

ON THE NUMBER OF ORDERED FACTORIZATIONS OF AN INTEGER

Noah Lebowitz-Lockard

Department of Mathematics & Data Science, College of Coastal Georgia, Brunswick, Georgia nlebowitzlockard@ccga.edu

Received: 5/9/20, Accepted: 10/15/20, Published: 10/19/20

Abstract

Let g(n) be the number of ordered factorizations of n into parts greater than 1. We establish a new upper bound on the number of numbers in the range of g which do not exceed x. This work improves a theorem of Klazar and Luca and closely follows a proof of Balasubramanian and Srivastav.

1. Introduction

Let f(n) and g(n) be the number of unordered and ordered factorizations of the integer n into parts greater than 1. These functions were first studied by Oppenheim and Kalmár, respectively [9, 5], who showed that

$$\sum_{n \le x} f(n) \sim \frac{1}{2\sqrt{\pi}} \frac{x \exp(2\sqrt{\log x})}{(\log x)^{3/4}},$$
$$\sum_{n \le x} g(n) \sim -\frac{1}{\rho \zeta'(\rho)} x^{\rho},$$

where ζ refers to the Riemann zeta function and $s = \rho \approx 1.73$ is the unique solution to the equation $\zeta(s) = 2$ in $(1, \infty)$.

Define $\mathcal{F}(x)$ and $\mathcal{G}(x)$ to be the sets of $n \leq x$ which lie in the ranges of f and g, i.e.,

$$\mathcal{F}(x) = f(\mathbb{Z}_+) \cap [1, x],$$
$$\mathcal{G}(x) = g(\mathbb{Z}_+) \cap [1, x].$$

Multiple people have found upper bounds for $\#\mathcal{F}(x)$. Canfield, Erdős, and Pomerance [3] stated (without proof) that $\#\mathcal{F}(x) = x^{o(1)}$. Luca, Mukhopadhyay, and Srinivas [8] later showed that

$$\#\mathcal{F}(x) = \exp\left(O\left(\frac{\log x \log_3 x}{\log_2 x}\right)\right),\,$$

#A90

where $\log_k x$ refers to the kth fold iterate of the logarithm. Soon afterward, Balasubramanian and Luca [1] proved that

$$\#\mathcal{F}(x) \le \exp(9(\log x)^{2/3})$$

for all $x \ge 1$. More recently, Balasubramanian and Srivastav [2] showed that

$$\#\mathcal{F}(x) \le \exp\left((1+o(1))2\pi\sqrt{\frac{2}{3}}\sqrt{\frac{\log x}{\log_2 x}}\right).$$

Through a slight modification of their proof, the author [7, Section 8] reduced the constant in the exponent, obtaining

$$\#\mathcal{F}(x) \le \exp\left((1+o(1))\pi\sqrt{2}\sqrt{\frac{\log x}{\log_2 x}}\right).$$

In addition, Balasubramanian and Srivastav conjecture that a bound of this type is optimal in the sense that there exists a positive constant C such that

$$\#\mathcal{F}(x) \ge \exp\left((C+o(1))\sqrt{\frac{\log x}{\log_2 x}}\right).$$

As for $\#\mathcal{G}(x)$, Klazar and Luca [6, Proposition 5.7] proved that

$$\#\mathcal{G}(x) \le \exp\left((1+o(1))\pi\sqrt{\frac{2}{3\log 2}}\sqrt{\log x}\right).$$

The proofs of the last two upper bounds on $\#\mathcal{F}(x)$ rely entirely on a lower bound for f(n). Because $g(n) \ge f(n)$ for all n, this observation serves as a simple proof that

$$\#\mathcal{G}(x) \le \exp\left((1+o(1))\pi\sqrt{2}\sqrt{\frac{\log x}{\log_2 x}}\right).$$

Using a method similar to that of [2], we obtain a better upper bound for $\#\mathcal{G}(x)$.

Theorem 1. We have

$$\#\mathcal{G}(x) \le \exp\left((1+o(1))\frac{2\pi}{\sqrt{3}}\sqrt{\frac{\log x}{\log_2 x}}\right).$$

2. Preliminary Results

Let $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$. For notational convenience, we let $\boldsymbol{\alpha}$ be the vector $(\alpha_1, \ldots, \alpha_r)$. In order to obtain their bound on $\#\mathcal{F}(x)$, Balasubramanian and Srivastav proved the following result. INTEGERS: 20 (2020)

Theorem 2 ([2, Proposition 2.7]). Let $z = z(\alpha)$ be the unique positive solution to the equation

$$z = \prod_{i=1}^{r} \left(1 + \frac{\alpha_i}{z} \right),$$

and $N = \lfloor z \rfloor$. We have

$$f(n) \ge \frac{e^{N-2}}{2N^{3/2}} \prod_{i=1}^r \frac{1}{2\sqrt{2N}} \left(1 + \frac{N}{\alpha_i}\right)^{\alpha_i + (1/2)}$$

In addition, if $f(n) \leq x$, then

$$r \le (2 + o(1)) \frac{\log x}{\log_2 x}.$$

Deléglise, Hernane, and Nicolas provide a similar lower bound for g(n). Let $\Omega(n)$ be the number of (not necessarily distinct) prime factors of n.

Theorem 3 ([4, Eqs. (3.1), (3.26)]). Let $c = c(\boldsymbol{\alpha})$ be the unique solution to the equation

$$\prod_{i=1}^{r} \left(1 + \frac{\alpha_i}{c} \right) = 2$$

Then,

$$g(n) \gg \sqrt{\Omega(n)} \prod_{i=1}^{r} \frac{1}{e\sqrt{\alpha_i}} \left(1 + \frac{c}{\alpha_i}\right)^{\alpha_i}$$

We also write three lemmas for future use.

Lemma 1. If $g(n) \leq x$, then

$$r \le (1+o(1))\frac{\log x}{\log_2 x}.$$

Proof. In order to maximize r, we assume n is squarefree. If $n = p_1 \cdots p_r$, then $g(n) \ge r!$ because we can express n as a product of primes in exactly r! ways. Because $r! \le x$, we have

$$r \le (1+o(1))\frac{\log x}{\log_2 x}.$$

From [2, Eq. (2.9)], the following result holds for all n satisfying $f(n) \leq x$. Because $f(n) \leq g(n)$, it holds when $g(n) \leq x$ as well.

Lemma 2. If $g(n) \leq x$, then $\alpha_i \leq (\log x)^2$ for all *i*.

Using this result, we bound the sum of $\log \alpha_i$.

INTEGERS: 20 (2020)

Lemma 3. If $g(n) \leq x$, then

$$\sum_{i=1}^{r} \log \alpha_i = o(\log x).$$

Proof. Fix a large number M which we determine more precisely later. Let S_1 be the set of $i \leq r$ satisfying $\alpha_i > M$ and S_2 the set of all other i. For all $n \in S_1$, we have

$$g(n) \ge g(p_1^M \cdots p_{\#S_1}^M).$$

In this case,

$$\prod_{i=1}^{\#S_1} \left(1 + \frac{M}{c} \right) = 2$$

which implies that

$$c = \frac{M}{2^{1/\#\mathcal{S}_1} - 1}.$$

By Theorem 3,

$$x \ge g(n) \gg \prod_{i=1}^{\#S_1} \frac{1}{e\sqrt{M}} \left(1 + \frac{1}{2^{1/\#S_1} - 1} \right)^M = \exp((1 + o(1))M(\#S_1)\log(\#S_1)).$$

Fix $\epsilon > 0$. Letting $M = (\log x)^{\epsilon}$ gives us

$$\#\mathcal{S}_1 = o((\log x)^{1-\epsilon}).$$

We bound our desired sum on $\#S_1$. By the previous lemma, we have $\alpha_i \leq (\log x)^2$ for all *i*. Therefore,

$$\sum_{i \in \mathcal{S}_1} \log \alpha_i \ll \sum_{i \in \mathcal{S}_1} \log_2 x = o((\log x)^{1-\epsilon} \log_2 x) = o(\log x).$$

Consider S_2 . By definition, $\alpha_i \leq (\log x)^{\epsilon}$ for all $i \in S_2$. We have

$$\sum_{i \in S_2} \log \alpha_i \le \sum_{i \in S_2} \epsilon \log_2 x \le \sum_{i=1}^r \epsilon \log_2 x = \epsilon r \log_2 x.$$

By Lemma 1, this quantity is at most $(1 + o(1))\epsilon \log x$. Letting ϵ go to 0 gives us our desired result.

The final result follows naturally from the asymptotic formula for the partition function.

Lemma 4 ([2, Lemma 2.8]). For all $y \ge 1$, the number of unordered tuples (n_1, \ldots, n_k) of positive integers satisfying $n_1 + \cdots + n_k \le y$ is at most

$$\exp\left((1+o(1))\pi\sqrt{\frac{2y}{3}}\right).$$

INTEGERS: 20 (2020)

3. The Proof

Given the results from the previous section, we obtain our desired upper bound for $\#\mathcal{G}(x)$, which we rewrite here.

Theorem 1. We have

$$\#\mathcal{G}(x) \le \exp\left((1+o(1))\frac{2\pi}{\sqrt{3}}\sqrt{\frac{\log x}{\log_2 x}}\right).$$

Proof. Suppose $n \leq x$. By Theorem 3,

$$\sqrt{\Omega(n)} \prod_{i=1}^{r} \frac{1}{e\sqrt{\alpha_i}} \left(1 + \frac{c}{\alpha_i}\right)^{\alpha_i} \ll g(n) \le x.$$

If g(n) is sufficiently large, we have

$$\prod_{i=1}^{r} \frac{1}{e\sqrt{\alpha_i}} \left(1 + \frac{c}{\alpha_i} \right)^{\alpha_i} < x.$$

Taking logarithms and rearranging terms gives us

$$\sum_{i=1}^{r} \alpha_i \log\left(1 + \frac{c}{\alpha_i}\right) < \log x + r + \frac{1}{2} \sum_{i=1}^{r} \log \alpha_i.$$

Lemmas 1 and 3 imply that

$$\sum_{i=1}^{r} \alpha_i \log \left(1 + \frac{c}{\alpha_i} \right) \le (1 + o(1)) \log x.$$

Let \mathcal{S}_1 be the set of all $i \leq r$ satisfying $\alpha_i \leq Ac$ with

$$A = \frac{(\log_2 x)^2}{(\log x)^{1/2}}$$

and S_2 the set of all other $i \leq r$. If $i \in S_1$, then

$$\log\left(1+\frac{c}{\alpha_i}\right) \ge \log\left(1+\frac{1}{A}\right) \sim \frac{1}{2}\log_2 x.$$

Therefore,

$$\sum_{i=1}^{r} \alpha_i \log\left(1 + \frac{c}{\alpha_i}\right) \ge \sum_{i \in \mathcal{S}_1} \alpha_i \log\left(1 + \frac{c}{\alpha_i}\right) \ge (1 + o(1)) \frac{1}{2} \log_2 x \sum_{i \in \mathcal{S}_1} \alpha_i,$$

which implies that

$$\sum_{i \in \mathcal{S}_1} \alpha_i \le (1 + o(1)) \frac{2\log x}{\log_2 x}.$$

By Lemma 4, the number of possible sets S_1 is at most

$$\exp\left((1+o(1))\frac{2\pi}{\sqrt{3}}\sqrt{\frac{\log x}{\log_2 x}}\right)$$

We bound the number of possible sets S_2 using an approach similar to the proof of [2, Lemma 2.10]. We have

$$2 = \prod_{i=1}^{r} \left(1 + \frac{\alpha_i}{c} \right) \ge \prod_{i \in \mathcal{S}_2} \left(1 + \frac{\alpha_i}{c} \right) \ge (1+A)^{\#\mathcal{S}_2},$$

which implies that

$$(\#\mathcal{S}_2)\log(1+A) < \log 2.$$

Because A = o(1), we have $\log(1 + A) > A/2$ for x sufficiently large. Hence,

$$\#S_2 < \frac{2\log 2}{A} = O\left(\frac{(\log x)^{1/2}}{(\log_2 x)^2}\right).$$

By Lemma 2, $\alpha_i \leq (\log x)^2$ for all *i*. Therefore, the number of possible sets S_2 is at most

$$((\log x)^2)^{\#\mathcal{S}_2} = \exp\left(O\left(\frac{\sqrt{\log x}}{\log_2 x}\right)\right) = \exp\left(o\left(\sqrt{\frac{\log x}{\log_2 x}}\right)\right).$$

Multiplying our bounds for S_1 and S_2 completes the proof.

References

- R. Balasubramanian and F. Luca, On the number of factorizations of an integer, Integers 11 (2011), no. 2, #A12.
- [2] R. Balasubramanian and P. Srivastav, On the number of factorizations of an integer, J. Ramanujan Math. Soc. 32 (2017), no. 4, 417–430.
- [3] E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning "factorisatio numerorum", J. Number Theory 17 (1983), 1–28.
- [4] M. Deléglise, M. O. Hernane, and J.-L. Nicolas, Grandes valeurs et nombres champions de la fonction arithmétique de Kalmár, J. Number Theory 128 (2008), no. 6, 1676–1716.
- [5] L. Kalmár, Über die mittlere Anzahl der Produktdarstellungen der Zahlen (Erste Mitteilung), Acta Litt. Sci., Szeged 5 (1931), 95–107.
- [6] M. Klazar and F. Luca, On the maximal order of numbers in the "factorisatio numerorum" problem, J. Number Theory 124 (2007), no. 2, 470–490.
- [7] N. Lebowitz-Lockard, Asymptotic bounds for factorizations into distinct parts, *Acta Arith.*, to appear.
- [8] F. Luca, A. Mukhopadhyay, and K. Srinivas, Some results on Oppenheim's "factorisatio numerorum" function, Acta Arith. 142 (2010), no. 1, 41–50.
- [9] A. Oppenheim, On an arithmetic function (II), J. Lond. Math Soc. 2 (1927), 123-130.