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Abstract

Let g(n) be the number of ordered factorizations of n into parts greater than 1. We
establish a new upper bound on the number of numbers in the range of g which do
not exceed x. This work improves a theorem of Klazar and Luca and closely follows
a proof of Balasubramanian and Srivastav.

1. Introduction

Let f(n) and g(n) be the number of unordered and ordered factorizations of the

integer n into parts greater than 1. These functions were first studied by Oppenheim

and Kalmár, respectively [9, 5], who showed that∑
n≤x

f(n) ∼ 1

2
√
π

x exp(2
√

log x)

(log x)3/4
,

∑
n≤x

g(n) ∼ − 1

ρζ ′(ρ)
xρ,

where ζ refers to the Riemann zeta function and s = ρ ≈ 1.73 is the unique solution

to the equation ζ(s) = 2 in (1,∞).

Define F(x) and G(x) to be the sets of n ≤ x which lie in the ranges of f and g,

i.e.,

F(x) = f(Z+) ∩ [1, x],

G(x) = g(Z+) ∩ [1, x].

Multiple people have found upper bounds for #F(x). Canfield, Erdős, and Pomer-

ance [3] stated (without proof) that #F(x) = xo(1). Luca, Mukhopadhyay, and

Srinivas [8] later showed that

#F(x) = exp

(
O

(
log x log3 x

log2 x

))
,
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where logk x refers to the kth fold iterate of the logarithm. Soon afterward, Bala-

subramanian and Luca [1] proved that

#F(x) ≤ exp(9(log x)2/3)

for all x ≥ 1. More recently, Balasubramanian and Srivastav [2] showed that

#F(x) ≤ exp

(
(1 + o(1))2π

√
2

3

√
log x

log2 x

)
.

Through a slight modification of their proof, the author [7, Section 8] reduced the

constant in the exponent, obtaining

#F(x) ≤ exp

(
(1 + o(1))π

√
2

√
log x

log2 x

)
.

In addition, Balasubramanian and Srivastav conjecture that a bound of this type

is optimal in the sense that there exists a positive constant C such that

#F(x) ≥ exp

(
(C + o(1))

√
log x

log2 x

)
.

As for #G(x), Klazar and Luca [6, Proposition 5.7] proved that

#G(x) ≤ exp

(
(1 + o(1))π

√
2

3 log 2

√
log x

)
.

The proofs of the last two upper bounds on #F(x) rely entirely on a lower bound

for f(n). Because g(n) ≥ f(n) for all n, this observation serves as a simple proof

that

#G(x) ≤ exp

(
(1 + o(1))π

√
2

√
log x

log2 x

)
.

Using a method similar to that of [2], we obtain a better upper bound for #G(x).

Theorem 1. We have

#G(x) ≤ exp

(
(1 + o(1))

2π√
3

√
log x

log2 x

)
.

2. Preliminary Results

Let n = pα1
1 · · · pαr

r . For notational convenience, we let ααα be the vector (α1, . . . , αr).

In order to obtain their bound on #F(x), Balasubramanian and Srivastav proved

the following result.
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Theorem 2 ([2, Proposition 2.7]). Let z = z(ααα) be the unique positive solution to

the equation

z =

r∏
i=1

(
1 +

αi
z

)
,

and N = bzc. We have

f(n) ≥ eN−2

2N3/2

r∏
i=1

1

2
√

2N

(
1 +

N

αi

)αi+(1/2)

.

In addition, if f(n) ≤ x, then

r ≤ (2 + o(1))
log x

log2 x
.

Deléglise, Hernane, and Nicolas provide a similar lower bound for g(n). Let Ω(n)

be the number of (not necessarily distinct) prime factors of n.

Theorem 3 ([4, Eqs. (3.1), (3.26)]). Let c = c(ααα) be the unique solution to the

equation
r∏
i=1

(
1 +

αi
c

)
= 2.

Then,

g(n)�
√

Ω(n)

r∏
i=1

1

e
√
αi

(
1 +

c

αi

)αi

.

We also write three lemmas for future use.

Lemma 1. If g(n) ≤ x, then

r ≤ (1 + o(1))
log x

log2 x
.

Proof. In order to maximize r, we assume n is squarefree. If n = p1 · · · pr, then

g(n) ≥ r! because we can express n as a product of primes in exactly r! ways.

Because r! ≤ x, we have

r ≤ (1 + o(1))
log x

log2 x
.

From [2, Eq. (2.9)], the following result holds for all n satisfying f(n) ≤ x.

Because f(n) ≤ g(n), it holds when g(n) ≤ x as well.

Lemma 2. If g(n) ≤ x, then αi ≤ (log x)2 for all i.

Using this result, we bound the sum of logαi.



INTEGERS: 20 (2020) 4

Lemma 3. If g(n) ≤ x, then
r∑
i=1

logαi = o(log x).

Proof. Fix a large number M which we determine more precisely later. Let S1 be

the set of i ≤ r satisfying αi > M and S2 the set of all other i. For all n ∈ S1, we

have

g(n) ≥ g(pM1 · · · pM#S1).

In this case,
#S1∏
i=1

(
1 +

M

c

)
= 2,

which implies that

c =
M

21/#S1 − 1
.

By Theorem 3,

x ≥ g(n)�
#S1∏
i=1

1

e
√
M

(
1 +

1

21/#S1 − 1

)M
= exp((1 + o(1))M(#S1) log(#S1)).

Fix ε > 0. Letting M = (log x)ε gives us

#S1 = o((log x)1−ε).

We bound our desired sum on #S1. By the previous lemma, we have αi ≤ (log x)2

for all i. Therefore,∑
i∈S1

logαi �
∑
i∈S1

log2 x = o((log x)1−ε log2 x) = o(log x).

Consider S2. By definition, αi ≤ (log x)ε for all i ∈ S2. We have∑
i∈S2

logαi ≤
∑
i∈S2

ε log2 x ≤
r∑
i=1

ε log2 x = εr log2 x.

By Lemma 1, this quantity is at most (1 + o(1))ε log x. Letting ε go to 0 gives us

our desired result.

The final result follows naturally from the asymptotic formula for the partition

function.

Lemma 4 ([2, Lemma 2.8]). For all y ≥ 1, the number of unordered tuples

(n1, . . . , nk) of positive integers satisfying n1 + · · ·+ nk ≤ y is at most

exp

(
(1 + o(1))π

√
2y

3

)
.
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3. The Proof

Given the results from the previous section, we obtain our desired upper bound for

#G(x), which we rewrite here.

Theorem 1. We have

#G(x) ≤ exp

(
(1 + o(1))

2π√
3

√
log x

log2 x

)
.

Proof. Suppose n ≤ x. By Theorem 3,√
Ω(n)

r∏
i=1

1

e
√
αi

(
1 +

c

αi

)αi

� g(n) ≤ x.

If g(n) is sufficiently large, we have

r∏
i=1

1

e
√
αi

(
1 +

c

αi

)αi

< x.

Taking logarithms and rearranging terms gives us

r∑
i=1

αi log

(
1 +

c

αi

)
< log x+ r +

1

2

r∑
i=1

logαi.

Lemmas 1 and 3 imply that

r∑
i=1

αi log

(
1 +

c

αi

)
≤ (1 + o(1)) log x.

Let S1 be the set of all i ≤ r satisfying αi ≤ Ac with

A =
(log2 x)2

(log x)1/2

and S2 the set of all other i ≤ r. If i ∈ S1, then

log

(
1 +

c

αi

)
≥ log

(
1 +

1

A

)
∼ 1

2
log2 x.

Therefore,

r∑
i=1

αi log

(
1 +

c

αi

)
≥
∑
i∈S1

αi log

(
1 +

c

αi

)
≥ (1 + o(1))

1

2
log2 x

∑
i∈S1

αi,

which implies that ∑
i∈S1

αi ≤ (1 + o(1))
2 log x

log2 x
.



INTEGERS: 20 (2020) 6

By Lemma 4, the number of possible sets S1 is at most

exp

(
(1 + o(1))

2π√
3

√
log x

log2 x

)
.

We bound the number of possible sets S2 using an approach similar to the proof

of [2, Lemma 2.10]. We have

2 =

r∏
i=1

(
1 +

αi
c

)
≥
∏
i∈S2

(
1 +

αi
c

)
≥ (1 +A)#S2 ,

which implies that

(#S2) log(1 +A) < log 2.

Because A = o(1), we have log(1 +A) > A/2 for x sufficiently large. Hence,

#S2 <
2 log 2

A
= O

(
(log x)1/2

(log2 x)2

)
.

By Lemma 2, αi ≤ (log x)2 for all i. Therefore, the number of possible sets S2 is at

most

((log x)2)#S2 = exp

(
O

(√
log x

log2 x

))
= exp

(
o

(√
log x

log2 x

))
.

Multiplying our bounds for S1 and S2 completes the proof.
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