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Department of Algebra and Geometry, Faculty of Mathematics, Physics and
Informatics, Comenius University, Bratislava, Slovakia

martin.macaj@fmph.uniba.sk

Received: 1/15/20, Revised: 8/8/20, Accepted: 10/26/20, Published: 11/2/20

Abstract

In this paper we give a partial proof of the following conjecture of Victor Guo: If n
and k are two positive integers with 2 ≤ k ≤ n

2 , then

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.

1. Introduction

The binomial coefficient
(
n
k

)
is the number of ways of picking k unordered out-

comes from n possibilities. The value of the binomial coefficient for nonnegative n

and k is given explicitly by (
n

k

)
=

n!

(n− k)!k!
.

Since
(
n
k

)
= n

k

(
n−1
k−1
)
, we have gcd

((
n
k

)
, n
)
> 1, where gcd(a, b) denotes the great-

est common divisor of two integers a and b. If gcd
((

n
k

)
, n− 1

)
> 1, then, from

gcd(n, n−1) = 1 it follows that
(
n
k

)
has at least two different prime factors. In gen-

eral gcd
((

n
k

)
, n− 1

)
is not always greater than one. For example, gcd

((
7
3

)
, 6
)

= 1.

We obtain a similar conclusion for gcd
((

n
k

)
, n− 2

)
. The example gcd

((
14
4

)
, 12
)

= 1
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shows that gcd
((

n
k

)
, n− 2

)
is not always greater than one. However, it seems that

one of the claims gcd
((

n
k

)
, n− 1

)
> 1 and gcd

((
n
k

)
, n− 2

)
> 1 is always true. In

this direction, in [2] Guo stated the following conjecture:

If n and k are two positive integers with 2 ≤ k ≤ n
2 , then

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.

Based on a result from [1] and by applying elementary number theory, in this

paper we prove that if n − 1 is a prime power or n − 2 is a prime power, double

or triple of a prime power, then for any 2 ≤ k ≤ n
2 we have gcd

((
n
k

)
,
(
n−1
2

))
> 1

(Theorems 1 and 3, respectively). Moreover if 2 ≤ k <
1+
√

1+4(n−1)(1+
√
n−1)

2 , then

the conjecture is true (Theorem 4). In addition, we derive two divisibility criteria

which provide that gcd
((

n
k

)
,
(
n−1
2

))
> 1 (Propositions 1 and 2).

2. Results

In [1] Gould and Schlesinger proved

n− i

gcd(n− i, k(k − 1) · · · (k − i))
|
(
n

k

)
for every 0 ≤ i ≤ k − 1.

The results in this paper are based on the above divisibility property setting i = 1

and i = 2. For that purpose, in the following lemma we present the proofs of these

cases.

Lemma 1. 1. Let 2 ≤ k ≤ n. Then,

n− 1

gcd(n− 1, k(k − 1))
|
(
n

k

)
.

2. Let 3 ≤ k ≤ n. Then,

n− 2

gcd(n− 2, k(k − 1)(k − 2))
|
(
n

k

)
.

Proof. 1. Let gcd(n − 1, k(k − 1)) = d. There exist integers x and y such that

(n− 1)x+ k(k− 1)y = d. It is enough to prove that d
(
n
k

)
is divisible by n− 1.

We have

d

(
n

k

)
= ((n−1)x+k(k−1)y)

(
n

k

)
= (n−1)x

(
n

k

)
+k(k−1)y

n

k

n− 1

k − 1

(
n− 2

k − 2

)

= (n− 1)

(
x

(
n

k

)
+ ny

(
n− 2

k − 2

))
.
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2. Let gcd(n−2, k(k−1)(k−2)) = d. Similarly like above, there exist integers x

and y such that (n− 2)x + k(k − 1)(k − 2)y = d. We need to show that d
(
n
k

)
is divisible by n− 2. We have

d
(
n
k

)
= ((n− 2)x + k(k − 1)(k − 2)y)

(
n
k

)
= (n− 2)x

(
n

k

)
+ k(k − 1)(k − 2)y

n

k

n− 1

k − 1

n− 2

k − 2

(
n− 3

k − 3

)
= (n− 2)

(
x

(
n

k

)
+ n(n− 1)y

(
n− 3

k − 3

))
.

Now we are ready to give the first result in this paper.

Proposition 1. Let 2 ≤ k ≤ n
2 . If k(k−1) is not divisible by n−1 or k(k−1)(k−2)

is not divisible by n− 2, then

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.

Proof. Let gcd(n− 1, k(k − 1)) = d < n− 1. From Lemma 1 we have n−1
d |
(
n
k

)
.

If n is an even number, then n−2
2 is a positive integer. Therefore n−1

d |(n − 1) ·
n−2
2 =

(
n−1
2

)
. Since n−1

d |
(
n
k

)
and n−1

d |
(
n−1
2

)
we have gcd

((
n
k

)
,
(
n−1
2

))
≥ n−1

d > 1.

If n is an odd number, then gcd(n− 1, k(k− 1)) = d = 2d
′
. Thus, n−1

d |
n−1
2 , that

is, n−1
d |
(
n−1
2

)
. Again we obtain gcd

((
n
k

)
,
(
n−1
2

))
≥ n−1

d > 1.

Following the same reasoning as above we easily prove that if gcd(n − 2, k(k −
1)(k − 2)) = d < n− 2, then gcd

((
n
k

)
,
(
n−1
2

))
≥ n−2

d > 1.

From now on we assume that k(k − 1) is divisible by n− 1 and k(k − 1)(k − 2)

is divisible by n− 2. This assumption leads to the following result.

Theorem 1. If n−1 or n−2 is a prime power, then for any k such that 2 ≤ k ≤ n
2 ,

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.

Proof. Let p be a prime number and let n−1 = pe or n−2 = pe. Since n−1|k(k−1)

and n− 2|k(k − 1)(k − 2) we obtain pe|k(k − 1) or pe|k(k − 1)(k − 2).

If n − 1 = pe, then from gcd(k, k − 1) = 1 we get pe|k or pe|k − 1. This is in

contradiction to pe = n− 1 ≥ 2k − 1.

If n− 2 = pe, then we consider two cases. If p ≥ 3, then from pe|k(k − 1)(k − 2)

and gcd(k, k − 1, k − 2) = 1, gcd(k, k − 2) ≤ 2 we have pe|k or pe|k − 1 or pe|k − 2.

As above, these three divisibilities are not possible. If p = 2, then n − 2 = 2e and

2e|k(k − 1)(k − 2). Since k ≤ n
2 we get k ≤ 2e−1 + 1.
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If k is an odd number, then 2e|k−1; this divisibility is not possible since k−1 ≤
2e−1.

If k is an even number, then 2e−1|k or 2e−1|k− 2. If k = 2e−1, then from Lemma

1 we have
2e + 1

gcd(2e + 1, 2e−1(2e−1 − 1))
|
(

2e + 2

2e−1

)
.

Since gcd(2e + 1, 2e−1(2e−1 − 1)) ∈ {1, 3} we get 2e + 1|
(
2e+2
2e−1

)
or 2e+1

3 |
(
2e+2
2e−1

)
.

On the other hand(
n− 1

2

)
=

(
2e + 1

2

)
=

(2e + 1)2e

2
= (2e + 1)2e−1.

Thus we obtain

gcd

((
2e + 2

2e−1

)
,

(
2e + 1

2

))
≥ 2e + 1

3
> 1.

If k ≤ 2e−1, then 2e−1 does not divide k and k − 2.

Proposition 2. Let k, n be integers such that 2 ≤ k ≤ n
2 and gcd

((
n
k

)
,
(
n−1
2

))
= 1.

Then there exist positive integers a and c such that

k(k − 1) = a(n− 1)

a(k − 2) = c(n− 2).

Moreover
a2

c
− 1 < k <

a2

c
− 1

2

and

n− 2|a(a− 2).

Proof. Since k = 2 does not satisfy the conditions we assume k ≥ 3. Moreover, let

us suppose that gcd(n−1, k(k−1)) = n−1 and gcd(n−2, k(k−1)(k−2)) = n−2.

Hence, there exist positive integers a and b such that k(k − 1) = a(n − 1) and

k(k − 1)(k − 2) = b(n − 2). It is easy to see that n − 1 divides b(n − 2). Since

gcd(n− 1, n− 2) = 1, we obtain that b is a multiple of n− 1, that is, there exists a

positive integer c such that b = c(n−1). Thus we obtain the following two equations

k(k − 1) = a(n− 1) (1)

k(k − 1)(k − 2) = c(n− 1)(n− 2). (2)

Replacing (1) in (2) and using n− 1 = k(k−1)
a we obtain a(k− 2) = c

(
k(k−1)

a − 1
)

,

that is, we obtain the following quadratic equation in k

ck2 − k(a2 + c) + 2a2 − ac = 0. (3)
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Solving (3) we get

k1,2 =
a2 + c±

√
a4 − 6a2c + 4ac2 + c2

2c
. (4)

Since k is a natural number, the discriminant of (3) is a perfect square. There exists

a positive integer t such that a4 − 6a2c + 4ac2 + c2 = t2. We will show that

0 < a2 − 3c < t < a2 − 2c. (5)

Dividing (2) by (1) we get c
a = k−2

n−2 < k
n ≤

1
2 . Hence

t2 < (a2 − 2c)2 ⇔ 0 < ac(2a− 4c) + 3c2 ⇐ 0 < ac(2a− 4c)⇔ 2c < a.

From a > 2c ≥ 2 and t2 = (a2 − 3c)2 + 4(a− 2)c2 we derive the lower bound.

By (4) we obtain that k is of the form a2+c±t
2c . If k = a2+c−t

2c , then we have

3

2
=

a2 + c− a2 + 2c

2c
< k <

a2 + c− a2 + 3c

2c
= 2.

Therefore

k =
a2 + c + t

2c
(6)

and
a2

c
− 1 =

a2 + c + a2 − 3c

2c
< k <

a2 + c + a2 − 2c

2c
=

a2

c
− 1

2
.

Substituting c = a2(k−2)
k2−k−a in (6) we obtain

t = 2ck − a2 − c =
a2(k2 − 4k + a + 2)

k2 − k − a
=

a2(k2 − 4k + a + 2)

k2 − k − a

k − 2

k − 2

= c
k2 − 4k + a + 2

k − 2
= c(k − 2) +

c(a− 2)

k − 2
.

Hence k − 2|c(a− 2), that is, a(k − 2)|ca(a− 2). From a(k − 2) = c(n− 2) we get

n− 2|a(a− 2).

The next result follows directly from Proposition 2.

Theorem 2. Let 2 ≤ k ≤ n
2 . If k2(k−1)2−2k(k−1)(n−1)

(n−2)(n−1)2 is not an integer, then

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.
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Proposition 3. Let p ≥ 3 be a prime number such that pe|n − 2. Then for any

k ∈
[
2,

1+
√

1+4pe(n−1)
2

)
we have

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.

Proof. According to Proposition 2 it suffices to prove that n − 2 does not divide

a(a− 2), where a = k(k−1)
n−1 .

Let n− 2|a(a− 2). Hence pe|a(a− 2). Since p ≥ 3 and gcd(a, a− 2) ≤ 2, we have

pe|a or pe|a− 2. We will show that this is not possible by proving pe > a = k(k−1)
n−1 .

We have

pe >
k(k − 1)

n− 1
⇔ k2 − k − pe(n− 1) < 0⇔

k ∈

(
1−

√
1 + 4pe(n− 1)

2
,

1 +
√

1 + 4pe(n− 1)

2

)
.

The case p = 2 is considered in the following proposition.

Proposition 4. Let 2e|n− 2. Then for any k ∈
[
2,

1+
√

1+2e+1(n−1)
2

)
we have

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.

Proof. Similarly as in the previous preposition we assume n− 2|a(a− 2). Therefore

2e|a(a − 2). Clearly a is an even number and gcd(a, a − 2) = 2. Thus 2e−1|a or

2e−1|a−2. On the other hand, from k <
1+
√

1+2e+1(n−1)
2 we obtain 2e−1 > k(k−1)

n−1 =

a. This conclusion is in contradiction to 2e−1|a or 2e−1|a− 2.

Theorem 3. Let p ≥ 3 be a prime number. If n = 2pe + 2 or n = 3pe + 2 and

2 ≤ k ≤ n
2 , then

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.

Proof. The proof relies on Proposition 3 by showing
1+
√

1+4pe(n−1)
2 > n

2 . Since

pe ≥ n−2
3 and since

1+
√

1+4pe(n−1)
2 > n

2 is equivalent to pe > n−1
4 − 1

4(n−1) , it is

enough to prove
n− 2

3
>

n− 1

4
− 1

4(n− 1)
. (7)

From the conditions we can take n > 5. This assumption is equivalent to n−2
3 > n−1

4 ,

which leads to the inequality (7).
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Theorem 4. If 2 ≤ k <
1+
√

1+4(n−1)(1+
√
n−1)

2 , then

gcd

((
n

k

)
,

(
n− 1

2

))
> 1.

Proof. If k2(k−1)2−2k(k−1)(n−1) < (n−2)(n−1)2, then k2(k−1)2−2k(k−1)(n−1)
(n−2)(n−1)2

is not an integer, which leads to the positive answer of the conjecture. Setting

t = k(k − 1) and solving the quadratic inequality t2 − 2t(n − 1) − (n − 2)(n −
1)2 < 0 we obtain t ∈ ((n − 1) − (n − 1)

√
n− 1, (n − 1) + (n − 1)

√
n− 1). Since

t = k(k − 1) > 0 we have k(k − 1) < (n − 1)(1 +
√
n− 1). Solving the inequality

k2 − k − (n− 1)(1 +
√
n− 1) < 0 we obtain k <

1+
√

1+4(n−1)(1+
√
n−1)

2 .
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