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Abstract
Given a finite set A C R, define the sum set A+ A = {a; + a; | a;,a; € A} and
the difference set A — A = {a; — a; | a;,a; € A}. The set A is said to be sum-
dominant if |A + A| > |A — A|. In the literature, sum-dominant sets are also called
more-sum-than-difference (MSTD) sets. We prove the following results:

1. The union of two arithmetic progressions with the same common difference is
not sum-dominant. This result partially proves a conjecture proposed by the
author in a previous paper; that is, the union of any two arbitrary arithmetic
progressions is not sum-dominant.

2. Hegarty proved that a sum-dominant set of integers must have at least 8
elements with computers’ help. The author of the current paper provided
a human-verifiable proof that a sum-dominant set of integers must have at
least 7 elements. A natural question is about the largest cardinality of sum-
dominant subsets of an arithmetic progression. Fix n > 16. Let N be the
cardinality of the largest sum-dominant subset(s) of {0,1,...,n — 1}. Then
n —7 < N <n —4; that is, from an arithmetic progression of length n > 16,
we need to discard at least 4 and at most 7 elements (in a clever way) to have
the largest sum-dominant set(s).

3. Let R € N have the property that for all » > R, {1,2,...,r} can be partitioned
into 3 sum-dominant subsets, while {1,2,..., R — 1} cannot. Then 24 < R <
145. This result answers a question by the author et al. in another paper on
whether we can find a stricter upper bound for R.

1. Introduction

1.1. Background and Main Results

Given a finite set A C R, define A + A = {a; + a;|a;,a; € A} and A — A =
{a; —aj|a;,a; € A}. The set A is said to be

o sum-dominant, if |A+ A| > |A — A|;
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e balanced, if |A+ A| = |A — Al; and
o difference-dominant, if |A + A| < |A — A|.

Sum-dominant sets are also called more-sum-than-difference (MSTD) sets. Because
addition is commutative, while subtraction is not, sum-dominant sets are very rare.
However, it was first proved by Martin and O’Bryant [13] that as n — oo, the
proportion of sum-dominant subsets of {0,1,2,...,n — 1} is bounded below by a
positive constant (about 2-10~7), which was later improved by Zhao [25] to about
4 -107*. However, these works used the probabilistic method and did not give
explicit constructions of sum-dominant sets. Later, Miller et al. [15] constructed a
family of density ©(1/n*)! and Zhao [24] gave a family of density ©(1/n). The last
few years have seen an explosion of papers exploring properties of sum-dominant
sets: see [7, 10, 12, 18, 20, 21, 22] for history and overview, [8, 14, 15, 18, 24] for
explicit constructions, [5, 9, 13, 25] for positive lower bounds for the percentage of
sum-dominant sets, [11, 16] for generalized sum-dominant sets, and [1, 4, 6, 25] for
extensions to other settings.

We know that an arithmetic progression is not a sum-dominant set (see Corollary
2.2 below). It is natural to ask whether numbers from the union of several arithmetic
progressions produce a sum-dominant set. Our first result is that the union of two
arithmetic progressions with the same common difference is not sum-dominant.

Theorem 1.1. The union of two arithmetic progressions Py and P with the same
common difference is not sum-dominant.

This result partially proves the conjecture by the author of the current paper [2]
that the union of any two arbitrary arithmetic progressions is not sum-dominant.
Note that {0,2}U{3,7,11,...,4k—1}U{4k,4k+2} for k > 5 is sum-dominant [18],
and the set is the union of three arithmetic progressions. Hence, [2, Conjecture 17]
is the most we can do.

Our next result concerns the cardinality of a sum-dominant set. Hegarty [§]
proved that a sum-dominant set of integers must have at least 8 elements with the
help of computers. The author of the current paper provided a human-understandable
proof that a sum-dominant set of integers must have at least 7 elements [2, 3]. An-
other natural question is about the largest cardinality of a sum-dominant set of
integers. It is well-known that a sum-dominant set can be arbitrarily large, so we
put a restriction on the size of the set to have the following result

Theorem 1.2. Fizn > 16. Let N be the cardinality of the largest sum-dominant
subset(s) of {0,1,...,n—1}. Thenn—7< N <n—4.

The theorem implies that from an arithmetic progression of length at least 16,
we need to discard at least 4 elements and not more than 7 elements (in a clever

LA more refined analysis improves the bound to ©(1/n2) [11].
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way) to have the largest sum-dominant set(s). A corollary is that if we want to
search for all sum-dominant subsets of {0,1,...,n — 1}, we only need to look for
subsets of size between 8 and n — 4.

Conjecture 1.3. Fixn > 16. Let IV be the cardinality of the largest sum-dominant
subset(s) of {0,1,...,n —1}. Then N =n — 7.

We run a computer program to find that the conjecture holds for all 16 < n < 34.
For n < 14, N does not exist. For n = 15, N = 9, corresponding to the set
{0,1,2,4,5,9,12,13,14}; that is, we discard 6 elements.

Our final result is related to the partition of an arithmetic progression into sum-
dominant subsets. Asada et al. proved that as r — oo, the proportion of 2-
decompositions of {1,2,...,r} into sum-dominant subsets is bounded below by a
positive constant [1]. Continuing the work, the author of the current paper with
Luntzlara, Miller, and Shao proved that it is possible to partition {1,2...,r} (for
r sufficiently large) into k > 3 sum-dominant subsets [4]. By defining R := R(k) to
be the smallest integer such that for all » > R, {1,2,...,7} can be k-decomposed
into MSTD subsets, while {1,2,..., R — 1} cannot, the authors established rough
lower and upper bounds for R. However, the upper bound when k = 3 is very loose
because it depends on a sum-dominant subset A with |[A + A| — |A — A| > 10|A4].
In particular, [4, Theorem 1.4] gives an upper bound equal to 4 min{max A : |A +
Al —]A— A| > 10|A|} + 24. Due to [8, Theorem 1] and [19, Theorem 22], we know
that |A| > 10, which implies that |A + A| > 10|4| + |A — A] > 12|A] — 1 > 119.
Because 2max A — 1 > |A + A, we have that max A > 60, which gives an upper
bound of R of at least 264. Our next theorem gives an upper bound of 145.

Theorem 1.4. Let R € N have the property that for r > R, {1,2,...,r} can
be partitioned into 3 sum-dominant subsets, while {1,2,...,R — 1} cannot. Then
24 < R < 145.

This theorem answers a question raised by the author of the current paper et al.
about whether we can find a more efficient way to decompose {1,2,...,r} into 3
sum-dominant sets. We find a smaller upper bound by a new way of partitioning
{1,2,...,n} into 3 sum-dominant subsets. Our construction is similar to that of
Miller et al. [15] and utilizes the fact that their construction allows a long run of
missing elements. The long run of missing elements is where we can insert a fixed
sum-dominant set.

1.2. Notation

We introduce some notation. Let A and B be sets. We write A — B to mean the
introduction of elements in A to B. We also use a different notation to write a
set, which was first introduced by Spohn [23]. Given a set S = {mi,ma,...,my,},
we arrange its elements in increasing order and find the differences between two
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consecutive numbers to form a sequence. Suppose that m; < mo < -+ < My,
then our sequence is my —mi, m3 —ms, mg —ms, ..., my —my_1, and we represent
S = (my1|ma—my,mz—ma,mg—ms,...,Mp—Mmp_1) = (M1|ai,...,an—1), where

a; = M1 —m,;. Any positive difference in S — S must be equal to asum a;+- - -+a;
for some 1 <i < j<mn-—1. Take S = {3,2,15,10,9}, for example. We arrange the
elements in increasing order to have 2, 3, 9, 10, 15, form a sequence by looking at the
difference between two consecutive numbers: 1, 6, 1, 5, and write S = (2|1,6,1,5).
All information about a set is preserved in this notation.

An arithmetic progression is a sequence of the form (a,a+d, a+2d,a+3d, ..., a+
kd) for any arbitrary numbers a, k, and the common difference d. Because sum-
dominance is preserved under affine transformations, we can safely assume that our
arithmetic progressions contain nonnegative numbers with 1 being the common dif-
ference. To emphasize, all arithmetic progressions we consider will have nonnegative
numbers and have the same common difference, which is 1.

2. Important Results

We use the definition of a symmetric set given by Nathanson [17]: a set A is
symmetric if there exists a number a such that a — A = A. If so, we say that the set
A is symmetric about a. The following proposition was proved by Nathanson [17].

Proposition 2.1. A symmetric set is balanced.

Proof. Let A be a symmetric set about a. We have |A+ A| = |[A+ (a — A)| =
la+ (A — A)| =|A— A|. Hence, A is balanced. O

Though symmetric sets are not sum-dominant, adding a few numbers into these
sets (in a clever way) can produce sum-dominant sets. Examples of such a technique
were provided by Hegarty [8] and Nathanson [18].

Corollary 2.2. An arithmetic progression is not sum-dominant.

Note that a set of numbers from an arithmetic progression is symmetric about
the sum of the maximum and the minimum of the arithmetic progression. For
example, the set F = {3,5,7,9,11} is symmetric about 14. The following lemma is
proved by Macdonald and Street [14].

Lemma 2.3. Given a finite set A = (0|ay,aq,...,a,), the following claims hold.
(1) If a; € {1,2} for all i, then A is not sum-dominant.

(2) Ifa; € {1,k} and the first and last times that 1 occurs as a difference, it occurs
in a block of at least k—1 consecutive differences, then A is not sum-dominant.
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The following lemma is trivial but very useful in our proof of Theorem 1.1.

Lemma 2.4. Let P, and P> be arithmetic progressions with common difference 1.
The following claims hold.

(1) Given an arithmetic progression Py, {max P, + 1} — Py gives 2 new sums.

(2) Given arithmetic progressions Py and Py, {max P; + 1} — (P, U P») gives at
most 3 new sums.

Proof. We first prove item 1. Without loss of generality, assume P, = {0,1,...,n}
for some n > 0. Denote Q; = P, U{n+ 1}. Then P, + P, = {0,1,...,2n} and
Ql +Q1 = {0, 1, .. ,27’L+ 2} Clearly, |Q1 +Q1| — |P1 +P1‘ = 2.

We proceed to prove item 2. New sums come from the interactions of max P; + 1
with Py, with P, and with itself. By item 1, the interactions of max P; + 1 with P;
and itself give at most 2 new sums. We consider the interactions of max P; + 1 with
P,. We have (max Py + 1+ Py)\(max P, + P2) = {max P; +max P, + 1}. Therefore,
the interactions of {max P; +1} with P, gives at most 1 new sum. In total, we have
at most 3 new sums, as desired. O

3. Proof of Theorem 1.1

Because sum-dominance is preserved under affine transformations, without loss of
generality, assume that 0 = min P; < min P, and |Py| > |P|. Let m; and M; denote
min P; and max P;, respectively. Finally, we only consider P; N P> = ) because if
P NP, # 0, PLUP, is an arithmetic progression?, which does not form a sum-
dominant set by Corollary 2.2. Our proof considers P; as the original set and sees
how P> — P; changes the number of sums and differences.

3.1. Part I. maxP; < min P,

Let Kk = min P, —maxP;. If k =1, P, U P, is an arithmetic progression, not a
sum-dominant set. We consider two cases corresponding to £ < 1 and k£ > 1.

Case I.1: k < 1. We consider P, — P;. The set of new positive and distinct
differences includes k < k+1 < --- < k+ |Pi| + |P2| — 2. Hence, the number
of new differences is at least 2(|P1| + |P2| — 1). Now, we count the number of new
sums. Consider my — P;. We have exactly |P;| + 1 new sums. Due to Lemma
24, mo+ 7 — PrU{ma,...,ma+ j — 1} gives at most 3 new sums for all j > 1.
Therefore, P, — Py gives at most (|P|+ 1) +3(|P| —1) = |P1|+ 3|P2| — 2 new
sums.

2Recall that P; and P> have the same common difference.
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Because |Py| > |Py|, we have 2(|P1| + |P2| — 1) > |Pi| + 3|P:| — 2, and so, we
do not have a sum-dominant set.
Case I.2: k> 1. If k is not an integer, then with the same reasoning as Case 1.1,
we are done. If k is an integer, we consider two following subcases.

Subcase I.2.1: k> max P;. Then my — P; gives |P;| new positive differences

mo —maxP; < mo—maxPi+1 < -+ < moy

while at most |P;|+ 1 new sums. Due to Lemma 2.4, mo+j — Py U{ma,...,ma+
j — 1} gives at most 3 new sums and at least 2 new differences +(msq + j) for all
j > 1. Therefore, P» — P gives at most |P;| + 1 + 3(|P| — 1) new sums while
at least 2|Py| + 2(|Py| — 1) new differences. Because |Pi| > | P, the number of
new differences is not smaller than the number of new sums, and so, P; U P» is not
sum-dominant.

Subcase I.2.2: k <maxP. If |[Py| > k, we are done due to item 2 of Lemma
2.3. So, we consider |Py| < k — 1. Consider mg — Pj. It is easily checked that
me — P, gives 2k new differences and k + 1 new sums. Due to Lemma 2.4,
mo+j — PrU{ms,...,mo+j—1} gives at most 3 new sums and 2 new differences
+(mg+) for all j > 1. The total number of new sums is at most k+1+3(|Pz|—1),
while the number of new differences is at least 2k + 2(| P3| — 1). We have

% +2(|Py| = 1) — (k+1+3(R| —1)) = k—|P| > 1.

Hence, P U P, is difference-dominant.

3.2. Part II. max P; > min P,

If mo —1/2 € Z, we consider 2(P; U P2). Because the difference between any two
consecutive numbers in increasing order is either 1 or 2, by item 1 of Lemma 2.3,
we do not have a sum-dominant set. Hence, we assume that mo —1/2 ¢ Z. Suppose
that n < mo < n+ 1 for some n € P;. The following are new and pairwise distinct
positive differences from mo — Py

me—n < me—(n—1) < -+ < mg—0,
n+l—ms < Nn+2—mg < --- < maxP; —ms.

Hence, we have at least 2|P;| new differences. On the other hand, ms — Py gives
at most | P |+ 1 new sums. Due to Lemma 2.4, mo+j — PyU{ma,...,ma+j—1}
gives at most 3 new sums and at least 2 new differences +(mq + j) for all j > 1.
Hence, the total number of new sums as a result of P, — P; is at most

|Pi|+1+3(|P —1) = |P|+3|P] -2,
while the number of new differences is at least

2|P1 +2(|P2| = 1) = 2|P1| +2|P| — 2.
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Because |Py| > |Ps|, we have |P1|+3|P2|—2 < 2|Py|+2|Py|— 2. Therefore, Py UP,
is not sum-dominant and our proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2
Lemma 4.1. For m > 9, the set

K = {0,1,....m+7}1\{3,5,6,m+ 1,m+2,m+ 3, m+5}
= {0,1,2,4}u{7,8,....m}U{m+4,m+6,m+ 7}

is sum-dominant. Note that K is a sum-dominant subset of {0,1,...,m+ 7} after
we discard 7 numbers from the arithmetic progression.

Proof. Observe that K — K = {£0,+1,...,£(m+7)}\{£(m+1)}, while K + K =
{0,1,...,2m + 14}\{2m + 9}. Hence, |[K + K| - |K — K| = 1. O

We now prove Theorem 1.2. Fix n > 16. Let N be the cardinality of the largest
sum-dominant subset(s) of {0,1,...,n—1}. Lemma 4.1 proves the lower bound for
N in Theorem 1.2; that is, N > n — 7. We proceed to show that N <n — 4.

If N = n, we have the arithmetic progression {0,1,...,n — 1}, which is not
sum-dominant.

If N =n —1, we do not have a sum-dominant set due to item 1 of Lemma 2.3.

If N =n — 2, we have two cases. If the two missing numbers are not next to
each other, we do not have a sum-dominant set due to item 1 of Lemma 2.3. If the
two missing numbers are next to each other, we do not have a sum-dominant set
due to Theorem 1.1.

If N =n — 3, we have three cases.

1. Case 4.1: If the three missing numbers are consecutive, then we do not have
a sum-dominant set due to Theorem 1.1.

2. Case 4.2: If no two numbers are next to each other, then we do not have a
sum-dominant set due to item 1 of Lemma 2.3.

3. Case 4.3: Two numbers are next to each other, while the other is not next to
any of these numbers. Let the two numbers that are next to each other be k
and k + 1 for some k& > 0. Without loss of generality, assume that the third
number is k 4 p such that k +p > k + 2.

(a) If & = 0, we have the set {2,3,...,n — 1}\{k + p}, which is not sum-
dominant due to item 1 of Lemma 2.3.

(b) If k+p =mn—1, we are back to the case N =n — 2.
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Suppose that £k > 0 and £k +p < n — 1. We have all differences in
{0,1,...,n—1}\{k,k+ 1,k + p} by looking at {0,1,...,n — 1}\{k,k +
1,k+p}—0. If we do not have any missing differences, then we are done.
If K =1, because n > 16 and we miss only 3 numbers, it must be that
we have three consecutive numbers in our set. So, we have differences of
1 and 2, and so, k and k£ + 1 are in the difference set. Hence, we miss at
most 2 differences, which are +(k + p). However, we also miss at least
2 sums, which are 1 and 2. Therefore, we do not have a sum-dominant
set.

If £k = 2, then 1 is in our set. We have k + p by looking at (k+p+1)—1
and k + 1 by looking at (k +2) — 1. Because n > 16 and we miss only 3
numbers, it must be that we have three consecutive numbers in our set.
So, we have a difference of 2, and so, k is in the difference set. We are
done.

If £ > 2, then 1 and 2 are in our set. We have k + p by looking at
(k+p+1)—1, k+ 1 by looking at (k + 2) — 1, and k by looking at
(k +2) — 2. We are done.

5. Proof of Theorem 1.4

We will use the construction discussed in [4, Theorem 1.1] to partition {1,2,...,r}
into 3 sum-dominant subsets. Following the construction, we fix n = & = 20 and

set

Note that

Ry
Ry

Ly = {1,2,3,4,8,9,11,13,14, 15,20},
Ry = {21,26,27,28,31,33,37,38,39,40},
Ly = {5,6,7,10,12,16,17,18,19},

Ry = {22,23,24,25,29,30,32,34, 35,36}

in [47 Theorem 11], A1 = L1 U R1 and AQ = L2 U Rg. Pick m Z 21. Set

= R +m+ 84,
= Ry +m+ 84,
= {24} U{25,27,29,...,61} U {62},
= {63+ m}U{64+m,66+m,68+m,...,100+ m} U {101 + m},
= {21,22,23} U {26,28,30,...,60} U{63,64,65},
= {60+ m,61+m,62+m}U{65+m,67+m,...,99+m}
U {102 4+ m, 103 + m, 104 + m}.
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Let M; C {66,67,...,594+m}\{66,68,69,70,73,77,78,80} such that within M,
there exists a sequence of pairs of consecutive elements, where consecutive pairs are
not more than 39 apart and the sequence starts with a pair in {66,67,...,101} and
ends with a pair in {24 + m,25+m,...,59 + m}. Let My C {66,67,...,59 + m}
such that within Ms, there exists a sequence of triplets of consecutive elements,
where consecutive triplets are not more than 40 apart and the sequence starts with
a triplet in {66,67,...,105} and ends with a triplet in {20+m,21+m,...,59+m}.
Also, MiNMs = () and M;UM, = {66,67,...,59+m}\{66,68,69,70,73,77,78,80}.
By [4, Theorem 1.1], we know that

All = L1U011UM1U012UR/1
A/2 = L2U021UM2U022UR/2

are both sum-dominant and along with S = {66, 68,69, 70,73, 77,78,80} partition
{1,124+m}. Note that S is sum-dominant because it is a translation of the smallest
sum-dominant set S’ = {0,2,3,4,7,11,12,14}.

Example 5.1. Let m = 21. Set

M, = {71,72}
M, = {67,74,75,76,79}.

We partition {1,145} into the following three sum-dominant sets

Al = L1UO;1 UM UO12 UR]
= {1,2,3,4,8,9,11,13,14,15,20,24} U {25,27,29,...,61}
U {62,71,72,84} U {85,87,...,121}
U {122,126, 131,132,133, 136, 138, 142, 143, 144, 145}
with [A] + A}| — |A] — A =2,

Ay = Ly U0 UMyUOs U RS
= {5,6,7,10,12,16,17,18,19,21, 22,23} U {26, 28, 30, ...,60}
U {63,64,65,67,74,75,76,79,81,82,83} U {86,88,...,120} U {123,124,125}
U {127,128,129, 130, 134, 135, 137, 139, 140, 141}
with [AL + Ap| — [Ay — Ab| =2,

S = {66,68,69,70,73,77,78,80} with |[S + S| — |S — S| = 1.

Example 5.1 proves the upper bound of 145 for R in our Theorem 1.4.

Acknowledgement. I thank the referee for helpful comments on an earlier draft.
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