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Abstract
Let g(n) be the number of ordered factorizations of n into parts greater than 1. We
establish a new upper bound on the number of numbers in the range of g which do
not exceed x. This work improves a theorem of Klazar and Luca and closely follows
a proof of Balasubramanian and Srivastav.

1. Introduction

Let f(n) and g(n) be the number of unordered and ordered factorizations of the
integer n into parts greater than 1. These functions were first studied by Oppenheim
and Kalmdr, respectively [9, 5], who showed that

1 zexp(2vlogx)
> fn)~ 5 NS

n<z
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where ( refers to the Riemann zeta function and s = p &~ 1.73 is the unique solution
to the equation ¢((s) =2 in (1, 00).
Define F(z) and G(z) to be the sets of n < x which lie in the ranges of f and g,
ie.,

Flz) = f(Zy) N [1, 2],

G(x) = g(Zy) N1, x].
Multiple people have found upper bounds for #F(x). Canfield, Erdés, and Pomer-
ance [3] stated (without proof) that #F(z) = 2°). Luca, Mukhopadhyay, and
Srinivas [8] later showed that

4F(z) = exp (0 (W)) ,

logy
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where log;, x refers to the kth fold iterate of the logarithm. Soon afterward, Bala-
subramanian and Luca [1] proved that

#F(x) < exp(9(log )*/?)

for all z > 1. More recently, Balasubramanian and Srivastav [2] showed that

#.7:()<exp<1+o 27\/7“10gm>
log,

Through a slight modification of their proof, the author [7, Section 8] reduced the
constant in the exponent, obtaining

#F(z) < exp <(1 Fo(1)ry/3, [ 1082 ) .

logy x

In addition, Balasubramanian and Srivastav conjecture that a bound of this type
is optimal in the sense that there exists a positive constant C' such that

logy

4F(z) > exp ((C L o(1)), [ 282 ) .

As for #G(z), Klazar and Luca [6, Proposition 5.7] proved that

#g()<exp<1+o @\/ﬂ>

The proofs of the last two upper bounds on #F(z) rely entirely on a lower bound
for f(n). Because g(n) > f(n) for all n, this observation serves as a simple proof
that

#G(x) < exp ((1 To(1)rV3 | 2B ) .

logy
Using a method similar to that of [2], we obtain a better upper bound for #G(z).
Theorem 1. We have

#G(2) < exp <<1+o< T fg”) .

2. Preliminary Results

Let n = pi* - - p%. For notational convenience, we let & be the vector (ay, ..., a;).
In order to obtain their bound on #JF(z), Balasubramanian and Srivastav proved
the following result.
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Theorem 2 ([2, Proposition 2.7]). Let z = z(a) be the unique positive solution to

the equation
T

110+,

i=1
and N = |z]. We have

N—2 T 1 N\ @it (1/2)
> 14+ 2 .
O ( n a,»>

In addition, if f(n) <z, then

log x

r<(2+ 0(1))10g2 ~-

Deléglise, Hernane, and Nicolas provide a similar lower bound for g(n). Let Q(n)
be the number of (not necessarily distinct) prime factors of n.

Theorem 3 ([4, Egs. (3.1), (3.26)]). Let ¢ = c(a) be the unique solution to the

equation
T
I1 (1 + &) — 2.
c

i=1

Then,

T (e 7]
1 c ‘
Q — 14+ = .
g(m) > vam ][ - a-( +ai>
=1
We also write three lemmas for future use.
Lemma 1. If g(n) <z, then

log x

r<(1+o(1 :
logy

Proof. In order to maximize r, we assume n is squarefree. If n = py---p,, then

g(n) > r! because we can express n as a product of primes in exactly r! ways.

Because r! < x, we have

1 log x

r < (14 o O

logy =

From [2, Eq. (2.9)], the following result holds for all n satisfying f(n) < z.
Because f(n) < g(n), it holds when g(n) < x as well.

Lemma 2. If g(n) <z, then a; < (logx)? for all i.

Using this result, we bound the sum of log ;.
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Lemma 3. If g(n) <z, then

Z log a; = o(log ).

i=1
Proof. Fix a large number M which we determine more precisely later. Let &1 be

the set of ¢ < r satisfying a; > M and Ss the set of all other 7. For all n € §1, we
have

g(n) > g(p” - plfs,)-

In this case,

which implies that

T U#ES — 1
By Theorem 3,

#S1 1 M
z>gn)>[] i (1 + S 1) = exp((1 + o(1)) M (#81) log(#51)).-

i=1

Fix € > 0. Letting M = (log z)¢ gives us
#81 = o((logz)* 7).

We bound our desired sum on #8;. By the previous lemma, we have a; < (log x)?
for all ¢. Therefore,

Z log a; < Z logy = o((log z)' ~¢log, ) = o(log x).
1€81 1€81

Consider Sy. By definition, a; < (logz)€ for all i € So. We have

T

Z log a; < Z elogyx < Zelogzz = erlogy T.

1€Ss 1€So =1

By Lemma 1, this quantity is at most (1 + o(1))elogx. Letting € go to 0 gives us
our desired result. O

The final result follows naturally from the asymptotic formula for the partition
function.

Lemma 4 ([2, Lemma 2.8]). For all y > 1, the number of unordered tuples
(n1,...,nk) of positive integers satisfying n1 + -+ np <y is at most

exp ((1 +o(1))m 23%!) .
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3. The Proof

Given the results from the previous section, we obtain our desired upper bound for
#G(x), which we rewrite here.

Theorem 1. We have

#g@w<mp<u+ou»jg ﬁiﬁ>.

Proof. Suppose n < z. By Theorem 3,

\/Wlljl L <1+;)ai < g(n) <.

€/ O

If g(n) is sufficiently large, we have

T

1 e\
II (1 + ) <z
€/0 Q;

i=1

Taking logarithms and rearranging terms gives us

T 1 T
Zailog (1 + C) <logx+1r+ fZIOgaZ—.
i=1 i 23

Lemmas 1 and 3 imply that

E a; log <1 + C> < (1+4+o0(1))logz.
a;
i=1

Let 81 be the set of all ¢ < r satisfying «; < Ac with

(log, 37)2
(log 2)'/?

and S, the set of all other ¢ < r. If 1 € Sy, then

c 1 1
log (1 + Olz') > log (1 + A) ~ glogQ x.

A:

Therefore,
" c c 1

Zai log (1 + ai> > Z a; log (1 + m) > (1+ 0(1))5 logy © Z a;,

=1 1€S) 1€S)
which implies that

2logx
; < (1 1 .
> o < (1 o(1) 5

1€S
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By Lemma 4, the number of possible sets S; is at most

2 | logx
exp (1"‘0(1))% log,

We bound the number of possible sets Ss using an approach similar to the proof
of [2, Lemma 2.10]. We have

1052 [T (%) 2 e

=1 1€S2

which implies that
(#82) log(1+ A) < log2.
Because A = o(1), we have log(1 + A) > A/2 for z sufficiently large. Hence,
2log2 0 (log z)'/?
A (logy )2 /-

By Lemma 2, a; < (logx)? for all i. Therefore, the number of possible sets Sy is at
most

#S5 <

((logz)?)#52 = exp (O <logx)> =exp|o log @
logy

logy

Multiplying our bounds for S§; and S; completes the proof. O
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