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Abstract

Beginning in the late 1960s to study the minimum modulus and odd covering
problems of Erdős, Jordan and others investigated analogous problems in Z[i] and
Z[
√
−2]. It is known that distinct coverings exist for Z[i] and Z[

√
−2] and that the

latter has a distinct covering with all moduli having odd norm. We prove similar
results hold more generally in any ring of integers with certain properties. As an
application of our general constructions, we prove that an analogous problem to
that of the unresolved problem of Erdős, the odd covering problem, holds affirma-
tively in infinitely many quadratic integer rings; more precisely, there exist infinitely
many quadratic integer rings possessing a covering system with distinct ideal mod-
uli that have odd norms greater than or equal to 3. All our coverings are explicitly
constructed.

1. Introduction

A covering system of congruences (or more often simply called a covering) for the

rational integers is a finite collection of congruences with the property that every

integer satisfies at least one congruence in the system. More precisely, a covering

for the integers is a finite set {(r1,m1), (r2,m2), . . . , (rt,mt)} for which each integer

n satisfies n ≡ ri (mod mi) for some 1 ≤ i ≤ t.
The notion of coverings has been applied to many problems in number theory.

First introduced by Erdős, who later applied the idea to disprove a century-old

conjecture of de Polignac, Erdős showed there are infinitely many odd integers that

are not of the form 2k + p where p is a prime [8]. This led to related investigations

on sequences of numbers of the form k − 2n, k · 2n ± 1 (so-called Sierpiński [25]

and Riesel [24] numbers), and many more similarly related numbers (cf. [5, 6, 7]).

Related problems involving Fibonacci numbers [20, 21, 22], the Lucas numbers [3],
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and polygonal numbers [1, 2] appear in the literature, too.

A covering system for the integers is called distinct (or incongruent) if all the

moduli mi are distinct and ≥ 1. An example of a distinct covering for the integers

is the set of congruences {(0, 2), (0, 3), (1, 4), (5, 6), (7, 12)}. Erdős asked whether for

any arbitrarily large N there exists a distinct covering system with the minimum

of the moduli ≥ N . Hough [13] solved the problem by answering negatively; that

is, Hough proved there is an (effective) upper bound for the smallest moduli in a

distinct covering.

Erdős offered $25 for a proof of the nonexistence of a distinct covering system

having all odd moduli, while Selfridge offered $900 for an explicit example of such

a covering [12]. It is known that if such a covering system exists, then the least

common multiple of the moduli must have at least 22 distinct prime divisors [11].

Work has been done in the more general setting of the ring of the integers in

a number field rather than the rational integers. Analogous problems to many of

those mentioned above can be studied within this setting, and more rigorous details

will be provided in the next section. Jordan proved that there exists a covering

for the Gaussian integers Z[i] with the moduli being neither units nor associates of

another modulus [17]. Jordan also proved there exists a covering for Z[
√
−2] with

the moduli being neither units nor associates of another modulus and the norm of

all moduli are odd [16]. Within the setting of Z[
√
−2], this answered an analogous

unsolved problem of Erdős on whether or not there exists a covering of the rational

integers having all odd distinct moduli.

Also in Z[
√
−2], an investigation into a problem similar to the minimum modulus

problem of Erdős for rational integers was studied and results were proven showing

for this ring that there exists certain types of coverings where norms of the moduli

are all > 2, > 3 and > 5 [18]. Moreover, the authors offered monetary rewards

for a proof of existence (and proof of nonexistence) of a certain type of covering

for Z[
√
−2] such that the minimum modulus can (or cannot) have arbitrarily large

norm [18]. There is also a monetary award for the analogous problem in Z[i] [18].

A positive, odd integer k is called a Sierpiński number if k2n + 1 is composite

for all positive integers n. In 1962, John Selfridge conjectured that k = 78557

is the smallest Sierpiński number. This conjecture is still unresolved today. The

analogous problem of Selfridge in all rings of integers Q(
√
d) with d < 0 and having

unique factorization was answered by Jones and White [15].

Within this work, we extend some of the aforementioned results of Jordan et al.

We construct various coverings for rings of integers of number fields (with ideals for

moduli). We discuss both the case with general ideals and with principal ideals for

moduli. As an application of our work, we prove that the unresolved odd covering

problem of Erdős holds affirmatively in infinitely many quadratic integer rings; more

precisely, there exist infinitely many quadratic integer rings possessing a covering

system with distinct ideal moduli that have odd norms ≥ 3.
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2. Terminology

For positive integers m, let ζm = e2πi/m. Since ζm is a root of the polynomial xm−1,

one deduces that ζm is an algebraic integer. Also, ζm, ζ
2
m, ζ

3
m, . . . , ζ

m
m are the roots

of xm − 1 and referred to as roots of unity. One refers to ζkm with 1 ≤ k ≤ m and

gcd(k,m) = 1 (of which there are φ(m) choices) as primitive roots of unity since

each is not a root of x` − 1 for any ` < m. It is well known that Z[ζm] is the ring

of integers of Q(ζm).

More generally, suppose K is a finite algebraic extension of Q. It is known that

K = Q(α) for some algebraic number α; that is, K is an algebraic number field (or

simply number field). Let β ∈ K, and suppose that β, β2, β3, . . . , βn (not necessarily

distinct) are the field conjugates of β. The norm of β, denoted by N(β), is often

defined as N(β) = ββ2β3 · · ·βn. Moreover, if f(x) =
∑

0≤j≤m ajx
j is the minimal

polynomial for β, then

N(β) = (−1)na
n/m
0 . (1)

The norm satisfies the property for any β, γ ∈ K = Q(α) that N(βγ) = N(β)N(γ).

Let OK denote the ring of integers for K, and let a denote a nonzero ideal of

OK . The norm of a is N(a) := [OK : a] = |OK/a|. If a = 〈a〉 is a principal ideal,

then N(a) = |N(a)|.
We consider the analogous notion of a covering for OK ; namely, a covering system

of congruences for OK is a set C = {(α1, a1), (α2, a2), . . . , (αt, at)} for which every

element x in OK satisfies x ≡ αi (mod ai) for some 1 ≤ i ≤ t. Similarly, we call

a covering system distinct in OK if the moduli are all different ideals. In the case

where the ideals are principal, this agrees with the definition used by Jordan et

al. that no two of the ideal generators are associates. If the norm for each of the

moduli in C is distinct, that is N(ai) 6= N(aj) for all i 6= j, then we say C is a

distinct-norm covering for OK . Note that the latter is a stronger property, since it

implies no two of the moduli from C are the same.

Another fundamental tool for our proofs is the well-known Chinese remainder

theorem (cf. [19]). We state this, along with notation used within this work.

Lemma 1 (Chinese remainder theorem). Let a1, a2, . . . , an be ideals of a commu-

tative ring with unity R such that ai + aj = R for all i 6= j. Given elements

x1, x2, . . . , xn ∈ R, there exists x ∈ R such that x ≡ xi (mod ai) for all i.

Within this work to help simplify our notation, we denote the congruence class

(x,
∏

1≤i≤n ai) existing via the Chinese remainder theorem by[
(x1, a1), (x2, a2), . . . , (xn, an)

]
=
(
x,

∏
1≤i≤n

ai

)
.

Lastly, we state a rudimentary idea that we will use several times, which allows

one to use some of our constructions to produce covering systems with principal

ideals.
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Proposition 1. If a and b are principal ideals in a commutative ring with unity,

then ab is a principal ideal.

3. Main Results

We are now ready for the results and proofs of the paper. Throughout, we assume

in general that K is a finite algebraic extension of Q with ring of integers OK . The

following result is intended to familiarize the reader with the notions used within

this work and provide a connection between coverings in Z to those in OK .

Theorem 1. If OK has a prime ideal p of norm 2, then it has a distinct-norm

covering system. Moreover, if the ideal p is principal, then all ideals in the covering

are principal.

Proof. Let c be any nonzero ideal that is relatively prime to p having residue classes

represented by γ1, γ2, . . . , γn. The two residue classes modulo p can be represented

by 0 and β1 := 1. Recursively for k ≥ 2, define βk and β′k to be representatives

for the two residue classes modulo pk that lie inside βk−1 modulo pk−1. The set of

congruences

(0, p), (β′2, p
2), . . . , (β′n−1, p

n−1)

is only missing (βn−1, p
n−1), which can be covered by

(γ1, c),
[
(γ2, c), (β1, p)

]
, . . . ,

[
(γn, c), (βn−1, p

n−1)
]
.

Putting together all of these congruences forms a covering. Lastly, it is easily seen

to be a distinct-norm covering upon considering the norms of the ideals. The latter

part of the theorem follows from Proposition 1 with p and c = 〈3〉.

Using Theorem 1, one can deduce immediate results for some cyclotomic fields.

Corollary 1. For any integer n ≥ 1, there exists a distinct-norm covering having

all principal ideals for Z[ζ2n ].

Proof. For n = 1, one easily discovers that Z[ζ2] = Z, which has a distinct covering

as mentioned in the introduction. Now, we deal with n ≥ 2. Let ζ = ζ2n , β = 1+ ζ,

and k = 2n−1. It is well known that the minimal polynomial for ζ2n is xk + 1. By

the fact that f(x) is irreducible if and only if f(x − 1) is irreducible, one deduces

that g(x) := (x − 1)k + 1 is irreducible and has the root β. Therefore, g(x) is the

minimal polynomial for β. By (1), we deduce N(〈β〉) = N(β) = 2. By Theorem 1,

there exists a distinct-norm covering for Z[ζ]. By Theorem 1 with p = 〈β〉, one

finds that all ideal moduli are principal.
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The next theorem pertains to distinct-norm coverings with the norm of each

modulus being ≥ 4.

Theorem 2. If OK has ideals p and b with N(p) = 2 and N(b) = 3, then it has

a distinct-norm covering with the norm of each modulus being ≥ 4. Moreover, if

p and b are principal ideals, then all ideals in the covering are principal.

Proof. Let c be an ideal that is relatively prime to p and b having residue classes

represented by γ1, γ2, . . . , γn. The two residue classes modulo p can be represented

by α1 := 0 and β1 := 1. Recursively, define αk and α′k to be representatives for

the two residue classes modulo pk that lie inside αk−1 modulo pk−1. Recursively,

define βk and β′k to be representatives for the two residue classes modulo pk that lie

inside βk−1 modulo pk−1. Let S denote the covering within the proof of Theorem 1,

namely

(0, p), (β′2, p
2), . . . , (β′n−1, p

n−1)

and

(γ1, c),
[
(γ2, c), (β1, p)

]
, . . . ,

[
(γn, c), (βn−1, p

n−1)
]
.

Let S1 = S \ {(0, p)}, and take note that S1 covers (1, p).

Let S′ denote the similar covering containing the set of congruences:

(1, p), (α′2, p
2), . . . , (α′n−1, p

n−1)

and

(γ1, c),
[
(γ2, c), (α1, p)

]
, . . . ,

[
(γn, c), (αn−1, p

n−1)
]
.

Let S0 = S′ \ {(1, p)}, and take note that S0 covers (0, p).

Again, we construct a covering C for OK . Start by including S1 in C. It suffices

to cover (0, p) to finish the covering. The residue classes modulo b can be represented

by 0, 1, and 2. In addition, (0, p) is equivalent to c1 = [(0, p), (0, b)], [(0, p), (1, b)],

[(0, p), (2, b)]. We include c1 in C. We also include S2 =
⋃
c∈S0

[c, (1, b)], which

covers the second of these. It remains to cover c′ = [(0, p), (2, b)]. Observe that

(2, b) is equivalent to (δ1, b
2), (δ2, b

2), and (δ3, b
2) for some δ1, δ2, δ3; therefore, c′

is equivalent to the union of classes

c2 =
[
(0, p), (δ1, b

2)
]
,
[
(0, p), (δ2, b

2)
]
, and

[
(0, p), (δ3, b

2)
]
.

We include c2 in C, and the second is contained in c3 = (δ2, b
2), which we also

include. The third is contained in S3 =
⋃
c∈S0

[c, (δ3, b
2)]. All together, C consists

of the congruences c1, c2, c3 and the sets of congruences S1, S2, S3.

The norms of the ideals in the first three classes are 2·3, 2·32, and 32, respectively.

For k ∈ {1, 2, 3}, the norms of the ideals in Sk are 2i3k−1 with 2 ≤ i ≤ n − 1 and

2j3k−1n with 0 ≤ j ≤ n− 1. The integer n is relatively prime to 2 and 3 by choice

of c; thus, all ideals have distinct norms. For the latter part of the theorem, one need

only pick c to be principal at the beginning of the proof and use Proposition 1.
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Our upcoming results for quadratic integer rings utilize the following lemma.

Within certain quadratic integer rings, the lemma provides necessary conditions for

an element and its conjugate to not be associates.

Lemma 2. Let n 6= ±1 be an odd squarefree integer. Also, let d ≡ 2, 3 (mod 4)

be squarefree with gcd(d, n) = 1. If there exists γ := a + b
√
d ∈ Z[

√
d] having

norm n, then 〈γi〉+ 〈γ̄j〉 = Z[
√
d] and γi and γ̄j are not associates for any i, j ≥ 1.

Moreover, both 〈γi〉+ 〈2j〉 and 〈γ̄i〉+ 〈2j〉 equal Z[
√
d] for any i, j ≥ 1.

Proof. Suppose γ := a + b
√
d ∈ Z[

√
d] and N(γ) = a2 − b2d = n. Since n

is squarefree, notice that gcd(a, b) = 1. Since gcd(d, n) = 1, one deduces that

gcd(a, n) = gcd(b, n) = 1, too. Let I denote 〈γ〉+ 〈γ̄〉. Note that
√
d(γ − γ̄) = 2bd

and n are in I. Since gcd(2bd, n) = 1; we deduce that I = Z[
√
d], from which it

follows that gcd(γ, γ̄) = 1 in Z[
√
d]. Thus, for α := γi and β := γ̄j with i, j ≥ 1, one

has that gcd(α, β) = 1 in Z[
√
d] and there exists x, y ∈ Z[

√
d] such that αx+βy = 1.

If α and β were associates, then there exists a unit u ∈ Z[
√
d] such that α = βu.

Thus, α(ux + y) = αux + βuy = u implying α must be a unit. But, N(α) 6= ±1;

therefore, it follows that α and β are not associates. Lastly, since each of 〈γi〉 and

〈γ̄i〉 contain N(γi) = ni and 〈2j〉 contains 2j , one easily deduces for any positive

integers i and j that 〈γi〉+ 〈2j〉 and 〈γ̄i〉+ 〈2j〉 equal Z[
√
d].

In 1931, using the Möbius inversion formula, Estermann [9] calculated an asymp-

totic density for the number of squarefree integers of the form n2 +D with D fixed.

Just two years later, the result of Estermann was generalized to general quadratic

polynomials by Ricci [23]. More recently, further results were obtained uniformly

in D as well [10]. We state a specific result that follows from Ricci’s work.

Lemma 3. Let a, D, and b be integers with a and D nonzero. If f(n) = (an+b)2+D

is irreducible and has no fixed square divisor, then the number of positive integers

n ≤ N such that f(n) is squarefree is asymptotic to cN where c is a positive constant

depending on a and b.

In what follows, we will use the previous lemmas along with our results applying

to a general ring of integers OK to deduce consequences for quadratic extensions.

We are now ready for the first such result. We show how Lemma 3 together with

Theorem 1 provides us with the following consequence.

Corollary 2. For infinitely many squarefree d, the ring of integers in Q(
√
d)

possesses a distinct-norm covering having all principal ideals.

Proof. By Lemma 3 there exists infinitely many squarefree d ≡ 2, 3 (mod 4) such

that d = n2 − 2 for some positive integer n. Recall for such d that N(a + b
√
d) =

a2 − db2; therefore, the element n+
√
d has norm 2 for such d. By Theorem 1 with

p = 〈n+
√
d〉, one finds that all ideal moduli are principal.
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In other words, Corollary 2 follows from the fact that there exists infinitely many

rings of integers Z[
√
d] (with d ≡ 2, 3 (mod 4)) possessing an element of norm 2.

Theorem 1 can be used to produce coverings whenever the ring of integers Z[
√
d]

has an ideal with norm 2. The rest of this work focuses on the existence of various

types of coverings with the norm of each modulus being ≥ 3.

The next theorem should be compared to Jordan and Schneider’s [18]. To show

that Z[
√
−2] has a distinct covering with each moduli having norm ≥ 3, they use

that Z[
√
−2] possesses an ideal having norm 2 and two distinct ideals having norm 3.

It is easy to generalize their result. Indeed, suppose b, p, p̄ are ideals in OK such

that N(b) = 2, N(p) = N(p̄) = 3, and p + p̄ = OK . Also, suppose that 0 and β are

coset representatives for OK modulo b2 that lie inside (0, b). Then, the following

forms a covering for OK :

(0, p), (0, p̄),
[
(1, p), (1, p̄)

]
,
[
(1, b) (2, p)

]
,
[
(0, b), (2, p̄)

]
, (0, b2),

[
(β, b2), (2, p)

]
,[

(1, b), (1, p), (2, p̄)
]

The next result replaces the assumption that OK has an ideal with norm 2.

Theorem 3. If OK has ideals p and p̄ of norm 3 such that p + p̄ = OK and an

ideal q of norm 4, then it has a distinct covering with the norm of each modulus

being ≥ 3. Moreover, if p, p̄, and q are principal ideals, then all ideals in the

covering are principal.

Proof. The goal will be to construct a distinct covering for the ring of integers OK ,

which we label C = ∪1≤i≤18ci where each ci is a particular congruence class in OK .

Since p+ p̄ = OK , one has that pi+ p̄j = OK for all i, j ≥ 1. In addition, pi+qj and

p̄i + qj equal OK for all i, j ≥ 1. Therefore, take note for all our congruence classes

in C of the form [(a, a), (b, b)] and of the form [(a, a), (b, b), (c, c)] found below, we

remark that one may apply the Chinese remainder theorem to deduce that the

moduli are ab and abc, respectively.

The construction of the covering C begins by using the fact that both p and p̄ have

three cosets that may be represented by 0, 1, and 2. First, include c1 = (2, p) in C,

which leaves (0, p) and (1, p) to be covered. The congruence class (1, p) is equivalent

to the union of [(1, p), (0, p̄)], [(1, p), (1, p̄)], and [(1, p), (2, p̄)]. By including in C the

second of these c2 = [(1, p), (1, p̄)] and c3 = (2, p̄), which contains the latter of these,

it remains to cover (0, p) and [(1, p), (0, p̄)].

Since (1, p) is equivalent to the union of classes (α1, p
2), (α2, p

2), and (α3, p
2) for

some α1, α2, α3, observe [(1, p), (0, p̄)] is equivalent to the union of classes

[(α1, p
2), (0, p̄)], [(α2, p

2), (0, p̄)], and [(α3, p
2), (0, p̄)].

Again by including in C the second of these c4 = [(α2, p
2), (0, p̄)] and c5 = [(α3, p

2)],

which contains the latter of these, it remains to cover (0, p) and c′ = [(α1, p
2), (0, p̄)].
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Now, note that OK modulo q has four congruence classes represented by some

β1, β2, β3, β4 in OK . The class c′ is equivalent to the union of classes

c6 = [c′, (β1, q)], [c′, (β2, q)], [c′, (β3, q)], and [c′, (β4, q)].

The second of these is contained in c7 = [(α1, p
2), (β2, q)], the third is contained in

c8 = [(0, p̄), (β3, q)], and the latter of these is contained in c9 = (β4, q). By including

c6, c7, c8, and c9 in C, it remains to cover (0, p).

Similarly, the congruence class (0, p) is equivalent to the union of classes

[(0, p), (β1, q)], c10 = [(0, p), (β2, q)], [(0, p), (β3, q)], and [(0, p), (β4, q)].

The class (β4, q) is already in the covering C, and covers the last class in the

list. Let c11 = [(0, p), (1, p̄), (β3, q)] in C. This class c11 together with (2, p̄) and

[(0, p̄), (β3, q)], which are already in C, cover the third class in the list [(0, p), (β3, q)].

It remains to cover c′′ = [(0, p), (β1, q)], which is equivalent to the union of

[c′′, (0, p̄)], [c′′, (1, p̄)], and [c′′, (2, p̄)]. The class (2, p̄) is already in C and covers the

third class in that list. Note that (1, p̄) is equivalent to the union of (γ1, p̄
2), (γ2, p̄

2),

and (γ3, p̄
2) for some γ1, γ2, γ3. Thus, the second class [c′′, (1, p̄)] is contained in the

union of c12 = [(0, p), (γ1, p̄
2)], c13 = [(β1, q), (γ2, p̄

2)], and c14 = (γ3, p̄
2). It remains

to cover the first class c′′′ = [c′′, (0, p̄)] = [(0, p), (0, p̄), (β1, q)]. Note that (β1, q) is

equivalent to the union of (δ1, q
2), (δ2, q

2), (δ3, q
2), and (δ4, q

2) for some δ1, δ2, δ3, δ4
in OK . Thus, c′′′ is contained in the union of c15 = [(0, p), (δ1, q

2)], c16 = (δ2, q
2),

c17 = [(0, p̄), (δ3, q
2)], and c18 = [(0, p), (0, p̄), (δ4, q

2)]. All together, the union of

congruences C forms a covering for OK .

Among the 18 moduli, it is easy to see that the moduli are all distinct and the

norm of each modulus is ≥ 3. By Proposition 1, if p, p̄, and q are principal ideals

in OK , then the latter part of the theorem holds, since all ideals are generated by

the pairwise relatively prime ideals p, p̄, and q.

For any integer A that is odd, let d := A2 − 3 ≡ 2 (mod 4). Thus, the ring of

integers Z[
√
d] has an element A +

√
d that has norm 3. If in addition A is not

divisible by 3, then d will not be divisible by 3. In other words, if A ≡ 1, 5 (mod 6),

then the ring of integers Z[
√
d] has the elements A +

√
d and A −

√
d, which have

norm 3. By Lemma 3 with a = 6, b ∈ {1, 5}, and D = −3, (where A = an + b)

there are infinitely many such d that are squarefree. By Lemma 2, A+
√
d and its

conjugate are not associates, and the ideals generated by each are relatively prime.

Therefore, there are infinitely many squarefree d such that Z[
√
d] possesses two

distinct principal ideals with norm 3. The ideal generated by 2, namely 〈2〉, has

norm 4 in Z[
√
d]. Hence, the next corollary follows from Theorem 3.

Corollary 3. For infinitely many squarefree d, the ring of integers in Q(
√
d) has

a distinct covering such that each modulus is a principal ideal with norm ≥ 3.
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A longstanding open problem of Erdős is whether or not a distinct covering for

the rational integers exists with all odd moduli. The main motivation of the next

theorem is to study this within the setting of OK . As a consequence of the next

theorem, we prove for infinitely many squarefree d that the ring of integers in Q(
√
d)

has such a covering. The proof for the following theorem will be similar to that of

Theorem 3 in many ways, and the notable difference from Theorem 3 is that it is

possible to form a distinct covering for OK also with all moduli having odd norms.

Theorem 4. If OK has ideals p and p̄ of norm 3 such that p + p̄ = OK and has

ideals q and q̄ of norm 5 such that q + q̄ = OK , then it has a distinct covering

with the norm of each modulus being ≥ 3 and odd. Moreover, if p, p̄, q, and q̄ are

principal ideals, then all ideals in the covering are principal.

Proof. We label C = ∪1≤i≤23ci where each ci is a particular congruence class in OK
to be described below. Under the given assumptions, notice that ik+ j` = OK for all

k, ` ≥ 1 and i, j ∈ {p, p̄, q, q̄} with i 6= j. Hence, for all our congruence classes in C of

the form [(a, a), (b, b)] and of the form [(a, a), (b, b), (c, c)] found below, we remark

that one may apply the Chinese remainder theorem to deduce that the moduli are

ab and abc, respectively.

The construction of the covering C begins by using the fact that both p and p̄

have three congruence classes that may be represented by 0, 1, and 2. Likewise,

congruence classes of both q and q̄ may be represented by 0, 1, 2, 3, and 4.

First, include c1 = (2, p) in C. The congruence class (1, p) is equivalent to the

union of [(1, p), (0, p̄)], [(1, p), (1, p̄)], and [(1, p), (2, p̄)]. By including in C the last of

these c2 = [(1, p), (2, p̄)] and c3 = (0, p̄), which contains the first of these, it remains

to cover (0, p) and [(1, p), (1, p̄)].

Since (1, p) is equivalent to the union of classes (α1, p
2), (α2, p

2), and (α3, p
2) for

some α1, α2, α3 in OK , observe [(1, p), (1, p̄)] is equivalent to the union of classes

[(α1, p
2), (1, p̄)], [(α2, p

2), (1, p̄)], and [(α3, p
2), (1, p̄)].

Again, by including in C the first of these, c4 = [(α1, p
2), (1, p̄)], and c5 = [(α2, p

2)],

which contains the second of these, it remains to cover (0, p) and [(α3, p
2), (1, p̄)].

Now, note that c′ = [(α3, p
2), (1, p̄)] is contained in the union of classes

[c′, (0, q)], [c′, (1, q)], [c′, (2, q)], [c′, (3, q)], and [c′, (4, q)].

Since (α3, p
2) is contained in (1, p), the second in the list of congruences is contained

in [(1, p), (1, q)]. The latter list of five congruences are all covered, respectively, by

c6 = (0, q), c7 = [(1, p), (1, q)], c8 = [(α3, p
2), (2, q)],

c9 = [(1, p̄), (3, q)], and c10 = [(α3, p
2), (1, p̄), (4, q)].
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It remains to cover (0, p), which is equivalent to the union of [(0, p), (0, p̄)],

[(0, p), (1, p̄)], and [(0, p), (2, p̄)]. The first of these is included in the congruence

class c3, so we need only consider the other two to finish the covering C.

Note that (1, p̄) is equivalent to the union of classes (ᾱ1, p̄
2), (ᾱ2, p̄

2), and (ᾱ3, p̄
2)

for some ᾱ1, ᾱ2, ᾱ3. Observe the class [(0, p), (1, p̄)] is equivalent to the union of

classes [(0, p), (ᾱ1, p̄
2)], [(0, p), (ᾱ2, p̄

2)], and [(0, p), (ᾱ3, p̄
2)]. The first and second

are contained in c11 = (ᾱ1, p̄
2) and c12 = [(0, p), (ᾱ2, p̄

2)], respectively. The third,

c′′ = [(0, p), (ᾱ3, p̄
2)], can be written as the union of classes

[c′′, (0, q)], [c′′, (1, q)], [c′′, (2, q)], [c′′, (3, q)], and [c′′, (4, q)].

The first is a subset of c6. The second and third classes are subsets of c13 =

[(0, p), (1, p̄), (1, q)] and c14 = [(ᾱ3, p̄
2), (2, q)], respectively. The fourth is a subset

of c9. The fifth, c15 = [c′′, (4, q)], is included in C.

It remains to cover c′′′ = [(0, p), (2, p̄)], which is the union of classes

[c′′′, (0, q̄)], [c′′′, (1, q̄)], [c′′′, (2, q̄)], [c′′′, (3, q̄)], and [c′′′, (4, q̄)].

The first four of those classes are contained in c16 = (0, q̄), c17 = [(0, p), (1, q̄)],

c18 = [(2, p̄), (2, q̄)], and c19 = [c′′′, (3, q̄)], respectively. The last of these classes,

c(4) = [(0, p), (2, p̄), (4, q̄)], is equivalent to

[c(4), (0, q)], [c(4), (1, q)], [c(4), (2, q)], [c(4), (3, q)], and c20 = [c(4), (4, q)].

The first is contained in c6. The next three are contained in c21 = [(4, q̄), (1, q)],

c22 = [(0, p), (4, q̄), (2, q)], and c23 = [(2, p̄), (4, q̄), (3, q)], respectively. The last is

included in C. All together, this completes the covering of OK . Table 1 consists of

these moduli and their corresponding norms. Among the moduli in C, it is easy to

see that they are all distinct and have odd norm ≥ 3. By Proposition 1, if p, p̄, q,

and q̄ are principal ideals in OK , then the latter part of the theorem holds.

N(a) ci in C modulus in ci, respectively
3 c1, c3 p, p̄
5 c6, c16 q, q̄
9 c2, c5, c11 pp̄, p2, p̄2

15 c7, c9, c17, c18 pq, p̄q, pq̄, p̄q̄
25 c21 qq̄
27 c4, c12 p2p̄, pp̄2

45 c8, c13, c14, c19 p2q, pp̄q, p̄2q, pp̄q̄
75 c22, c23 pqq̄, p̄qq̄

135 c10, c15 p2p̄q, pp̄2q
225 c20 pp̄qq̄

Table 1: Moduli for congruences in C
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Before proceeding, we quickly recall some algebraic number theory facts (cf. [4]).

Fix a squarefree integer d. Let D = d if d ≡ 1 (mod 4) and D = 4d otherwise.

Define the function χ = χd on integers m such that gcd(m,D) = 1 by

χ(m) =



(m
|d|

)
for d ≡ 1 (mod 4)

(−1)(m−1)/2
(m
|d|

)
for d ≡ 3 (mod 4)

(−1)[(m
2−1)/8]+[(m−1)/2]·[(d′−1)/2]

( m
|d′|

)
for d = 2d′

where (ab ) denotes the Jacobi symbol. The function χ is a completely multiplicative

map (that is, χ(mn) = χ(m)χ(n) whenever gcd(m,D) = gcd(n,D) = 1). Let

K = Q(
√
d). If p is a rational prime, then it is known how 〈p〉 factors into prime

ideals in OK , in particular

if χ(p) = 1 then 〈p〉 = i i′, i 6= i′, N(i) = N(i′) = p.

There are infinitely many squarefree d such that OK possesses distinct ideals p, p̄, q,

and q̄ with N(p) = N(p̄) = 3 and N(q) = N(q̄) = 5. For example, consider primes

d ≡ 1, 31 (mod 60). For each such d, χ(3) = χ(5) = 1. Applying Theorem 4 to

such rings of integers, we deduce the following result.

Corollary 4. For infinitely many squarefree d, the ring of integers in Q(
√
d) has

a distinct covering with the norm of each modulus being ≥ 3 and odd.

Similarly, for primes d with d ≡ 1 (mod 24), D = d and χ(2) = χ(3) = 1. Then,

one can apply Theorem 2 to deduce the following result.

Corollary 5. For infinitely many squarefree d, the ring of integers in Q(
√
d) has

a distinct-norm covering with the norm of each modulus being ≥ 4.

4. Conclusion and Conjectures

According to the Cohen-Lenstra heuristic, it is expected that infinitely many of the

primes p (> 0.75 of the primes) satisfy the condition that Q(
√
p) has ring of integers

with class number one [14], or equivalently, the ring of integers of Q(
√
p) is a princi-

pal ideal domain for infinitely many primes p. Thus, we conclude with the following

two conjectures having the same implications as Corollary 4 and Corollary 5 along

with the additional implication that the ideal moduli are all principal.

Conjecture 1. For infinitely many squarefree d, the ring of integers in Q(
√
d) has

a distinct covering with each modulus a principal ideal having odd norm ≥ 3.

Conjecture 2. For infinitely many squarefree d, the ring of integers in Q(
√
d) has

a distinct-norm covering with each modulus a principal ideal having norm ≥ 4.
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