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Abstract
We present identities and inequalities for sums involving the partial sums of binomial
coe�cients. One of our results states that
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(n = 0, 1, 2, . . . ),
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Tn�1 + Tn+1
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(n = 1, 2, 3, . . . )

and
Tm + Tn  Tm+n (m,n = 0, 1, 2, . . . )

with equality if and only if m = 0 or n = 0.

1. Introduction and Statement of Main Results

In 1994, Calkin [2] presented an interesting identity of sums of powers of the partial
sums of binomial coe�cients:
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This result attracted the attention of several mathematicians who discovered new
proofs as well as various extensions and variants of (1). We refer to [3], [5], [13],
[16] and the references cited therein.
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Our work is inspired by three remarkable papers published by Hirschhorn [6],
Wang and Zhang [12] and Zhang [14]. Among others, these authors o↵ered identities
for the following sums which are related to Calkin’s sum given in (1):
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They proved that for n � 1 we have

An = (n + 2)2n�1, A⇤n = (�1)n2n�1, (2)
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With regard to these identities it is natural to ask for similar results for the
alternating sums
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The problem to find a corresponding identity for D⇤
n is a bit more di�cult. Our

first theorem presents the solution.
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Theorem 1. For all natural numbers n we have
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In what follows, we study the four sums which we obtain from An, A⇤n, Cn and
C⇤

n by inserting the factor
�n
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�
behind the first summation sign, that is,
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We show that each of the four sums can be expressed in terms of the central binomial
coe�cient

�2N
N

�
. The next result o↵ers counterparts of the two identities given in

(2).

Theorem 2. For all nonnegative integers n we have

Sn = 22n�1 +
1
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and
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The following theorem provides counterparts of (6) and (8).

Theorem 3. For all nonnegative integers n we have
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From (3), (7), (11) and (14) we conclude that the sums Bn, Dn, Sn and Tn are
connected by the identities

Sn �
1
n

Tn =
Bn + Tn

3n + 4
=

2Dn � (n� 1)Bn

n2 + 3n + 4
= 4n�1 (n = 1, 2, 3, . . . ).

Identities for sums and their alternating relatives can be used to obtain identities
for sums, where the summation index runs over only even and over only odd integers,
respectively. For example, from (11), (12) and (13) we get
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We apply (11) and (14) to prove that the sequences (Sn)n�0 and (Tn)n�0 satisfy
certain convexity/concavity and superadditive properties.

Theorem 4. The sequence (Sn)n�0 is strictly log-convex, that is, we have

Sn <
p

Sn�1Sn+1 (n = 1, 2, 3, . . . ). (17)

Moreover, (log Sn)n�0 is superadditive, that is,

SmSn  Sm+n (m,n = 0, 1, 2, . . . ). (18)

Equality holds in (18) if and only if m = 0 or n = 0.

We show next that Tn separates the geometric and arithmetic means of Tn�1

and Tn+1.

Theorem 5. The sequence (Tn)n�0 is strictly log-concave, strictly convex and su-
peradditive, that is, we have

p
Tn�1Tn+1 < Tn <

Tn�1 + Tn+1

2
(n = 1, 2, 3, . . . ) (19)

and
Tm + Tn  Tm+n (m,n = 0, 1, 2, . . . ). (20)

Equality holds in (20) if and only if m = 0 or n = 0.
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From (17)—(20) we conclude that the following double-inequalities are valid for
all n � 1:

S2
n < Sn�1Sn+1  S2n and 2Tn < Tn�1 + Tn+1  T2n.

The sign of equality is valid if and only if n = 1.
In the next section, we establish the identities presented in Theorems 1, 2 and

3. In Section 3, we collect a few lemmas which we need to prove the inequalities
(17)—(20). The proofs of Theorems 4 and 5 are given in Section 4. Throughout,
we maintain the notations introduced in this section.

2. Proofs of Theorems 1, 2, and 3

In order to prove the identities for D⇤
n, Sn, S⇤n and Tn we use an elementary unified

approach, whereas the proof of the identity for T ⇤n makes use of techniques from
Complex Analysis. More precisely, we apply an integral formula given by Hautus
and Klarner [4] in 1971. We remark that the Hautus–Klarner method can also be
applied to establish the other identities.

To prove Theorem 1 we need the identities (15) and (16) stated in Theorem 3.
Therefore, first we establish Theorems 2 and 3.

Proofs of (11), (12), (13) and (14). Let k � 0 and n � 0 be integers. We define
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we find
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Moreover, we have
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Applying these relations we obtain

Yn+1 =
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We consider three cases.
Case 1. �k = 1.
Then,
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Applying (21) and (22) gives

Sn = 2Bn �
1
2
Bn+1 + 3 · 22n�1. (23)

From (3) and (23) we conclude that (11) is valid.
Case 2. �k = (�1)k.
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We apply (4), (5) and (25). This yields (12) and (13).
Case 3. �k = k.
Then,
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Finally, we apply (13), (17) and (27). This leads to (14).
Proofs of (15) and (16). We define
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In what follows, we assume that x, y, z are su�ciently small real numbers. Let
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+

a
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1
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=
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.

Let
fz(s) =

1
s
F (s, z/s) = � (s� 1)(s� 2z � 1)s2

�
s2 � (2z + 1)s + z

�2 .
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The function fz has double poles at

s1 = z +
1
2

+
1
2

p
4z2 + 1 and s2 = z +

1
2
� 1

2

p
4z2 + 1.

A theorem of Hautus and Klarner [4] states that

1
2⇡i

Z

C
fz(s)ds =

1X

n=0

T ⇤n,nzn, (28)

and from the residue theorem we obtain
1

2⇡i

Z

C
fz(s)ds = Ress=s2fz(s). (29)

Here, C is a positively oriented circle with center s2 and su�ciently small radius.
We set cn = 4n

��3/2
n

�
. Then,

Ress=s2fz(s) =
z(8z3 + 2z � 1)

(4z2 + 1)3/2
� z

= 8
1X
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(30)

We have T ⇤n = T ⇤n,n, so that (28), (29) and (30) yield

T ⇤0 = 0, T ⇤2n = 2(cn�1 + 4cn�2) = (�1)n�12
✓

2n� 2
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◆
(n = 1, 2, 3, . . . )

and

T ⇤1 = �2, T ⇤2n+1 = �cn = (�1)n�1(2n + 1)
✓

2n
n

◆
(n = 1, 2, 3, . . . ).

This leads to (15) and (16).
Proofs of (9) and (10). From (21) with �k = (�1)kk we obtain

T ⇤n = �1
2
B⇤

n + D⇤
n �

1
2
D⇤

n+1 + (�1)n+13(n + 1)22n�1. (31)

Since
Xk,n+1 = 2Xk,n �

✓
n

k

◆
,

we get
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nX

k=0
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✓
4X2
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✓

n
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✓
n

k
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where

Rn =
nX

k=0

(�1)kk

✓
n
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◆2

.

The sum Rn can be expressed in terms of the classical Legendre polynomials Pn:

Rn = (�1)n2n�1
�
nPn(0) + P 0

n(0)
�
;

see [8, section 1.2.7]. We obtain

Rn = (�1)n/2 n

2

✓
n

n/2

◆
, if n is even, (33)

Rn = (�1)(n+1)/2n

✓
n� 1

(n� 1)/2

◆
, if n is odd. (34)

Next, we replace in (31) D⇤
n+1 by the expression given in (32) and find

D⇤
n = T ⇤n �

1
2
B⇤

n �
1
2
Rn + (�1)n(n + 1)22n�1. (35)

Finally, we use (4), (5), (15), (16), (33) and (34). Then we conclude from (35) that
(9) and (10) are valid.

3. Lemmas

Our first lemma o↵ers a known property of log-convex functions; see [11, p. 19].

Lemma 1. If f is log-convex and g is strictly log-convex, then f + g is strictly
log-convex.

Remark. If f and g are twice di↵erentiable, then Lemma 1 can be proved by using
the formula

�
log(f + g)

�00 =
f(log f)00

f + g
+

g(log g)00

f + g
+

(fg0 � f 0g)2

fg(f + g)2
.

The following elegant functional inequality for convex functions is due to Petrović
[10]; see also [9, section 1.4.7].

Lemma 2. Let f be strictly convex on [0,1). Then, for x, y � 0,

f(x) + f(y)  f(0) + f(x + y).

Equality holds if and only if x = 0 or y = 0.

The next lemma collects a few basic properties of the logarithmic derivative of
Euler’s gamma function,  = �0/�; see [1, chapter 6].
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Lemma 3. Let x > 0. Then,

 (x + 1) =  (x) +
1
x

,  (2x) =
1
2
 (x) +

1
2
 (x + 1/2) + log 2,

(�1)n+1 (n)(x) =
Z 1

0
e�xt tn

1� e�t
dt (n = 1, 2, 3, . . . ).

4. Proofs of Theorems 4 and 5

Proof of Theorem 4. Let

u(x) = 22x�1 and v(x) =
�(2x + 1)
2�(x + 1)2

. (36)

Applying Lemma 3 gives for x > 0,

d2

dx2
log v(x) =  0(x + 1/2)�  0(x) +

1
x2

=
Z 1

0
e�(x+1/2)t t

1� e�t
dt�

Z 1

0
e�xt t

1� e�t
dt +

Z 1

0
e�xttdt

=
Z 1

0
e�xt t

et/2 + 1
dt > 0.

(37)

Since u is log-convex on [0,1), we conclude from Lemma 1 that

w(x) = u(x) + v(x) = 22x�1 +
�(2x + 1)
2�(x + 1)2

is strictly log-convex on [0,1). An application of Jensen’s inequality yields

log w(n) <
1
2
�
log w(n� 1) + log w(n + 1)

�
(n = 1, 2, 3, . . . )

and Lemma 2 gives

log w(m)+ log w(n)  log w(0)+ log w(m+n) = log w(m+n) (m,n = 0, 1, 2, . . . )

with equality if and only if m = 0 or n = 0. From (11) we obtain that for all integers
n � 0 we have w(n) = Sn. This implies that (17) and (18) are valid.

Proof of Theorem 5. (i) First, we prove that (Tn)n�0 is strictly log-concave.
Using (14) yields for n � 1,

Tn+1

Tn
= 4

⇣
1 +

1
n + 1/�n

⌘
(38)
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with
�n =

1
n

⇣
1 +

4n

�2n
n

�
⌘
.

Let x > 0. We define
✓(x) =

4x�(x)�(x + 1)
�(2x + 1)

.

Applying Lemma 3 gives

d

dx
log ✓(x) =  (x)�  (x + 1/2) < 0.

Since
�n =

1
n

+ ✓(n), (n = 1, 2, 3, . . . ),

we conclude that (�n)n�1 is strictly decreasing. From (38) we obtain that (Tn+1/Tn)n�1

is strictly decreasing. Thus, for n � 2,

Tn+1

Tn
<

Tn

Tn�1
.

This implies that the left-hand side of (19) is valid for n � 2. By direct computation
we obtain that this is also true for n = 1.

(ii) In order to prove that (Tn)n�0 is strictly convex, we define

G(x) = xh(x)

with
h(x) = 22x�2 + v(x),

where v is defined in (36). We have

G00(x) = 2h0(x) + xh00(x). (39)

An application of Lemma 3 and (37) gives for x � 0,

h0(x) = (log 2)22x�1 + 2v(x)
⇥
 (2x + 1)�  (x + 1)

⇤
> 0

and
h00(x) = (log 2)24x + v(x)(log v(x))00 +

1
v(x)

�
v0(x)

�2
> 0.

From (39) we conclude that G is strictly convex on [0,1). Using (14) shows that
G(n) = Tn for all integers n � 0, so that an application of Jensen’s inequality
reveals that the right-hand side of (19) holds.

(iii) We apply Lemma 2 with f = G. Since G(0) = 0, we obtain for all integers
m,n � 0,

Tm + Tn = G(m) + G(n)  G(m + n) = Tm+n

with equality if and only if m = 0 or n = 0.
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5. Concluding Remark

R. Tauraso kindly informed us that Zhang [15] studied identities for two general
classes of combinatorial sums, namely,

nX

k=0

fk

kX

j=0

✓
n

j

◆
gj and

nX

k=0

fk

✓ kX

j=0

✓
n

j

◆
gj

◆2

,

where fk and gk (k = 0, 1, . . . , n) are real numbers. The proof of his identities is
based upon an elegant application of MacMahon’s Omega operator calculus; see [7].
As special cases of his results he obtained the identities (8), (10) and (13).

References

[1] M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, Dover, New York, 1965.

[2] N.J. Calkin, A curious binomial identity, Discrete Math. 131 (1994), 335–337.

[3] H. Feng, Z. Zhang, Combinatorial proofs of identities of Calkin and Hirschhorn, Discrete
Math. 277 (2004), 287–294.

[4] M.L.J. Hautus, D.A. Klarner, The diagonal of a double power series, Duke Math. J. 38
(1971), 229–235.

[5] B. He, Some identities involving the partial sum of q-binomial coe�cients, Electron J. Com-
bin. 21(3) (2014), #P3.17.

[6] M. Hirschhorn, Calkin’s binomial identity, Discrete Math. 159 (1996), 273–278.

[7] P.A. MacMahon, Combinatory Analysis, 2 vols., Cambridge Univ. Press, Cambridge, 1915-
1916.
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