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Abstract

Let B5(n) denote the number of 5-regular bipartitions of a positive integer n into
distinct parts. In this paper, we establish several infinite families of congruences
modulo powers of 2 for B5(n). For example,

∞∑
n=0

B5

(
22α+5 · 52βn+

11 · 22α+2 · 52β + 1

3

)
qn ≡ 4f1f10 (mod 23),

for all n ≥ 0 and α, β ≥ 0.

1. Introduction

Throughout this paper, we let |q| < 1. We use the standard notation

fk := (qk; qk)∞.

Following Ramanujan, we define

ϕ(q) := f(q, q) =

∞∑
n=−∞

qn
2

= (−q; q2)2∞(q2; q2)∞, (1)

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

, (2)

f(−q) := f(−q,−q2) =

∞∑
n=−∞

(−1)nqn(3n−1)/2 = (q; q)∞, (3)



INTEGERS 20 (2020) 2

which are special cases of Ramanujan’s general theta function [1]

f(a, b) :=

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1. (4)

In Ramanujan’s notation, Jacobi’s famous triple product identity becomes

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (5)

A partition of a positive integer n is a non-increasing sequence of positive integers

whose sum is n. An `-regular partition is a partition in which none of its parts

are divisible by `. Let b`(n) denote the number of `-regular partitions of n with

b`(0) = 1. The generating function for b`(n) is given by

∞∑
n=0

b`(n)qn =
f`
f1
.

Recently, arithmetic properties of `-regular partition functions have been studied

by a number of mathematicians. Calkin et al. [2] established many congruences for

5-regular partitions modulo 2 and 13-regular partitions modulo 2 and 3 by using

the theory of modular forms. For more details, one can see [3, 5].

Mahadeva Naika and Hemanthkumar [6] obtained many infinite families of con-

gruences for 5-regular bipartitions. In [9], the authors established some infinite

families of congruences for (`,m)-regular partitions with distinct parts. For more

details, one can see [7].

Let B5(n) denote the number of 5-regular bipartitions of n into distinct parts;

its generating function is given by

∞∑
n=0

B5(n)qn =
(−q; q)2∞

(−q5; q5)2∞
=

f22 f
2
5

f21 f
2
10

. (6)

2. Preliminary Results

In this section, we collect some identities which are useful in proving our results.

Lemma 1. [3, Theorem 2.2]. For any prime p ≥ 5,

f1 =

p−1
2∑

k=− p−1
2

k 6=(±p−1)/6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 fp2 .

(7)

Furthermore, for −(p− 1)/2 ≤ k ≤ (p− 1)/2 and k 6= (±p− 1)/6,

3k2 + k

2
6≡ p2 − 1

24
(mod p).



INTEGERS 20 (2020) 3

Lemma 2. The following 2-dissections hold:

f1
f5

=
f2f8f

3
20

f4f310f40
− q f

2
4 f40
f8f210

(8)

and
f5
f1

=
f8f

2
20

f22 f40
+ q

f34 f10f40
f32 f8f20

. (9)

Equation (8) was proved by Hirschhorn and Sellers [5]; see also [10]. Replacing q

by −q in (8) and using the fact that (−q;−q)∞ =
f3
2

f1f4
, we obtain (9).

Lemma 3. [8]. We have

f1f
3
5 = f32 f10 − q

f22 f
2
10f20
f4

+ 2q2f4f
3
20 − 2q3

f44 f10f
2
40

f2f28
, (10)

f31 f5 =
f22 f4f

2
10

f20
+ 2qf34 f20 − 5qf2f

3
10 + 2q2

f64 f10f
2
40

f2f28 f
2
20

. (11)

We shall prove the following theorems:

Theorem 1. For all n ≥ 0 and α, β ≥ 0, we have

∞∑
n=0

B5

(
22α+1 · 52βn+

22α+1 · 52β + 1

3

)
qn ≡ 2f31 f5 (mod 22), (12)

∞∑
n=0

B5

(
22α+2 · 52βn+

22α+3 · 52β + 1

3

)
qn ≡ 2f1f

3
5 (mod 22), (13)

∞∑
n=0

B5

(
22α+1 · 52β+1n+

22α+2 · 52β+1 + 1

3

)
qn ≡ 2f1f

3
5 (mod 22), (14)

∞∑
n=0

B5

(
22α+2 · 52β+1n+

22α+2 · 52β+1 + 1

3

)
qn ≡ 2f31 f5 (mod 22). (15)

Corollary 1. Let a ∈ {7, 13} and b ∈ {11, 14}. Then for all n ≥ 0 and α, β ≥ 0,

we have

B5

(
22α+1 · 52β+1n+

a · 22α+1 · 52β + 1

3

)
≡ 0 (mod 22), (16)

B5

(
22α+2 · 52β+1n+

b · 22α+2 · 52β + 1

3

)
≡ 0 (mod 22). (17)

Theorem 2. Let c ∈ {7, 13, 19} and d ∈ {29, 53, 77, 101}. Then for all non-negative

integers α, β and n, we have

B5

(
22α+4 · 52βn+

c · 22α+1 · 52β + 1

3

)
≡ 0 (mod 22), (18)
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B5

(
22α+4 · 52βn+

22α+1 · 52β + 1

3

)
≡

{
2 (mod 22) if n = k(3k + 1)/2 for some k ∈ Z,
0 (mod 22) otherwise,

(19)

B5

(
22α+5 · 52βn+

c · 22α+2 · 52β+1 + 1

3

)
≡ 0 (mod 22), (20)

B5

(
22α+5 · 52β+1n+

d · 22α+2 · 52β+1 + 1

3

)
≡ 0 (mod 22), (21)

B5

(
22α+5 · 52β+1n+

22α+2 · 52β+1 + 1

3

)
≡

{
2 (mod 22) if n = k(3k + 1)/2 for some k ∈ Z,
0 (mod 22) otherwise.

(22)

Theorem 3. For all n ≥ 0, α ≥ 0 and i = 1, 2, 3, we have

B5

(
22α+2n+

22α+3 + 1

3

)
≡ B5(4n+ 3) (mod 23), (23)

B5

(
22α+6n+

22α+3(6i+ 1) + 1

3

)
≡ B5(16n+ 4i+ 1) (mod 23), (24)

B5

(
22α+6n+

22α+3 + 1

3

)
≡

{
B5(16n+ 1) + 4 (mod 23) if n = k(3k + 1)/2 for some k ∈ Z,
B5(16n+ 1) (mod 23) otherwise.

(25)

Theorem 4. Let g ∈ {83, 107} and h ∈ {31, 79}. Then for all n ≥ 0 and α, β ≥ 0,

we have

∞∑
n=0

B5

(
22α+5 · 52βn+

11 · 22α+2 · 52β + 1

3

)
qn ≡ 4f1f10 (mod 23), (26)

B5

(
22α+5 · 52β+1n+

g · 22α+2 · 52β + 1

3

)
≡ 0 (mod 23), (27)

∞∑
n=0

B5

(
22α+5 · 52β+1n+

7 · 22α+2 · 52β+1 + 1

3

)
qn ≡ 4f2f5 (mod 23), (28)

B5

(
22α+5 · 52β+2n+

h · 22α+2 · 52β+1 + 1

3

)
≡ 0 (mod 23). (29)
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Theorem 5. For a prime p > 5 and for all n, α, β, γ ≥ 0, we have

∞∑
n=0

B5

(
22α+5 · 52β · p2γn+

11 · 22α+2 · 52β · p2γ + 1

3

)
qn ≡ 4f1f10 (mod 23),

(30)

B5

(
22α+5 · 52β · p2γ+1(pn+ i) +

11 · 22α+2 · 52β · p2γ+2 + 1

3

)
≡ 0 (mod 23),

(31)
∞∑
n=0

B5

(
22α+5 · 52β+1 · p2γn+

7 · 22α+2 · 52β+1 · p2γ + 1

3

)
qn ≡ 4f2f5 (mod 23),

(32)

B5

(
22α+5 · 52β+1 · p2γ+1(pn+ i) +

11 · 22α+2 · 52β+1 · p2γ+2 + 1

3

)
≡ 0 (mod 23),

(33)

where i = 1, 2, 3, · · · , p− 1.

3. Proof of Theorem 1

From (6), we have
∞∑
n=0

B5(n)qn =
f22
f210
× f25
f21
. (34)

Using (9) in (34) and then extracting the terms involving q2n+1 from both sides,

we arrive at
∞∑
n=0

B5(2n+ 1)qn = 2
f32 f10
f31 f5

. (35)

From the binomial theorem, it is easy to see that for any positive integers k and m,

f2mk ≡ fm2k (mod 2), (36)

f4mk ≡ f2m2k (mod 22). (37)

Using (36) in (35), we find that

∞∑
n=0

B5(2n+ 1)qn ≡ 2f31 f5 (mod 22), (38)

which is the α = β = 0 case of (12). Suppose that Congruence (12) holds for some

integer β > 0 and α = 0.

Ramanujan recorded the following identity in his notebooks without proof:

f1 = f25(R(q5)−1 − q − q2R(q5)), (39)
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where R(q) =
f(−q,−q4)

f(−q2,−q3)
.

For a proof of (39), one can see [4, 11].

Employing (39) in (12) with α = 0, we find that

∞∑
n=0

B5

(
2 · 52βn+

2 · 52β + 1

3

)
qn ≡ 2f5f

3
25(R(q5)−1 − q − q2R(q5))3 (mod 22).

(40)

Extracting the coefficients of q5n+3 from (40), we find that

∞∑
n=0

B5

(
2 · 52β+1n+

4 · 52β+1 + 1

3

)
qn ≡ 2f1f

3
5 (mod 22). (41)

Again, using (39) in (41), we find that

∞∑
n=0

B5

(
2 · 52β+1n+

4 · 52β+1 + 1

3

)
qn

≡ 2f35 f25(R(q5)−1 − q − q2R(q5)) (mod 22). (42)

Extracting the coefficients of q5n+1 from (42), we get

∞∑
n=0

B5

(
2 · 52β+2n+

4 · 52β+2 + 1

3

)
qn ≡ 2f1f

3
5 (mod 22), (43)

which implies that (12) is true for β + 1. Hence, by induction, Congruence (12) is

true for any non-negative integer β and α = 0. Suppose that Congruence (12) holds

for some integers α, β > 0. Employing (11) in (12), we find that

∞∑
n=0

B5

(
22α+1 · 52βn+

22α+1 · 52β + 1

3

)
qn ≡ 2f8 + 2qf2f

3
10 (mod 22), (44)

which implies

∞∑
n=0

B5

(
22α+2 · 52βn+

22α+3 · 52β + 1

3

)
qn ≡ 2f1f

3
5 (mod 22), (45)

which proves (13).

Again, employing (10) in (45), we obtain

∞∑
n=0

B5

(
22α+2 · 52βn+

22α+3 · 52β + 1

3

)
qn ≡ 2f32 f10 + 2qf40 (mod 22). (46)

Extracting the coefficients of q2n from (46), we get

∞∑
n=0

B5

(
22α+3 · 52βn+

22α+3 · 52β + 1

3

)
qn ≡ 2f31 f5 (mod 22), (47)
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which shows that (12) is true for α + 1. Hence, by induction, Congruence (12) is

true for any non-negative integers α and β. This completes the proof.

Employing (39) in Equations (12) and (13), we obtain (14) and (15) respectively.

4. Proof of Corollary 1

Using Equations (12) and (13) along with Equation (39), we obtain (16) and (17)

respectively.

5. Proof of Theorem 2

Extracting the coefficients of q2n from (44), we get

∞∑
n=0

B5

(
22α+2 · 52βn+

22α+1 · 52β + 1

3

)
qn ≡ 2f4 (mod 22), (48)

which implies (18).

Extracting the coefficients of q4n from (48), we obtain (19).

Extracting the coefficients of q2n+1 from (46), we get

∞∑
n=0

B5

(
22α+3 · 52βn+

22α+2 · 52β+1 + 1

3

)
qn ≡ 2f20 (mod 22). (49)

Collecting the terms involving the powers of q4n+i for i = 1, 2, 3 from (49), we

obtain (20).

Extracting the coefficients q4n from (49), we obtain

∞∑
n=0

B5

(
22α+5 · 52βn+

22α+2 · 52β+1 + 1

3

)
qn ≡ 2f5 (mod 22), (50)

which implies (21) and (22).

6. Proof of Theorem 3

Using (37), Equation (35) reduces to

∞∑
n=0

B5(2n+ 1)qn ≡ 2
f2
f10
× f1f35 (mod 23). (51)
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Using (10) in (51) and then collecting the even and odd powers of q from the

resultant equation, we obtain

∞∑
n=0

B5(4n+ 1)qn ≡ 2f22 + 4qf2f10 × f1f35 (mod 23) (52)

and
∞∑
n=0

B5(4n+ 3)qn ≡ −2
f10
f2
× f31 f5 + 4qf220 (mod 23). (53)

Employing (11) in (53), we obtain

∞∑
n=0

B5(8n+ 3)qn ≡ −2
f2
f10
× f1f35 + 4qf2f

3
10 (mod 23) (54)

and
∞∑
n=0

B5(8n+ 7)qn ≡ 4f2f10 × f31 f5 + 6f210 (mod 23). (55)

Using (10) in (54) and then collecting the coefficients of q2n+1 from the resultant

equation, we obtain

B5(16n+ 11) ≡ B5(4n+ 3) (mod 23), (56)

which is the α = 1 case of (23). Suppose that Congruence (23) holds for some

integer α > 0. Employing (11) in (23) and then collecting the even powers of q

from the resultant equation, we get

∞∑
n=0

B5

(
22α+3n+

22α+3 + 1

3

)
qn ≡ −2

f2
f10
× f1f35 + 4qf2f

3
10 (mod 23). (57)

Using (10) in (57), we obtain

B5

(
22α+4n+

22α+5 + 1

3

)
≡ B5(4n+ 3) (mod 23), (58)

which implies that (23) is true for α + 1. Hence, by induction, Congruence (23) is

true for any non-negative integer α ≥ 0. This completes the proof.

Using (10) in (57) and then collecting the even powers of q from the resultant

equation, we get

∞∑
n=0

B5

(
22α+4n+

22α+3 + 1

3

)
qn ≡ −2f22 + 4qf2f10 × f1f35

≡
∞∑
n=0

B5(4n+ 1)qn + 4f4 (mod 23). (59)
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Comparing the coefficients of q4n+i for i = 1, 2, 3 on both sides of the above equation,

we arrive at (24).

Collecting the coefficients of q4n from both sides of (59), we arrive at

∞∑
n=0

B5

(
22α+6n+

22α+3 + 1

3

)
qn ≡

∞∑
n=0

B5(16n+ 1)qn + 4f1 (mod 23), (60)

which gives (25).

7. Proof of Theorem 4

Using (11) in (55) and then collecting the odd powers of q, we get

∞∑
n=0

B5(16n+ 15)qn ≡ 4f2f20 (mod 23), (61)

which implies

B5(32n+ 31) ≡ 0 (mod 23) (62)

and
∞∑
n=0

B5(32n+ 15)qn ≡ 4f1f10 (mod 23), (63)

which is the α = β = 0 case of (26). Let us consider the case β = 0 in (26) and

prove by induction on α. Suppose that Congruence (26) holds for some integer

α > 0.
∞∑
n=0

B5

(
22α+5n+

11 · 22α+2 + 1

3

)
qn ≡ B5(32n+ 15). (64)

The remaining proof is similar to the proof of (23). So, we omit the details.

Suppose that Congruence (26) holds for some integers α, β > 0. Employing (39)

in (26), we find that

∞∑
n=0

B5

(
22α+5 · 52βn+

11 · 22α+2 · 52β + 1

3

)
qn

≡ 4f10f25(R(q5)−1 − q − q2R(q5)) (mod 23). (65)

Collecting the coefficients of q5n+3 and q5n+4 from (65), we get (27).

Collecting the coefficients q5n+1 from (65), we deduce that

∞∑
n=0

B5

(
22α+5 · 52β+1n+

7 · 22α+2 · 52β+1 + 1

3

)
qn

≡ 4f2f5 ≡ 4f5f50(R(q10)−1 − q2 − q4R(q10)) (mod 23), (66)
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which implies

∞∑
n=0

B5

(
22α+5 · 52β+2n+

11 · 22α+5 · 52β+2 + 1

3

)
qn ≡ 4f1f10, (67)

which implies that (26) is true for β + 1 with α ≥ 0. By induction, Equation (26)

holds for all α, β ≥ 0.

Equation (66) proves (28).

Collecting the coefficients of q5n+1 and q5n+3 from (66), we obtain (29).

8. Proof of Theorem 5

We prove the identity (30) by induction, Equation (26) is the γ = 0 case of Con-

gruence (30). Suppose that Congruence (30) holds for some integers γ > 0. For a

prime p > 5 and −(p− 1)/2 ≤ k,m ≤ (p− 1)/2, consider

3k2 + k

2
+ 10× 3m2 +m

2
≡ 11p2 − 11

24
(mod p).

This is equivalent to

(6k + 1)2 + 10(6m+ 1)2 ≡ 0 (mod p).

Since

(
−10

p

)
= −1, the only solution of the above congruence is k = m = (±p −

1)/6. Using (7) in (26), we obtain

∞∑
n=0

B5

(
22α+5 · 52β · p2γ+1n+

11 · 22α+2 · 52β · p2γ+2 + 1

3

)
qn ≡ 4fpf10p (mod 23),

(68)

which implies

∞∑
n=0

B5

(
22α+5 · 52β · p2γ+2n+

11 · 22α+2 · 52β · p2γ+2 + 1

3

)
qn ≡ 4f1f10 (mod 23),

(69)

which implies that (30) is true for γ + 1 with α, β > 0. Hence, by induction,

Congruence (30) is true for all non-negative integers γ > 0. This proves (30).

Collecting the coefficients of qpn+i from both sides of (68), we obtain (31).

Since the proofs of (32) and (33) are similar to the proof of (30). So, we omit

the details.

Acknowledgments. The authors are thankful to the referee for his/her comments

which improves the quality of our paper.



INTEGERS 20 (2020) 11

References

[1] B. C. Berndt, Ramanujan’s Notebooks Part III, Springer-Verlag, New York, 1991.

[2] N. Calkin, N. Drake, K. James, S. Law, P. Lee, D. Penniston and J. Radder, Divisibility
properties of the 5-regular and 13-regular partition functions, Integers 8 (2008), #A60.

[3] S. P. Cui and N. S. S. Gu, Arithmetic properties of `-regular partitions, Adv. Appl. Math. 51
(2013), 507-523.

[4] M. D. Hirschhorn, Ramanujan’s “most beautiful identity”, Amer. Math. 118 (2011), 839-845.

[5] M. D. Hirschhorn and J. A. Sellers, Elementary proofs of parity results for 5-regular partitions,
Bull. Aust. Math. Soc. 81 (2010), 58-63.

[6] M. S. Mahadeva Naika and B. Hemanthkumar, Arithmetic properties of 5-regular bipartitions,
Int. J. Number Theory 13(2) (2017), 939-956.

[7] M. S. Mahadeva Naika, B. Hemanthkumar and H. S. Sumanth Bharadwaj, Congruences mod-
ulo 2 for certain partition functions, Bull. Aust. Math. Soc. 93(3) (2016), 400-409.

[8] M. S. Mahadeva Naika, B. Hemanthkumar and H. S. Sumanth Bharadwaj, Color partition
identities arising from Ramanujan’s theta functions, Acta Math. Vietnam. 44(4) (2016), 633-
660.

[9] M. Prasad and K. V. Prasad, On (`,m)-regular partitions with distinct parts, Ramanujan J.
46 (2018), 19-27.

[10] S. Ramanujan, Collected Papers, Cambridge University Press, 1927; reprinted by Chelsea,
New York, 1962; reprinted by the American Mathematical Society, RI, 2000.

[11] G. N. Watson, Theorems stated by Ramanujan (VII): Theorems on continued fractions, J.
London Math. Soc. 4 (1929), 39-48.


