least 4 and at most 7 elements (in a clever way) to have the largest sum-dominant set(s).
- 3. Let $R \in \mathbb{N}$ have the property that for all $r \geq R$, $\{1, 2, \ldots, r\}$ can be partitioned into 3 sum-dominant subsets, while $\{1, 2, \ldots, R-1\}$ cannot. Then $24 \leq R \leq$ 145. This result answers a question by the author et al. in another paper on whether we can find a stricter upper bound for R.

1. Introduction

1.1. Background and Main Results

Given a finite set $A \subseteq \mathbb{R}$, define $A + A = \{a_i + a_j | a_i, a_j \in A\}$ and $A - A = \{a_i - a_j | a_i, a_j \in A\}$. The set A is said to be

• sum-dominant, if |A + A| > |A - A|;

- balanced, if |A + A| = |A A|; and
- difference-dominant, if |A + A| < |A A|.

Sum-dominant sets are also called more-sum-than-difference (MSTD) sets. Because addition is commutative, while subtraction is not, sum-dominant sets are very rare. However, it was first proved by Martin and O'Bryant [13] that as $n \to \infty$, the proportion of sum-dominant subsets of $\{0, 1, 2, \ldots, n-1\}$ is bounded below by a positive constant (about $2 \cdot 10^{-7}$), which was later improved by Zhao [25] to about $4 \cdot 10^{-4}$. However, these works used the probabilistic method and did not give explicit constructions of sum-dominant sets. Later, Miller et al. [15] constructed a family of density $\Theta(1/n^4)^1$ and Zhao [24] gave a family of density $\Theta(1/n)$. The last few years have seen an explosion of papers exploring properties of sum-dominant sets: see [7, 10, 12, 18, 20, 21, 22] for history and overview, [8, 14, 15, 18, 24] for explicit constructions, [5, 9, 13, 25] for positive lower bounds for the percentage of sum-dominant sets, [11, 16] for generalized sum-dominant sets, and [1, 4, 6, 25] for extensions to other settings.

We know that an arithmetic progression is not a sum-dominant set (see Corollary 2.2 below). It is natural to ask whether numbers from the union of several arithmetic progressions produce a sum-dominant set. Our first result is that the union of two arithmetic progressions with the same common difference is not sum-dominant.

Theorem 1.1. The union of two arithmetic progressions P_1 and P_2 with the same common difference is not sum-dominant.

This result partially proves the conjecture by the author of the current paper [2] that the union of any two arbitrary arithmetic progressions is not sum-dominant. Note that $\{0,2\} \cup \{3,7,11,\ldots,4k-1\} \cup \{4k,4k+2\}$ for $k \ge 5$ is sum-dominant [18], and the set is the union of three arithmetic progressions. Hence, [2, Conjecture 17] is the most we can do.

Our next result concerns the cardinality of a sum-dominant set. Hegarty [8] proved that a sum-dominant set of integers must have at least 8 elements with the help of computers. The author of the current paper provided a human-understandable proof that a sum-dominant set of integers must have at least 7 elements [2, 3]. Another natural question is about the largest cardinality of a sum-dominant set of integers. It is well-known that a sum-dominant set can be arbitrarily large, so we put a restriction on the size of the set to have the following result

Theorem 1.2. Fix $n \ge 16$. Let N be the cardinality of the largest sum-dominant subset(s) of $\{0, 1, \ldots, n-1\}$. Then $n-7 \le N \le n-4$.

The theorem implies that from an arithmetic progression of length at least 16, we need to discard at least 4 elements and not more than 7 elements (in a clever

¹A more refined analysis improves the bound to $\Theta(1/n^2)$ [11].

way) to have the largest sum-dominant set(s). A corollary is that if we want to search for all sum-dominant subsets of $\{0, 1, \ldots, n-1\}$, we only need to look for subsets of size between 8 and n-4.

Conjecture 1.3. Fix $n \ge 16$. Let N be the cardinality of the largest sum-dominant subset(s) of $\{0, 1, \ldots, n-1\}$. Then N = n - 7.

We run a computer program to find that the conjecture holds for all $16 \le n \le 34$. For $n \le 14$, N does not exist. For n = 15, N = 9, corresponding to the set $\{0, 1, 2, 4, 5, 9, 12, 13, 14\}$; that is, we discard 6 elements.

Our final result is related to the partition of an arithmetic progression into sumdominant subsets. Asada et al. proved that as $r \to \infty$, the proportion of 2decompositions of $\{1, 2, \ldots, r\}$ into sum-dominant subsets is bounded below by a positive constant [1]. Continuing the work, the author of the current paper with Luntzlara, Miller, and Shao proved that it is possible to partition $\{1, 2, \ldots, r\}$ (for r sufficiently large) into $k \ge 3$ sum-dominant subsets [4]. By defining R := R(k) to be the smallest integer such that for all $r \ge R$, $\{1, 2, \ldots, r\}$ can be k-decomposed into MSTD subsets, while $\{1, 2, \ldots, R-1\}$ cannot, the authors established rough lower and upper bounds for R. However, the upper bound when k = 3 is very loose because it depends on a sum-dominant subset A with $|A + A| - |A - A| \ge 10|A|$. In particular, [4, Theorem 1.4] gives an upper bound equal to $4 \min\{\max A : |A + A| - |A - A| \ge 10|A|\} + 24$. Due to [8, Theorem 1] and [19, Theorem 22], we know that $|A| \ge 10$, which implies that $|A + A| \ge 10|A| + |A - A| \ge 12|A| - 1 \ge 119$. Because $2 \max A - 1 \ge |A + A|$, we have that $\max A \ge 60$, which gives an upper bound of R of at least 264. Our next theorem gives an upper bound of 145.

Theorem 1.4. Let $R \in \mathbb{N}$ have the property that for $r \geq R$, $\{1, 2, ..., r\}$ can be partitioned into 3 sum-dominant subsets, while $\{1, 2, ..., R - 1\}$ cannot. Then $24 \leq R \leq 145$.

This theorem answers a question raised by the author of the current paper et al. about whether we can find a more efficient way to decompose $\{1, 2, ..., r\}$ into 3 sum-dominant sets. We find a smaller upper bound by a new way of partitioning $\{1, 2, ..., n\}$ into 3 sum-dominant subsets. Our construction is similar to that of Miller et al. [15] and utilizes the fact that their construction allows a long run of missing elements. The long run of missing elements is where we can insert a fixed sum-dominant set.

1.2. Notation

We introduce some notation. Let A and B be sets. We write $A \to B$ to mean the introduction of elements in A to B. We also use a different notation to write a set, which was first introduced by Spohn [23]. Given a set $S = \{m_1, m_2, \ldots, m_n\}$, we arrange its elements in increasing order and find the differences between two

consecutive numbers to form a sequence. Suppose that $m_1 < m_2 < \cdots < m_n$, then our sequence is $m_2 - m_1, m_3 - m_2, m_4 - m_3, \ldots, m_n - m_{n-1}$, and we represent $S = (m_1 | m_2 - m_1, m_3 - m_2, m_4 - m_3, \ldots, m_n - m_{n-1}) = (m_1 | a_1, \ldots, a_{n-1})$, where $a_i = m_{i+1} - m_i$. Any positive difference in S - S must be equal to a sum $a_i + \cdots + a_j$ for some $1 \le i \le j \le n - 1$. Take $S = \{3, 2, 15, 10, 9\}$, for example. We arrange the elements in increasing order to have 2, 3, 9, 10, 15, form a sequence by looking at the difference between two consecutive numbers: 1, 6, 1, 5, and write S = (2 | 1, 6, 1, 5). All information about a set is preserved in this notation.

An arithmetic progression is a sequence of the form $(a, a+d, a+2d, a+3d, \ldots, a+kd)$ for any arbitrary numbers a, k, and the common difference d. Because sumdominance is preserved under affine transformations, we can safely assume that our arithmetic progressions contain nonnegative numbers with 1 being the common difference. To emphasize, all arithmetic progressions we consider will have nonnegative numbers and have the same common difference, which is 1.

2. Important Results

We use the definition of a symmetric set given by Nathanson [17]: a set A is symmetric if there exists a number a such that a - A = A. If so, we say that the set A is symmetric about a. The following proposition was proved by Nathanson [17].

Proposition 2.1. A symmetric set is balanced.

Proof. Let A be a symmetric set about a. We have |A + A| = |A + (a - A)| = |a + (A - A)| = |A - A|. Hence, A is balanced.

Though symmetric sets are not sum-dominant, adding a few numbers into these sets (in a clever way) can produce sum-dominant sets. Examples of such a technique were provided by Hegarty [8] and Nathanson [18].

Corollary 2.2. An arithmetic progression is not sum-dominant.

Note that a set of numbers from an arithmetic progression is symmetric about the sum of the maximum and the minimum of the arithmetic progression. For example, the set $E = \{3, 5, 7, 9, 11\}$ is symmetric about 14. The following lemma is proved by Macdonald and Street [14].

Lemma 2.3. Given a finite set $A = (0 | a_1, a_2, ..., a_n)$, the following claims hold.

- (1) If $a_i \in \{1, 2\}$ for all *i*, then A is not sum-dominant.
- (2) If $a_i \in \{1, k\}$ and the first and last times that 1 occurs as a difference, it occurs in a block of at least k-1 consecutive differences, then A is not sum-dominant.

The following lemma is trivial but very useful in our proof of Theorem 1.1.

Lemma 2.4. Let P_1 and P_2 be arithmetic progressions with common difference 1. The following claims hold.

- (1) Given an arithmetic progression P_1 , $\{\max P_1 + 1\} \rightarrow P_1$ gives 2 new sums.
- (2) Given arithmetic progressions P_1 and P_2 , $\{\max P_1 + 1\} \rightarrow (P_1 \cup P_2)$ gives at most 3 new sums.

Proof. We first prove item 1. Without loss of generality, assume $P_1 = \{0, 1, ..., n\}$ for some $n \ge 0$. Denote $Q_1 = P_1 \cup \{n+1\}$. Then $P_1 + P_1 = \{0, 1, ..., 2n\}$ and $Q_1 + Q_1 = \{0, 1, ..., 2n+2\}$. Clearly, $|Q_1 + Q_1| - |P_1 + P_1| = 2$.

We proceed to prove item 2. New sums come from the interactions of $\max P_1 + 1$ with P_1 , with P_2 , and with itself. By item 1, the interactions of $\max P_1 + 1$ with P_1 and itself give at most 2 new sums. We consider the interactions of $\max P_1 + 1$ with P_2 . We have $(\max P_1 + 1 + P_2) \setminus (\max P_1 + P_2) = \{\max P_1 + \max P_2 + 1\}$. Therefore, the interactions of $\{\max P_1 + 1\}$ with P_2 gives at most 1 new sum. In total, we have at most 3 new sums, as desired.

3. Proof of Theorem 1.1

Because sum-dominance is preserved under affine transformations, without loss of generality, assume that $0 = \min P_1 \leq \min P_2$ and $|P_1| \geq |P_2|$. Let m_i and M_i denote $\min P_i$ and $\max P_i$, respectively. Finally, we only consider $P_1 \cap P_2 = \emptyset$ because if $P_1 \cap P_2 \neq \emptyset$, $P_1 \cup P_2$ is an arithmetic progression², which does not form a sum-dominant set by Corollary 2.2. Our proof considers P_1 as the original set and sees how $P_2 \to P_1$ changes the number of sums and differences.

3.1. Part I. $\max P_1 < \min P_2$

Let $k = \min P_2 - \max P_1$. If k = 1, $P_1 \cup P_2$ is an arithmetic progression, not a sum-dominant set. We consider two cases corresponding to k < 1 and k > 1.

Case I.1: k < 1. We consider $P_2 \to P_1$. The set of new positive and distinct differences includes $k < k+1 < \cdots < k+|P_1|+|P_2|-2$. Hence, the number of new differences is at least $2(|P_1|+|P_2|-1)$. Now, we count the number of new sums. Consider $m_2 \to P_1$. We have exactly $|P_1|+1$ new sums. Due to Lemma 2.4, $m_2 + j \to P_1 \cup \{m_2, \ldots, m_2 + j - 1\}$ gives at most 3 new sums for all $j \ge 1$. Therefore, $P_2 \to P_1$ gives at most $(|P_1|+1)+3(|P_2|-1) = |P_1|+3|P_2|-2$ new sums.

²Recall that P_1 and P_2 have the same common difference.

INTEGERS: 20 (2020)

Because $|P_1| \ge |P_2|$, we have $2(|P_1| + |P_2| - 1) \ge |P_1| + 3|P_2| - 2$, and so, we do not have a sum-dominant set.

Case I.2: k > 1. If k is not an integer, then with the same reasoning as Case I.1, we are done. If k is an integer, we consider two following subcases.

Subcase I.2.1: $k > \max P_1$. Then $m_2 \to P_1$ gives $|P_1|$ new positive differences

$$m_2 - \max P_1 < m_2 - \max P_1 + 1 < \cdots < m_2$$

while at most $|P_1| + 1$ new sums. Due to Lemma 2.4, $m_2 + j \rightarrow P_1 \cup \{m_2, \ldots, m_2 + j - 1\}$ gives at most 3 new sums and at least 2 new differences $\pm(m_2 + j)$ for all $j \geq 1$. Therefore, $P_2 \rightarrow P_1$ gives at most $|P_1| + 1 + 3(|P_2| - 1)$ new sums while at least $2|P_1| + 2(|P_2| - 1)$ new differences. Because $|P_1| \geq |P_2|$, the number of new differences is not smaller than the number of new sums, and so, $P_1 \cup P_2$ is not sum-dominant.

Subcase I.2.2: $k \leq \max P_1$. If $|P_2| \geq k$, we are done due to item 2 of Lemma 2.3. So, we consider $|P_2| \leq k - 1$. Consider $m_2 \to P_1$. It is easily checked that $m_2 \to P_1$ gives 2k new differences and k + 1 new sums. Due to Lemma 2.4, $m_2+j \to P_1 \cup \{m_2, \ldots, m_2+j-1\}$ gives at most 3 new sums and 2 new differences $\pm (m_2+j)$ for all $j \geq 1$. The total number of new sums is at most $k+1+3(|P_2|-1)$, while the number of new differences is at least $2k + 2(|P_2|-1)$. We have

$$2k + 2(|P_2| - 1) - (k + 1 + 3(|P_2| - 1)) = k - |P_2| \ge 1.$$

Hence, $P_1 \cup P_2$ is difference-dominant.

3.2. Part II. $\max P_1 > \min P_2$

If $m_2 - 1/2 \in \mathbb{Z}$, we consider $2(P_1 \cup P_2)$. Because the difference between any two consecutive numbers in increasing order is either 1 or 2, by item 1 of Lemma 2.3, we do not have a sum-dominant set. Hence, we assume that $m_2 - 1/2 \notin \mathbb{Z}$. Suppose that $n < m_2 < n + 1$ for some $n \in P_1$. The following are new and pairwise distinct positive differences from $m_2 \to P_1$

$$m_2 - n < m_2 - (n - 1) < \cdots < m_2 - 0,$$

 $n + 1 - m_2 < n + 2 - m_2 < \cdots < \max P_1 - m_2.$

Hence, we have at least $2|P_1|$ new differences. On the other hand, $m_2 \to P_1$ gives at most $|P_1| + 1$ new sums. Due to Lemma 2.4, $m_2 + j \to P_1 \cup \{m_2, \ldots, m_2 + j - 1\}$ gives at most 3 new sums and at least 2 new differences $\pm (m_2 + j)$ for all $j \ge 1$. Hence, the total number of new sums as a result of $P_2 \to P_1$ is at most

$$|P_1| + 1 + 3(|P_2| - 1) = |P_1| + 3|P_2| - 2,$$

while the number of new differences is at least

$$2|P_1| + 2(|P_2| - 1) = 2|P_1| + 2|P_2| - 2.$$

Because $|P_1| \ge |P_2|$, we have $|P_1| + 3|P_2| - 2 \le 2|P_1| + 2|P_2| - 2$. Therefore, $P_1 \cup P_2$ is not sum-dominant and our proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

Lemma 4.1. For $m \ge 9$, the set

$$K = \{0, 1, \dots, m+7\} \setminus \{3, 5, 6, m+1, m+2, m+3, m+5\}$$

= $\{0, 1, 2, 4\} \cup \{7, 8, \dots, m\} \cup \{m+4, m+6, m+7\}$

is sum-dominant. Note that K is a sum-dominant subset of $\{0, 1, ..., m + 7\}$ after we discard 7 numbers from the arithmetic progression.

Proof. Observe that $K - K = \{\pm 0, \pm 1, \dots, \pm (m+7)\} \setminus \{\pm (m+1)\}$, while $K + K = \{0, 1, \dots, 2m+14\} \setminus \{2m+9\}$. Hence, |K+K| - |K-K| = 1.

We now prove Theorem 1.2. Fix $n \ge 16$. Let N be the cardinality of the largest sum-dominant subset(s) of $\{0, 1, \ldots, n-1\}$. Lemma 4.1 proves the lower bound for N in Theorem 1.2; that is, $N \ge n-7$. We proceed to show that $N \le n-4$.

If N = n, we have the arithmetic progression $\{0, 1, ..., n - 1\}$, which is not sum-dominant.

If N = n - 1, we do not have a sum-dominant set due to item 1 of Lemma 2.3.

If N = n - 2, we have two cases. If the two missing numbers are not next to each other, we do not have a sum-dominant set due to item 1 of Lemma 2.3. If the two missing numbers are next to each other, we do not have a sum-dominant set due to Theorem 1.1.

If N = n - 3, we have three cases.

- 1. Case 4.1: If the three missing numbers are consecutive, then we do not have a sum-dominant set due to Theorem 1.1.
- 2. Case 4.2: If no two numbers are next to each other, then we do not have a sum-dominant set due to item 1 of Lemma 2.3.
- 3. Case 4.3: Two numbers are next to each other, while the other is not next to any of these numbers. Let the two numbers that are next to each other be k and k + 1 for some $k \ge 0$. Without loss of generality, assume that the third number is k + p such that k + p > k + 2.
 - (a) If k = 0, we have the set $\{2, 3, ..., n 1\} \setminus \{k + p\}$, which is not sumdominant due to item 1 of Lemma 2.3.
 - (b) If k + p = n 1, we are back to the case N = n 2.

(c) Suppose that k > 0 and k + p < n - 1. We have all differences in {0,1,...,n-1}\{k,k+1,k+p} by looking at {0,1,...,n-1}\{k,k+1,k+p} - 0. If we do not have any missing differences, then we are done. If k = 1, because n ≥ 16 and we miss only 3 numbers, it must be that we have three consecutive numbers in our set. So, we have differences of 1 and 2, and so, k and k+1 are in the difference set. Hence, we miss at most 2 differences, which are ±(k + p). However, we also miss at least 2 sums, which are 1 and 2. Therefore, we do not have a sum-dominant set.

If k = 2, then 1 is in our set. We have k + p by looking at (k + p + 1) - 1and k + 1 by looking at (k + 2) - 1. Because $n \ge 16$ and we miss only 3 numbers, it must be that we have three consecutive numbers in our set. So, we have a difference of 2, and so, k is in the difference set. We are done.

If k > 2, then 1 and 2 are in our set. We have k + p by looking at (k + p + 1) - 1, k + 1 by looking at (k + 2) - 1, and k by looking at (k + 2) - 2. We are done.

5. Proof of Theorem 1.4

We will use the construction discussed in [4, Theorem 1.1] to partition $\{1, 2, ..., r\}$ into 3 sum-dominant subsets. Following the construction, we fix n = k = 20 and set

Note that in [4, Theorem 1.1], $A_1 = L_1 \cup R_1$ and $A_2 = L_2 \cup R_2$. Pick $m \ge 21$. Set

$$\begin{aligned} R_1' &= R_1 + m + 84, \\ R_2' &= R_2 + m + 84, \\ O_{11} &= \{24\} \cup \{25, 27, 29, \dots, 61\} \cup \{62\}, \\ O_{12} &= \{63 + m\} \cup \{64 + m, 66 + m, 68 + m, \dots, 100 + m\} \cup \{101 + m\}, \\ O_{21} &= \{21, 22, 23\} \cup \{26, 28, 30, \dots, 60\} \cup \{63, 64, 65\}, \\ O_{22} &= \{60 + m, 61 + m, 62 + m\} \cup \{65 + m, 67 + m, \dots, 99 + m\} \\ &\cup \{102 + m, 103 + m, 104 + m\}. \end{aligned}$$

INTEGERS: 20 (2020)

Let $M_1 \subseteq \{66, 67, \ldots, 59+m\} \setminus \{66, 68, 69, 70, 73, 77, 78, 80\}$ such that within M_1 , there exists a sequence of pairs of consecutive elements, where consecutive pairs are not more than 39 apart and the sequence starts with a pair in $\{66, 67, \ldots, 101\}$ and ends with a pair in $\{24+m, 25+m, \ldots, 59+m\}$. Let $M_2 \subseteq \{66, 67, \ldots, 59+m\}$ such that within M_2 , there exists a sequence of triplets of consecutive elements, where consecutive triplets are not more than 40 apart and the sequence starts with a triplet in $\{66, 67, \ldots, 105\}$ and ends with a triplet in $\{20+m, 21+m, \ldots, 59+m\}$. Also, $M_1 \cap M_2 = \emptyset$ and $M_1 \cup M_2 = \{66, 67, \ldots, 59+m\} \setminus \{66, 68, 69, 70, 73, 77, 78, 80\}$. By [4, Theorem 1.1], we know that

$$\begin{aligned} A'_1 &= L_1 \cup O_{11} \cup M_1 \cup O_{12} \cup R'_1 \\ A'_2 &= L_2 \cup O_{21} \cup M_2 \cup O_{22} \cup R'_2 \end{aligned}$$

are both sum-dominant and along with $S = \{66, 68, 69, 70, 73, 77, 78, 80\}$ partition $\{1, 124+m\}$. Note that S is sum-dominant because it is a translation of the smallest sum-dominant set $S' = \{0, 2, 3, 4, 7, 11, 12, 14\}$.

Example 5.1. Let m = 21. Set

$$M_1 = \{71, 72\}$$

$$M_2 = \{67, 74, 75, 76, 79\}.$$

We partition $\{1, 145\}$ into the following three sum-dominant sets

$$\begin{array}{ll} A_1' &= \ L_1 \cup O_{11} \cup M_1 \cup O_{12} \cup R_1' \\ &= \ \{1,2,3,4,8,9,11,13,14,15,20,24\} \cup \{25,27,29,\ldots,61\} \\ &\cup \ \{62,71,72,84\} \cup \{85,87,\ldots,121\} \\ &\cup \ \{122,126,131,132,133,136,138,142,143,144,145\} \\ &\text{with } |A_1' + A_1'| - |A_1' - A_1'| = 2, \\ A_2' &= \ L_2 \cup O_{21} \cup M_2 \cup O_{22} \cup R_2' \\ &= \ \{5,6,7,10,12,16,17,18,19,21,22,23\} \cup \{26,28,30,\ldots,60\} \\ &\cup \ \{63,64,65,67,74,75,76,79,81,82,83\} \cup \{86,88,\ldots,120\} \cup \ \{123,124,125\} \\ &\cup \ \{127,128,129,130,134,135,137,139,140,141\} \\ &\text{with } |A_2' + A_2'| - |A_2' - A_2'| = 2, \\ S &= \ \{66,68,69,70,73,77,78,80\} \text{ with } |S + S| - |S - S| = 1. \end{array}$$

Example 5.1 proves the upper bound of 145 for R in our Theorem 1.4.

Acknowledgement. I thank the referee for helpful comments on an earlier draft.

References

- M. Asada, S. Manski, S. J. Miller, and H. Suh, Fringe pairs in generalized MSTD sets, Int. J. Number Theory 13 (2017), 2653-2675.
- [2] H. V. Chu, When sets are not sum-dominant, J. Integer Seq. 22 (2019).
- [3] H. V. Chu, Sets of cardinality 6 are not sum-dominant, Integers 20 (2020), #A17.
- H. V. Chu, N. Luntzlara, S. J. Miller, and L. Shao, Infinite families of partitions into MSTD subsets, *Integers* 19 (2019), #A60.
- [5] H. V. Chu, N. Luntzlara, S. J. Miller, and L. Shao, Generalizations of a curious family of MSTD sets hidden by interior blocks, *Integers* 20A (2020), #A5.
- [6] H. V. Chu, N. McNew, S. J. Miller, V. Xu, and S. Zhang, When sets can and cannot have sum-dominant subsets, J. Integer Seq. 18 (2018).
- [7] G. A. Freiman and V. P. Pigarev, Number Theoretic Studies in the Markov Spectrum and in the Structural Theory of Set Addition, Kalinin. Gos. Univ., Moscow, 1973.
- [8] P. V. Hegarty, Some explicit constructions of sets with more sums than differences, Acta Arith. 130 (2007), 61-77.
- [9] P. V. Hegarty and S. J. Miller, When almost all sets are difference dominated, Random Structures Algorithms 35 (2009), 118-136.
- [10] G. Iyer, O. Lazarev, S. J. Miller, and L. Zhang, Finding and counting MSTD sets, in *Combi*natorial and additive number theory-CANT 2011 and 2012, Springer-Verlag, New York, 2014, pp. 79-98.
- [11] G. Iyer, O. Lazarev, S. J. Miller, and L. Zhang, Generalized more sums than differences sets, J. Number Theory 132 (2012), 1054-1073.
- [12] J. Marica, On a conjecture of Conway, Canad. Math. Bull. 12 (1969), 233-234.
- [13] G. Martin and K. O'Bryant, Many sets have more sums than differences, in Additive Combinatorics, Providence, RI, 2007, pp. 287-305.
- [14] S. Macdonald and A. Street, On Conway's conjecture for integer sets, Bull. Aust. Math. Soc. 8 (1973), 355-358.
- [15] S. J. Miller, B. Orosz, and D. Scheinerman, Explicit constructions of infinite families of MSTD sets, J. Number Theory 130 (2010), 1221-1233.
- [16] S. J. Miller, S. Pegado, and L. Robinson, Explicit Constructions of Large Families of Generalized More Sums Than Differences Sets, *Integers* 12 (2012), #A30.
- [17] M. B. Nathanson, Problems in additive number theory I, in Additive combinatorics, Providence, RI, 2007, pp. 263-270.
- [18] M. B. Nathanson, Sets with more sums than differences, Integers 7 (2007), #A5.
- [19] D. Penman and M. Wells, On sets with more restricted sums than differences, *Integers* 13 (2013), #A57.
- [20] I. Z. Ruzsa, On the cardinality of A + A and A A, in Combinatorics Year, North-Holland-Bolyai Tàrsulat, Keszthely, 1978, pp. 933-938.

- [21] I. Z. Ruzsa, Sets of sums and differences, in Séminaire de Théorie des Nombres de Paris, Birkhäuser, Boston, 1984, pp. 267-273.
- [22] I. Z. Ruzsa, On the number of sums and differences, Acta Math. Hungar. 59 (1992), 439-447.
- [23] W. G. Spohn, On Conway's conjecture for integer sets, Canad. Math. Bull 14 (1971), 461-462.
- [24] Y. Zhao, Constructing MSTD sets using bidirectional ballot sequences, J. Number Theory 130 (2010), 1212-1220.
- [25] Y. Zhao, Sets characterized by missing sums and differences, J. Number Theory 131 (2011), 2107-2134.