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Abstract
We study the problem of crescent configurations, posed by Erdős in 1989. A crescent
configuration is a set of n points in the plane such that: 1) no three points lie on a
common line, 2) no four points lie on a common circle, 3) for each 1 ≤ i ≤ n − 1,
there exists a distance which occurs exactly i times. Constructions of sizes n ≤ 8
have been provided by Liu, Palásti, and Pomerance. Erdős conjectured that there
exists some N for which there do not exist crescent configurations of size n for all
n ≥ N .

We extend the problem of crescent configurations to general normed spaces
(R2, || · ||) by studying strong crescent configurations in || · ||. In an arbitrary norm
|| · ||, we construct a strong crescent configuration of size 4. We also construct larger
strong crescent configurations of size n ≤ 6 in the Euclidean norm and of size n ≤ 8
in the taxicab and Chebyshev norms. When defining strong crescent configurations,
we introduce the notion of line-like configurations in || · ||. A line-like configuration
in || · || is a set of points whose distance graph is isomorphic to the distance graph
of equally spaced points on a line. In a broad class of norms, we construct line-like
configurations of arbitrary size.

Our main result is a crescent-type result about line-like configurations in the
Chebyshev norm. A line-like crescent configuration is a line-like configuration for
which no three points lie on a common line and no four points lie on a common
|| · || circle. We prove that for n ≥ 7, every line-like crescent configuration of size
n in the Chebyshev norm must have a rigid structure. Specifically, it must be a
perpendicular perturbation of equally spaced points on a horizontal or vertical line.
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1. Introduction

1.1. Background

The Erdős distinct distances problem is a core problem in discrete geometry. It asks
the following deceptively simple question: what is the minimum number of distinct
distances determined by n points in the plane? Erdős posed this problem in a 1946
paper [4], in which he proved the lower bound Ω(n1/2) using a simple geometrical
argument and the upper bound O(n/

√
log n) by considering the number of distinct

distances determined by a
√
n ×
√
n square lattice. Over the subsequent decades,

this lower bound was gradually improved. In 2015, Guth and Katz [7] proved the
lower bound Ω(n/ log n), solving the problem up to a factor of

√
log n.

The Erdős distinct distances problem inspired many related questions. We study
the problem of crescent configurations, first posed by Erdős in [5]. Consider the
following question: What is the structure of a set of n points which determines
n − 1 distinct distances, such that for each 1 ≤ i ≤ n − 1, the ith distance occurs
exactly i times? For every n, many such sets exist. For example, consider n equally
spaced points on a line, or n equally spaced points on a circular arc (Figure 1).1

Figure 1: Equally spaced points on a line and on a circle.

One might ask whether every such set must make use of the structure of lines or
circles. More precisely, a set of points is said to lie in general position if no three
points lie on a common line and no four points lie on a common circle. Using this
notion, we define what it means for a set of points to form a crescent configuration.2

Definition 1.1. A set of n points in the plane is said to form a crescent configuration
if the following two conditions hold.

1. The n points lie in general position.

2. For each 1 ≤ i ≤ n− 1, there exists a distance which occurs with multiplicity
exactly i.

1Not all instances of n equally spaced points on a circle satisfy this property. For example, the
set {(0, 1), (1, 0), (−1, 0), (0,−1)} determines the distance

√
2 four times and the distance 2 two

times. These exceptions are unimportant, so we ignore them.
2The term crescent configuration was first used by Burt et al. [1].
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Erdős’ question was the following: for which n does there exist a crescent config-
uration of size n? Constructions of crescent configurations of size n ≤ 8 have been
provided by Liu, Palásti, and Pomerance [8, 11, 12, 5]. These constructions are non-
obvious and geometrically intricate. For example, Palásti’s crescent configuration
of size 8 is depicted in Figure 2.

Figure 2: A crescent configuration of size 8 due to Palásti [12].

The question as to whether crescent configurations of size n exist remains open for
n ≥ 9. Motivated by the observation that Palásti’s constructions lie on a triangular
lattice, Burt et al. [1] exhaustively searched a 91-point triangular lattice and showed
that it does not contain a crescent configuration of size 9. By contrast, Palásti’s
crescent configuration of size 8 is contained in a 37-point triangular lattice.

Often, studying a distance problem in a more general normed space can reveal
additional structure of the problem. A first example is the Erdős distinct distances
problem. Recall that the Erdős distinct distances problem asks for the minimum
number of distinct distances determined by n points in the plane. The current
best lower bound is Ω(n/ log n) by Guth and Katz in 2015 [7], which in particular
improves upon the lower bound Ω(n1/2) by Erdős in 1946 [4] and the lower bound
Ω(n4/5) by Székely in 1993 [13]. Garibaldi [6] provided conditions for general norms
in R2 to satisfy these weaker Ω(n1/2) and Ω(n4/5) bounds, leading to a deeper
understanding of the techniques used in their proofs.

A second example is the unit distances problem, also posed by Erdős [4] in
the same 1946 paper. The original unit distances problem asks for the maximum
number of distances of unit length determined by n points in the plane in the
Euclidean norm. It can be generalized to arbitrary norms in R2 as follows. Let
u||·||(n) denote the maximum number of distances of unit length determined by n
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points in the plane in the norm || · ||. Brass [2] proved that if || · || is not strictly
convex ("not strictly convex" means that the unit circle of || · || contains a line
segment), then u||·||(n) = Θ(n2). By contrast, Valtr [14] proved that if || · || is
strictly convex, then u||·||(n) = O(n4/3) (see Definition 2.4). Interestingly, this
upper bound u||·||(n) = O(n4/3) cannot be improved without taking into account
the geometry of a strictly convex norm || · ||. Valtr [14] constructed a strictly convex
norm || · || for which u||·||(n) = Θ(n4/3). Moreover, there exist norms for which
u||·||(n) = o(n4/3). Matoušek [9] proved that “almost every” strictly convex norm
|| · || satisfies u||·||(n) = O(n log n log log n).

Previously, crescent configurations have only been studied in the Euclidean set-
ting. We extend the problem of crescent configurations to general normed spaces
(R2, || · ||).

1.2. Overview of results

In Section 2, we define strong crescent configurations, a generalization of crescent
configurations to normed spaces (R2, || · ||). To do this, we introduce the concept of
line-like configurations and strong general position in || · ||.

In Section 3, we construct infinitely many line-like configurations of arbitrary
size under a broad class of norms. We say that a set of n points forms a line-like
configuration in || · || if its distance graph, measured in || · ||, is isomorphic to the
distance graph of n equally spaced points on a line.

Theorem 1.2. Let || · || be a norm which is not strictly convex. Then for each n,
there exist infinitely many (after scaling and translating) line-like configurations of
size n in || · ||.

Theorem 1.3. Let || · || be a norm whose unit circle contains an arc contained in
an L2 circle centered at the origin. Then for each n, there exist infinitely many
(after scaling and translating) line-like configurations of size n in || · ||.

Let || · || be a norm which does not satisfy the conditions from Theorem 1.2 or
Theorem 1.3. For all n ≥ 5, we conjecture that the only line-like configurations of
size n in || · || are equally spaced points on a line (cf. Section 6.2).

In Section 4, we prove a crescent-type result about crescent line-like configu-
rations in the L∞ norm. We say a line-like configuration is a line-like crescent
configuration if no three points lie on a common line and no four points lie on a
common || · || circle. We say that P1, . . . , Pn is a perpendicular perturbation of a
line ` if there exist equally spaced points Q1, . . . , Qn on ` so that the lines

←−→
PiQi are

perpendicular to ` for all 1 ≤ i ≤ n.
We now give the definition of the L∞ norm (Chebyshev norm).

Definition 1.4. Let a = (ax, ay) and b = (bx, by) be two points in the plane. The
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L∞ norm (Chebyshev norm) is defined by

||a− b||L∞ := max{|bx − ax|, |by − ay|}.

Theorem 1.5. Let n ≥ 7. Then every line-like crescent configuration in L∞ of size
n is a perpendicular perturbation of a horizontal or vertical line.

For n ≤ 6, there exist line-like crescent configurations in L∞ of size n which are
not perpendicular perturbations (cf. Example 4.6).

In Section 5 we provide explicit constructions of strong crescent configurations.
In every norm, we construct a strong crescent configuration of size four.

Theorem 1.6. Let || · || be any norm. Then there exists a strong crescent config-
uration of size 4 in || · ||.

We also construct larger strong crescent configurations in the L2, L1, and L∞

norms. The constructions were found by using a computer program to search a
lattice, a technique previously employed by Palásti in [12].

Definition 1.7. Let a = (ax, ay) and b = (bx, by) be two points in the plane. The
L1 norm (taxicab norm) is defined by

||a− b||L1 := |by − ay|+ |bx − ax|.

The L2 norm (Euclidean norm) is defined by

||a− b||L2 :=
√

(by − ay)2 + (bx − ax)2.

First, we provide constructions of strong crescent configurations in L2. The set
of strong crescent configurations in L2 (from Definition 2.15) is a subset of the set of
crescent configurations (from Definition 1.1). Crescent configurations of size n ≤ 8

have been constructed in [8, 11, 12, 5]. However, none of these constructions of sizes
n = 6, 7, 8 is strong. We provide a construction of a strong crescent configuration
in L2 of size 6.

Theorem 1.8. In the L2 norm, there exist strong crescent configurations of size
n ≤ 6.

Second, we provide constructions of strong crescent configurations in L1 and L∞.
We do so by first using a computer program to search a square lattice for strong
crescent configurations in L∞. The constructions in L∞ immediately give rise to
constructions in L1, as there is a dual relationship between sets of points in L1 and
L∞. We chose to study those norms in particular because they are highly symmetric
and easily computable. Perhaps future research could investigate if such a duality
exists between Lp and its dual space. Given a lattice and a method to compute
distances and circles in an arbitrary norm || · ||, our algorithm would similarly be
able to search for strong crescent configurations in || · || in a lattice.
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Theorem 1.9. In the L∞ norm, there exist strong crescent configurations of sizes
n ≤ 8.

Corollary 1.10. In the L1 norm, there exist strong crescent configurations of sizes
n ≤ 8.

2. General Position and Crescent Configurations in Normed Spaces

2.1. Preliminaries

Throughout this paper, we study the vector space R2, equipped with an arbitrary
norm || · || : R2 → R. In this section, we recall properties of these normed spaces
(R2, || · ||) that are used in our proofs. See [10] for a comprehensive survey of the
geometry of normed spaces.

Definition 2.1. A norm on R2 is a function || · || : R2 → R satisfying the following
three properties.

1. For all x ∈ R2 we have ||x|| ≥ 0. Moreover, ||x|| = 0 if and only if x = 0.

2. For all x ∈ R2 and λ ≥ 0 we have ||λx|| = λ||x||.

3. For all x, y ∈ R2 we have ||x+ y|| ≤ ||x||+ ||y||.

Each norm || · || : R2 → R specifies a distance function (or metric) d||·|| : R2 → R,
given by

d||·||(x, y) := ||x− y||

for all (x, y) ∈ R.

A norm on R2 is uniquely determined by specifying its unit ball B.

Definition 2.2. A unit ball on R2 is a set B ⊂ R2 satisfying the following proper-
ties:

1. B is closed and bounded,

2. B has a non-empty interior,

3. B is centrally symmetric,

4. B is convex.

The corresponding unit circle is the boundary ∂B. We denote the circle of radius
r centered at p by B||·||(p, r).
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Example 2.3. For 1 ≤ p <∞, the Lp norm, denoted || · ||p, is defined by

||(x, y)||p := (|x|p + |y|p)1/p,

for all (x, y) ∈ R2. The corresponding unit ball is

B = {(x, y), |x|p + |y|p ≤ 1}.

For p =∞, the L∞ norm, denoted || · ||∞, is defined by

||(x, y)||∞ := max(|x|, |y|),

for all (x, y) ∈ R2. The corresponding unit ball is

B = {(x, y), |x|, |y| ≤ 1}.

Euclidean distance is given by the L2 norm.

Next we briefly discuss strict convexity. An in depth treatment can be found in
[10] (pg. 10–15).

Definition 2.4. Let || · || be a norm with unit ball B. The following are equivalent.

1. For x, y ∈ R2, we have ||x + y|| = ||x|| + ||y|| if and only if x = λy for some
λ ≥ 0.

2. The unit circle ∂B does not contain a line segment.

A norm which satisfies these properties is said to be strictly convex.

Example 2.5.

1. Lp is strictly convex for 1 < p <∞.

2. L1 and L∞ are not strictly convex.

We recall the following lemma about intersection points of circles in strictly
convex norms. A proof can be found in [10] (pg. 13–14).

Lemma 1. Let || · || be a strictly convex norm. Then two circles B||·||(p1, r1) and
B||·||(p2, r2) with p1 6= p2 intersect in at most two points.

Lemma 2. The spaces (R2, || · ||∞) and (R2, || · ||1) are isometric.

Proof. Let T : (R2, || · ||∞) → (R2, || · ||1) be the linear map given by the matrix[
1 1
1 −1

]
. For each (x, y) ∈ R2 we have∥∥∥∥[1 1

1 −1

] [
x
y

]∥∥∥∥
∞

= max{|x+ y|, |x− y|} = |x|+ |y| =
∥∥∥∥[xy

]∥∥∥∥
1

.

This establishes an isometric map between the L∞ unit ball and the L1 unit
ball.
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2.2. Line-like Configurations

We first recall the notion of general position in the Euclidean setting.

Definition 2.6. A set of points in the plane is said to lie in general position if no
three points lie on a common line and no four points lie on a common circle.

Crescent configurations were first studied by Erdős in [5], and the term “crescent
configuration” was coined by Burt et al. in [1]. We want to generalize the notion
of crescent configurations to a general normed space. In the Euclidean setting, n
equally spaced points on a line and n equally spaced points on a circular arc (Figure
1) satisfy crescent configuration condition (2). The purpose of condition (1) is to
omit these trivial configurations. The following example demonstrates that there
exist trivial constructions in other norms which satisfy Definition 1.1. For larger
classes of examples, see Sections 3.1 and 3.2.

Example 2.7. Consider the L∞ norm. For each n, there exist infinitely many
sets of n points which satisfy crescent configuration condition (2), and satisfy the
property that no three points lie on a line and no four points lie on an L∞ ball. To
construct such a set, start with n equally spaced points on a horizontal line, say

(1, 0), (2, 0), (3, 0), . . . , (n, 0).

Then perturb the points in the y direction. Specifically, pick ε1, . . . , εn ∈ R so
that the point set

(1, ε1), (2, ε2), . . . , (n, εn)

satisfies the following two properties.

1. For all i, j ∈ {1, . . . , n}, dL∞( (i, εi), (j, εj) ) = |j − i|.

2. No three points lie on a line.

For example, this can be accomplished by picking εi = 1/i. See Figure 3.

Example 2.7 demonstrates the usefulness of a stronger notion of general position.
Note that a common feature of the three trivial configurations presented in Figures
1 and 3 is that their distance graphs are isomorphic to the distance graph of equally
spaced points on a line in the following sense.

Definition 2.8. Let S, T ⊂ R2 such that |S| = |T | = n for some n ∈ N. Let
|| · ||S , || · ||T be two norms in R2. We say that the distance graphs of S in || · ||S
and T in || · ||T are isomorphic if there exists a bijection φ : S → T such that for
all a, b, c, d ∈ S we have

||a− b||S = ||c− d||S ⇐⇒ ||φ(a)− φ(b)||T = ||φ(c)− φ(d)||T .
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Figure 3: A set of n = 6 points which form a weak crescent configuration in L∞.
Coordinates {(1, 1), (2, 1/2), (3, 1/3), (4, 1/4), (5, 1/5), (6, 1/6)}.

The choice of comparing an arbitrary distance graph to the distance graph of
equally spaced points on a line is natural because equally spaced points on a line
have the same structure in any normed space.

Lemma 3. Fix a norm || · ||. Let S = {s1, . . . , sn} ⊂ R2 be a set of n equally spaced
points on a line for some n ∈ N. In other words, s1, . . . , sn lie on a common line
and

d||·||(s1, s2) = · · · = d||·||(si, si+1) = · · · = d||·||(sn−1, sn).

Then for all i, j ∈ {1, . . . , n} we have

d||·||(si, sj) = |j − i| · d||·||(s1, s2).

Proof. If i = j, clearly d||·||(si, sj) = 0. Without loss of generality, assume i < j.
Because s1, . . . , sn lie on a line, the vectors s2 − s1, s3 − s2, . . . , sn − sn−1 are
linearly dependent. Moreover, ||s2 − s1|| = ||s3 − s2|| = · · · = ||sn − sn−1||. By
linear dependence,

||sj − si|| = ||sj − sj−1||+ ||sj−1 − sj−2||+ · · ·+ ||si+1 − si||
= |j − i| · ||s2 − s1||.

Lemma 3 immediately implies the following.
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Corollary 2.9. Let S, T ⊂ R2 such that |S| = |T | = n for some n ∈ N. Suppose
S and T are sets of equally spaced points on a line. Let || · ||S , || · ||T be any two
norms. Then the distance graphs of S in || · ||S and T in || · ||T are isomorphic.

Now we define line-like configurations. By Corollary 2.9, they are well-defined.

Definition 2.10. Fix a norm || · ||. A set of n points in the plane is said to form
a line-like configuration in || · || if its distance graph is isomorphic to the distance
graph of n equally spaced points on a line.

In the next section (Section 2.3), we use the concept of line-like configurations
to define strong general position and strong general configurations. The remaining
content of this section consists of examples of line-like configurations. Line-like
configurations are studied in depth in Section 3.

First, we provide simple examples of line-like configurations of size n, for every
natural number n.

Example 2.11.

1. Trivially, in any norm, equally spaced points on a line form a line-like config-
uration.

2. In L2, equally spaced points on a circular arc form a line-like configuration.
See Figure 1.

3. In L∞, certain perturbations of equally spaced points on a line form a line-like
configuration. See Example 2.7 and Figure 3.

4. In Figure 5 we see an example of a perpendicular perturbation in a generic
norm which is not strictly convex.

5. In Theorem 1.2 and Theorem 1.3 we provide constructions of line-like config-
urations in a broad class of norms. See Sections 3.1 and 3.2.

Second, we describe all line-like configurations of size 2, 3 in an arbitrary norm.

Example 2.12.

1. Any two distinct points trivially form a line-like configuration in any norm.

2. Line-like configurations of size three correspond to (possibly degenerate) isosce-
les triangles. To construct a line-like configuration of size three in an arbitrary
norm || · ||, start with distinct points A,B ∈ R2. Draw the || · || circle cen-
tered at B with radius |AB|. Pick any point C lying on this circle such that
|AC| 6= |AB|. Then |AB| = |BC| and |AB| 6= |AC|, so A,B,C forms a
line-like configuration.
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Finally, we classify line-like configurations of size 4 in strictly convex norms.

Lemma 4. Let || · || be a strictly convex norm. Let A,B,C be a line-like configu-
ration of size three. Then there exist exactly two points D,E such that ABCD and
ABCE are line-like configurations. Moreover, at least one of ABCD and ABCE
is a parallelogram.

Proof. Let C1 be B||·||(C, |BC|) and C2 be B||·||(B, |AB|). The set of points X for
which ABCX is a line-like configuration is precisely the set of intersection points
of the two circles C1 and C2. Translate

−→
AC to point B and let the tip of the

translated vector be D. Then ABCD is a parallelogram with |AB| = |BC| = |CD|
and |AC| = |BD|. So D lies on both circles C1 and C2.

By Lemma 1, C1 and C2 have at most two intersection points. We show that a
second intersection point exists by a monotonicity argument. Let the intersection
point of line

←→
BC with C1 which is not B be R. Let the intersection points of line←→

BC with C2 be P and Q so that
−−→
BQ points in the same direction as

−−→
CB and

−−→
BP

points in the same direction as
−−→
BC. Since || · || is strictly convex, |AC| < 2 · |AB|,

which implies |CP | < |CR|. On the other hand, because
−−→
BQ points in the same

direction as
−−→
CB, |CQ| > |CB|. Thus C1 and C2 intersect once in each upper half-

plane above and below line
←→
BC. These give the two intersection points D and E.

Figure 4: Illustrating the proof of Lemma 4. Here we use the L2 norm. Given three
points A,B,C which form a line-like configuration, there exist exactly two points
D,E such that ABCD and ABCE form a line-like configuration.
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2.3. Strong General Position and Strong Crescent Configurations

Using this notion of line-like configurations, we can define strong general position
in an arbitrary norm || · ||.

Definition 2.13. A set of points in the plane is said to lie in strong general position
in || · || if the following three conditions hold.

1. No three points lie on a common line.

2. No four points lie on a common || · || circle.

3. No four points form a line-like configuration of size four.

Remark 2.14. The notion of L2 strong general position, as given in Definition
2.13, is more restrictive than the standard notion of L2 general position, as given
in Definition 2.6. Specifically, strong general position additionally forbids line-like
configurations of size four. Borrowing the notation from Lemma 4, let ABCD be a
line-like configuration which is not a parallelogram. By symmetry, the perpendicular
bisectors of AB, BC, and CD meet in a common point, so A,B,C,D lie on a
common circle. Thus, a set of points in L2 general position lies in L2 strong general
position if and only if it does not contain a parallelogram ABCD with AB = BC =

CD, AC = BD, AB||CD and AC||BD.

Finally, using this notion of general position in || · ||, we define strong crescent
configurations in || · ||.

Definition 2.15. A set of n points in the plane is said to form a strong crescent
configuration in || · || if the following three conditions hold.

1. The n points lie in strong general position in || · ||.

2. The n points determine n− 1 distinct distances.

3. For each 1 ≤ i ≤ n− 1, there exists a distance which occurs with multiplicity
exactly i.

Below, we collect examples of strong crescent configurations under various norms.

Example 2.16.

1. In any norm, crescent configurations of size 2, 3 exist trivially. For construc-
tions, see Example 2.11.

2. For arbitrary || · ||, we construct a strong crescent configuration of size 4. See
Section 5.1.
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3. Palásti’s [11, 12] constructions of crescent configurations of size n ≤ 5 are
strong. Additionally, Durst et al. [3] construct many strong crescent config-
urations of size n = 4, 5. However, known constructions of crescent configu-
rations of size 6, 7, 8 (due to Palásti) are not strong. We construct a strong
crescent configuration of size 6. See Section 5.2.

4. In L∞ (and thus in its dual norm L1), we construct strong crescent configu-
rations of size 4, 5, 6, 7, 8. See Section 5.3.

3. Constructions of Line-like Configurations

In the previous section we defined line-like configurations (cf. Definition 2.10). Line-
like configurations of size four are used when defining strong crescent configurations
in || · ||. In this section, we provide constructions of line-like configurations of size
n for n ≥ 5 in a broad class of norms.

3.1. Line-like Configurations in Non-strictly Convex Norms

Recall that a norm is non-strictly convex if and only if its unit circle contains a line
segment (Definition 2.4). In general, when studying distinct distances problems in
normed spaces, it is not uncommon for non-strictly convex norms to have vastly
different behavior compared to strictly convex norms. For example, consider the
unit distances problem. Let u||·||(n) denote the maximum number of distances of
length 1 that can be determined by n points in R2 in the norm ||| · ||. If || · || is
strictly convex, then u||·||(n) = O(n4/3) [14]. If || · || is not strictly convex, then
u||·||(n) = Θ(n2) [2].

In the following result, for any non-strictly convex norm, we construct many
line-like configurations which satisfy the property that no three points lie on a line.
The key insight behind the proof is that in non-strictly convex norms, we can have
||x+ y|| = ||x||+ ||y|| without x, y ∈ R2 being linearly dependent. Thus there exist
sets of points which have the additivity relations of equally spaced points on a line,
even though the points do not lie on a common line.

Theorem 1.2. Let || · || be a norm which is not strictly convex. Then for each n,
there exist infinitely many (after scaling and translating) line-like configurations of
size n in || · ||.

Proof. See Figure 5. Let || · || be a norm which is not strictly convex. Then its
unit circle contains a line segment. Denote the (scaled and translated) copy of
this line segment on a general circle B||·||(p, r) by `p,r. Pick a point P1. For all
1 ≤ i ≤ n − 1, pick a point Pi+1 lying on `Pi,1. Then for all Pi, Pj ∈ {P1, . . . , Pn}
we have ||Pj − Pi|| = |j − i|. Thus {P1, . . . , Pn} is a line-like configuration. When
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picking each of the points P1, . . . , Pn, there were infinitely many choices. Thus there
are infinitely many such configurations.

Figure 5: Left: a non-strictly convex norm. Right: Constructing a line-like config-
uration in a non-strictly convex norm. The red circles have radius 1, green circles
have radius 2, the blue circles have radius 3, and the orange circles have radius 4.

Corollary 3.1. Let || · || be a norm which is not strictly convex. For each n, there
exist infinitely many (after scaling and translating) line-like configurations of size n
in || · || which satisfy the property that no three points lie on a common line.

Proof. Repeat the proof of Theorem 1.2. When choosing the point Pi+1, pick
any point lying on `Pi,1 as like before, but now exclude any point lying on a line
determined by any two points in {P1, P2, . . . , Pi}. Infinitely many such Pi+1 exist
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because there are only finitely many points on `Pi,1 which lie on a line with two
points in {P1, P2, . . . , Pi}, and there are infinitely many points on `Pi,1.

Example 3.2. Because L1 and L∞ are non-strictly convex, Theorem 1.2 and Corol-
lary 3.1 apply. The class of examples produced by Theorem 1.2 for L∞ generalizes
Example 2.7.

3.2. Line-like Configurations in Norms Whose Unit Circles Contain an
L2 Origin Arc

In Section 3.1, we construct line-like configurations of any size in non-strictly convex
norms. These constructions rely on the fact that in a non-strictly convex norm, two
circles can intersect in infinitely many points. By contrast, in a strictly convex
norm, two circles intersect in at most two points (Lemma 1). By this heuristic, we
expect line-like configurations in strictly convex norms to be rarer.

For a particular class of strictly convex norms, we construct line-like configura-
tions of any size. Specifically, we consider norms whose unit circles contain an L2

origin arc.

Definition 3.3. Let A be an arc of positive length on an L2 circle centered at the
origin. Then we say A is an L2 origin arc.

In L2, equally spaced points along a circular arc form a line-like configuration
(Figure 1). This construction can be generalized to norms whose unit circles contain
an L2 origin arc.

Theorem 1.3. Let || · || be a norm whose unit circle contains an L2 origin arc.
Then for each n, there exist infinitely many (after scaling and translating) line-like
configurations of size n in || · ||.

Proof. See Figure 6 for a unit circle of a norm whose unit circle contains an L2

origin arc.
First we introduce some terminology. Let O denote the origin. For P ∈ R2, let

cP,r(θ) := P + (r cos(θ), r sin(θ)) denote a parameterization of an L2 circle centered
at P with radius r. For points P,Q ∈ R2 with P 6= Q, let t(P,Q) denote the unique
θ ∈ [0, 2π) for which cP,|PQ| = Q.

Let n ∈ N. We are given that the unit circle of || · || contains an L2 origin arc.
Let this arc be parameterized by cO,r(θ) for θ ∈ [θ1, θ2], with 0 ≤ θ1 < θ2 ≤ π.
Pick 0 < ε ≤ (θ2 − θ1)/(n − 2). Set P1 = cO,1(θ1) and Pi = cPi−1,1(θ1 + (i − 2)ε)

for i ∈ {2, 3, . . . , n}. See Figures 7 and 8. We claim that P1, . . . , Pn form a line-
like configuration in || · ||, which satisfy the property that no three points lie on a
common line. (Setting ε = 0 gives n equally spaced points on a line.)

It suffices to show the following.
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1. P1, . . . , Pn form a line-like configuration in L2.

2. For all 1 ≤ i < j ≤ n, we have t(Pi, Pj) ∈ [θ1, θ2].

Proof of (1): For each i ∈ {1, 2, . . . , n−3}, note that ∠PiPi+1Pi+2 = ∠Pi+1Pi+2Pi+3

= π − ε. Thus reflecting about the perpendicular bisector of Pi+1Pi+2 sends
Pi, Pi+1, Pi+2, Pi+3 to Pi, Pi+1, Pi+2, Pi+3. So the perpendicular bisectors of PiPi+1,
Pi+1Pi+2, and Pi+2Pi+3 intersect in a point, which means that Pi, Pi+1, Pi+2, Pi+3

lie on a common circle (cf. Remark 2.14). This implies that P1, . . . , Pn lie on a
common L2 circle. Since |PiPi+1| = 1 for each i ∈ {1, 2, . . . , n − 1}, the points
P1, . . . , Pn are equally spaced on their common L2 circle.

Proof of (2): By rotational symmetry, t(Pi, Pi+k) = t(P1, Pk−1) for all 1 ≤ k ≤ n−1.
Using (1) and angle chasing, it can be shown that t(P1, Pi) ≤ t(P1, Pi+1) for all
2 ≤ i ≤ n − 1. This implies t(Pi, Pj) ≤ t(Pi+1, j) and t(Pi, Pj) ≤ t(Pi, Pj−1) for
i, j ∈ {1, 2, . . . , n} with i + 1 < j. Thus mini,j t(Pi, Pj) = t(P1, P2) = θ1 and
maxi,j t(Pi, Pj) = t(Pn−1, n) = θ2.

Figure 6: A norm whose unit circle intersects an L2 origin arc.

Corollary 3.4. Let || · || be a norm whose unit circle contains an L2 origin arc.
Then, for each n, there exist infinitely many (after scaling and translating) line-like
configurations of size n in || · ||, which satisfy the property that no three points lie
on a common line.

Proof. Repeat the proof of Theorem 1.3. Because P1, . . . , Pn lie on a common L2

circle, it follows that no three of P1, . . . , Pn lie on a common line.

3.3. Line-like Configurations in Lp, 1 < p < ∞

We have numerically searched for line-like configurations in Lp. Of course as we will
see in Theorem 1.6, there are line-like configurations of size n = 4. Whether these
configurations may be extended to include a 5th point is a question of intersections
of three Lp balls, each ball given by one of the three previously specified distances.
Numerically searching for such a configuration, we found no positive results for
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Figure 7: Constructing a line-like configuration in L2.

Figure 8: Constructing a line-like configuration in a norm whose unit circle contains
an L2 origin arc.

p 6= 2, with arbitrarily small error as p → 2. We employed two approaches in our
search.

The first approach makes the ansatz that, if a line-like configuration were to exist
in Lp, it would behave as L2 and consist of n equally spaced points along a unit
ball. This provides a tremendous amount of structure to the potential collections
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of points, and we may naturally represent the location of n points on the Lp unit
ball using n angles 0 ≤ ti < 2π for 1 ≤ i ≤ n and the map f : R → R2 defined
by f(t) = {cos(t)

2
p , sin(t)

2
p }. We may arbitrarily renumber our ti so that they

correspond to the ordering induced by a line-like configuration. Fixing a value
on t1 determines the location of the first point, and specifying t2 provides the
first order distance between the points f(t1) and f(t2). From these two values,
ti for i ≥ 3 are determined; ti corresponds to the unique point on the Lp ball so
that d(f(ti), f(ti−1)) = d(f(t1), f(t2)) and ti 6= ti−2. This reduces our problem
to a numerical search on two bounded variables, t1 and t2. Once the first order
distance has determined the ti, we may check the higher order distances to see if
we have obtained a line-like configuration. This does not always produce a line-like
configuration (cf. Example 3.5). Numerically, it appears that this never produces a
line-like configuration, regardless of our choice of t1, t2, for n ≥ 5 points, although
the discrepancy in higher order distances goes to 0 as p→ 2, as one might expect.

The second approach relaxes our ansatz but is computationally more intense. If
we do not assume that the points lie on an Lp ball, we may still specify the location
of n points using angles t1, . . . , tn−1 ∈ [0, 2π) and distance d > 0. Then letting
x0 = {0, 0}, define xi = xi−1 + d · f(ti). These ensure that the first order distances
are correct; then we may numerically compute the higher order distances and check
for a crescent configuration. This algorithm must search over n variables, and we
were unsuccessful in finding configurations.

Example 3.5. Let 1 < p <∞. Consider the four points

x1 = (0, 1), x2 =

(
1

21/p
,

1

21/p

)
, x3 = (1, 0), x4 =

(
1

21/p
,− 1

21/p

)
.

These points lie on the Lp circle of radius 1 centered at the origin. We compute

dp(x1, x2) = dp(x2, x3) = dp(x3, x4).

Also, d(x1, x3) = 21/p and d(x2, x4) = (2p−1)1/p = 21−1/p. Thus dp(x1, x3) =

dp(x2, x4) if and only if p = 2.

4. Classification of Line-like Crescent Configurations in L∞

In this section, we prove a structural result about line-like configurations in L∞.
Specifically, we show that every line-like configuration of size n ≥ 7 in L∞ satisfies
at least one of the following three properties.

1. Three points lie on a common line.

2. Four points lie on a common L∞ circle.
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3. The set of n points is a perpendicular perturbation of a horizontal or vertical
line, i.e., has very similar structure to a set of n equally spaced points on a
horizontal or vertical line.

This result is significant in that it is a “crescent-type” result. Rephrased, Erdős’
conjecture claims the following: there exists some N for which, for all n ≥ N , if
a set of n points satisfies the property that for each 1 ≤ i ≤ n − 1 there exists a
distance which occurs exactly i times, then three points lie on a common line or
four points lie on a common circle. We have proven the following: for all n ≥ 7, if
a set of n points forms a line-like configuration in the L∞ norm, then three points
lie on a common line, four points lie on a common L∞ circle, or the set of points is
a perpendicular perturbation in || · ||.

4.1. Perpendicular Perturbations and Line-like Crescent Configurations

In Section 3.1, we provide constructions of infinitely many line-like configurations
of arbitrary size under any non-strictly convex norm || · ||. Note that each of these
constructions has a simple structure—namely, it is a perpendicular perturbation in
|| · ||.

Definition 4.1. For each n, let P1, . . . , Pn and Q1, . . . , Qn be points in the plane.

1. We say that P1, . . . , Pn is a perpendicular perturbation of Q1, . . . , Qn if the
lines

←−→
PiQi are parallel for all 1 ≤ i ≤ n. (In other words, P1, . . . , Pn is a

perpendicular perturbation of Q1, . . . , Qn if there exists a line ` so that for all
1 ≤ i ≤ n, Pi and Qi are mapped to the same point when projected onto `.)

2. We say that P1, . . . , Pn is a perpendicular perturbation of ` if there exist equally
spaced points Q1, . . . , Qn on ` so that P1, . . . , Pn is a perpendicular perturba-
tion of Q1, . . . , Qn.

3. Let || · || be a non-strictly convex norm, and for some k, let `1, . . . , `k be lines
which contain each of the line segments in the unit circle of || · ||. Let `′i be
a line perpendicular to `i for each 1 ≤ i ≤ n. We say that P1, . . . , Pn is a
perpendicular perturbation in ||·|| if P1, . . . , Pn is a perpendicular perturbation
of `′i for some 1 ≤ i ≤ n.

Example 4.2.

1. The set of points {(1, 1), (2, 1/2), . . . , (n, 1/n)} (cf. Example 2.7) is a per-
pendicular perturbation of the set of points {(1, 0), (2, 0), . . . , (n, 0)}, a per-
pendicular perturbation of the x-axis, and a perpendicular perturbation in
L∞.

2. Let || · || be a non-strictly convex norm. Then every line-like configuration
constructed by Theorem 1.2 is a perpendicular perturbation in || · ||.
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However, the following example shows that for all n ≥ 3, there exist line-like
configurations of size n in L∞ which are not perpendicular perturbations in L∞.

Example 4.3. Fix n ≥ 3. If n = 2k+ 1 for k ≥ 1, consider the set of 2k+ 1 points

{(0, 0), (1, a), (1 + a, 1 + a), (2 + a, 1 + 2a), (2 + 2a, 2 + 2a), . . . , (k(1 + a), k(1 + a))}

for some 0 < a < 1. If n = 2k for k ≥ 2, consider the above set with the last point
removed. The reader can check that this set of points forms a line-like configuration
in L∞. However, this set of points is not a perpendicular perturbation in L∞. To
be a perpendicular perturbation in L∞, this set of points must be a perpendicular
perturbation of a horizontal or vertical line. But the x-coordinates 0, 1, 1 + a and
the y-coordinates 0, a, 1 + a of the first three points, respectively, are not equally
spaced, because 0 < a < 1.

Even though the set from Example 4.3 is not a perpendicular perturbation, its
structure is similar to that of a perpendicular perturbation because it contains many
points on a common line. Specifically, the points

(0, 0), (1 + a, 1 + a), . . . , (b(n− 1)/2c(1 + a), b(n− 1)/2c(1 + a))

are equally spaced on a common line.
When studying crescent configurations, we require that the points lie in some

notion of general position in order to omit trivial configurations (cf. Section 2.2).
Similarly, we omit trivial examples of line-like configurations by introducing line-like
crescent configurations:

Definition 4.4. Fix a norm || · ||. A set of n points is said to form a line-like
crescent configuration in || · || if the following three conditions hold:

1. The n points form a line-like configuration in || · ||.

2. No three points lie on a common line.

3. No four points lie on a common || · || circle.

Example 4.5.

1. For each n, {(1, 1), (2, 1/2), . . . , (n, 1/n)} (cf. Example 2.7) forms a line-like
crescent configuration in L∞.

2. The set of points in Example 4.3 is a line-like crescent configuration of size n
if and only if n ≤ 4. When n ≥ 5, the set of points is not a line-like crescent
configuration because the points (0, 0), (1 + a, 1 + a), (2 + 2a, 2 + 2a) lie on a
common line.

We claim that there are only finitely many such exceptions in the following sense.
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Theorem 1.5. Let n ≥ 7. Then every line-like crescent configuration in L∞ of size
n is a perpendicular perturbation of a horizontal or vertical line.

The following example shows that the n ≥ 7 bound in the statement of Theorem
1.5 is tight.

Example 4.6. For 3 ≤ n ≤ 6, there exist line-like crescent configurations in L∞

which are not perpendicular perturbations in L∞, namely

{(0, 0), (1, a), (1 + a, 1 + a)}
{(0, 0), (1, a), (1 + a, 1 + a), (2 + a, 1 + 2a)}
{(0, 0), (1, a), (1 + b, 1 + a), (2 + b, 1 + a+ b), (2 + a+ b, 2 + a+ b)}
{(0, 0), (1, a), (1 + b, 1 + a), (2 + b, 1 + a+ b), (2 + 2b, 2 + a+ b), (3 + 2b, 2 + 2a+ b)}

for 0 < a < b < 1. For each (ordered) set of points, note that the differences
between consecutive points alternate between (1, c) and (c, 1), for c ∈ {a, b}. Using
notation from Section 4.2, we say that these line-like configurations are type xy,
xyx, xyxy, and xyxyx respectively (cf. Definition 4.9). See also Lemma 9, which
states that a line-like crescent configuration of size n and type xyxy · · · must satisfy
n ≤ 6.

The proof of Theorem 1.5 is structured as follows. In Section 4.2, we introduce
notation used in the proof of Theorem 1.5. In Section 4.3, we state Lemmas 5, 6,
7, 8, 9, 10, 11, 12, and 13. Then we use these lemmas to prove Theorem 1.5. In
Section 4.4, we prove the lemmas stated and used in Section 4.3.

4.2. Types, Realizability, m-extendability

Throughout the rest of this section, we exclusively use the L∞ norm, and omit the
specification “in L∞” when referring to distances, line-like configurations, and so on.
Let p = (px, py) and q = (qx, qy) be points in R2. In this section, we denote their
distance by d(p, q) := dL∞(p, q) = max{|px − qx|, |py − qy|}. For points p1, . . . , pn,
let [p1, . . . , pn] denote the ordered list of these points.

Definition 4.7. Let [p1, . . . , pn] be a line-like configuration. For 1 ≤ i ≤ n− 1, the
ith order distance is given by d(p1, p1+i) = d(p2, p2+i) = · · · = d(pn−i, pn). When
the line-like configuration [p1, . . . , pn] is clear, we denote its ith order distance by
di.

Next we define the type of a line-like configuration.

Definition 4.8. Let p = (px, py) and q = (qx, qy) be distinct points.

1. If |px − qx| > |py − qy| and qx > px, we say that [p, q] is type x.
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2. If |px − qx| > |py − qy| and px > qx, we say that [p, q] is type x′.

3. If |py − qy| > |px − qx| and qy > py, we say that [p, q] is type y.

4. If |py − qy| > |px − qx| and py > qy, we say that [p, q] is type y′.

5. If |px − qx| = |py − qy|, qx > px and qy > py, we say that [p, q] is type bxy.

6. If |px − qx| = |py − qy|, px > qx and qy > py, we say that [p, q] is type bx′y.

7. If |px − qx| = |py − qy|, px > qx and py > qy, we say that [p, q] is type bx′y′ .

8. If |px − qx| = |py − qy|, qx > px and py > qy, we say that [p, q] is type bxy′ .

We write T := {x, x′, y, y′, bxy, bx′y, bx′y′ , bxy′}.

Definition 4.9.

1. Let [p1, . . . , pn] be a line-like configuration. The type of [p1, . . . , pn] is a string
a1a2 . . . an−1, with ai ∈ T , where for all 1 ≤ i ≤ n− 1 we have that [pi, pi+1]

is type ai.

2. Let a1a2 . . . an−1 and c1c2 . . . ck−1 be types. We say that the type a1a2 . . . an−1
contains the type c1c2 . . . ck−1 if c1c2 . . . ck−1 is a substring of a1a2 . . . an−1.

3. Let a1a2 . . . an−1 be a type. We say that the type a1a2 . . . an−1 has length
n− 1.

Definition 4.10. Let k ≥ 2.

1. We say that the type a1a2 . . . ak−1 is realizable if there exists a line-like crescent
configuration [p1, . . . , pk] with type a1a2 . . . ak−1.

2. Letm≥1. We say that a1a2 . . . ak−1 ism-extendable if there exist ak, ak+1, . . . ,

ak+m−1 ∈ T so that a1a2 . . . ak−1akak+1 . . . ak+m−1 is realizable.

We conclude with a remark crucial to the logic of the proofs in Sections 4.3 and
4.4.

Remark 4.11. Throughout the proofs of Theorem 1.5 and related lemmas, we
frequently make use of the following symmetries of L∞.

1. The following are isometries of L∞: reflection about a horizontal line, reflec-
tion about a vertical line, reflection about a line with slope ±1.

2. A type a1a2 . . . an−1 is realizable if and only if an−1an−2 . . . a1 is realizable.

The following are simple example arguments making use of these symmetries.
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• Lemma 7 states that xx′ is not 2-extendable. By symmetry (1), Lemma 7
is equivalent to the statement that any one of x′x, yy′, and y′y is not 2-
extendable.

• Symmetry (1) implies that type xx′ is symmetric about the x-axis in the
following sense: there exists a natural bijection between sets of points realizing
xx′y and sets of points realizing xx′y′. Thus xx′y is 1-extendable if and only
if xx′y′ is.

• Lemma 7 states that xx′ is not 2-extendable. By symmetry (2), x′x is not
2-extendable. By symmetry (1), any type which contains xx′ as a substring
must be of the form axx′b, where a, b ∈ T ∪ {ε}. (Here, ε denotes the empty
string.)

In particular, when we write “a1a2 . . . an−1 (and reflections)”, we mean the collection
of types equivalent to a1a2 . . . an−1 under symmetries (1) and (2). For example,
“xbxy (and reflections)” refers to the types xbxy, xbxy′ , x′bx′y, x′bx′y′ , ybxy, ybx′y,
y′bxy′ , y′bx′y′ , bxyx, bxy′x, bx′yx′, bx′y′x′, bxyy, bx′yy, bxy′y′, bx′y′y′.

4.3. Lemma Statements and Proof of Theorem 1.5

First we state the lemmas used in the proof of Theorem 1.5. Their proofs are given
in Section 4.4.

Lemma 5. The types bxybxy and bxybx′y′ (and reflections) are not realizable.

Lemma 6. The type xbx′y (and reflections) is not 2-extendable.

Lemma 7. There do not exist s, t ∈ {x, x′, y, y′} so that xx′st is realizable.

Lemma 8.

1. The type xyxy′ (and reflections) is not realizable.

2. The type xyx′y (and reflections) is not realizable.

Lemma 9. For some n, let c1c2 . . . cn−1 be a type with{
ci = x if i ≡ 1 mod 2

ci = y if i ≡ 0 mod 2.

If c1c2 . . . cn−1 (or reflections) is realizable, then n ≤ 6.

Lemma 10. For some n, let c1c2 . . . cn−1 be a type with
ci = x if i ≡ 1 mod 4

ci = y if i ≡ 2 mod 4

ci = x′ if i ≡ 3 mod 4

ci = y′ if i ≡ 0 mod 4.
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If c1c2 . . . cn−1 (or reflections) is realizable, then n ≤ 5.

Lemma 11. For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′}
for all 1 ≤ i ≤ n− 1. Then n ≤ 4, and the only possible values of c1c2 . . . cn−1 (up
to reflection) are bxy, bxybx′y, and bxybx′ybxy.

Lemma 12. Suppose d2 = 2. For some n, let c1c2 . . . cn−1 be a type with ci ∈
{bxy, bx′y, bx′y′ , bxy′} for all 1 ≤ i ≤ n− 1.

1. The type xc1c2 . . . cn−1x′ (and reflections) is not 1-extendable.

2. The type xc1c2 . . . cn−1y (and reflections) is not 1-extendable.

Lemma 13. Suppose d2 = 2. For some n, let c1c2 . . . cn−1 be a type with ci ∈
{bxy, bxy′} for all 1 ≤ i ≤ n− 1.

1. There does not exist a t ∈ {bxy, bx′y, bx′y′ , bxy′ , x} so that xc1c2 . . . cn−1bx′yt
is realizable.

2. There does not exist a t ∈ {bxy, bx′y, bx′y′ , bxy′ , x} so that txc1c2 . . . cn−1bx′y
is realizable.

Now we give the proof of Theorem 1.5, which is restated below.

Theorem 1.5. Let n ≥ 7. Then every line-like crescent configuration in L∞ of size
n is a perpendicular perturbation of a horizontal or vertical line.

Proof of Theorem 1.5. Let [p1, p2, . . . , pn] be a line-like crescent configuration of size
n ≥ 7 with type A := a1a2 . . . an−1. Without loss of generality, scale [p1, p2, . . . , pn]

so that the first order distance satisfies d1 = 1. By the triangle inequality, the
second order distance satisfies d2 ≤ 2.

Suppose d2 < 2. Suppose A contains some bxy (or reflections). Without loss of
generality Amust contain tbxy for some t ∈ T . The types xbxy, ybxy, bxy′bxy, bx′ybxy
give d2 = 2, a contradiction. By Lemma 5, bx′y′bxy and bxybxy are not realizable.
Thus A must contain x′bxy or y′bxy. By Lemma 6, n ≤ 5. Contradiction. Thus A
only contains {x, x′, y, y′}. Because d2 < 2, A cannot contain xx (and reflections).
By Lemma 7, A cannot contain xx′ (and reflections). Thus ai ∈ {x, x′} for even
i and ai ∈ {y, y′} for odd i, or vice versa. By Lemma 8, A must be of the form
xyxy . . . or xyx′y′ . . . . Finally, by Lemma 9 and Lemma 10, we have n ≤ 6 as
desired.

Thus d2 = 2. Suppose A contains at least two of {x, x′, y, y′}. Since d2 = 2,
A cannot contain xx′ or xy (and reflections). Thus A contains xc1c2 . . . ck−1x′ or
xc1c2 . . . ck−1y (or reflections) for k ≥ 2 and ci ∈ {bxy, bx′y, bx′y′ , bxy′} for all 1 ≤ i ≤
k−1. By Lemma 11, k ≤ 4, so by Lemma 12, A must be of the form xc1c2 . . . ck−1x

′

or xc1c2 . . . ck−1y (or reflections). Thus n ≤ 6. Otherwise, A contains at most one
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of {x, x′, y, y′}, without loss of generality x. If A does not contain x, then n ≤ 4 by
Lemma 5. Suppose A contains x. Suppose A contains bx′y or bx′y′ . Because d2 = 2,
A cannot contain xbx′y or xbx′y′ . By Lemma 11 and Lemma 13, if A contains
xc1c2 . . . cn−1bx′y or xc1c2 . . . cn−1bx′y′ , then n ≤ 5. Thus A cannot contain bx′y or
bx′y′ . Thus A only contains x, bxy, and bxy′ . This implies that A is a perpendicular
perturbation of a horizontal line.

4.4. Proofs of Lemmas

This section contains the proofs of Lemmas 5, 6, 7, 8, 9, 10, 11, 12, and 13. Their
statements can be found in Section 4.3.

Next, we define notation used in the proofs of these lemmas.

Definition 4.12. Let a1a2 . . . an−1 be a realizable type. Suppose there are k

symbols ai for which ai ∈ {x, x′, y, y′} and n − 1 − k symbols ai for which ai ∈
{bxy, bx′y, bx′y′ , bxy′}. Let i1, i2, . . . , ik be the subsequence of indices {1, . . . , n− 1}
for which aij ∈ {x, x′, y, y′} and let f1, . . . , fk ∈ R so that |fi| < 1 for each 1 ≤ i ≤ k.

We define a list [p1, p2, . . . , pn] of n points as follows. Set p1 = (0, 0). For all
1 ≤ i ≤ n− 1 we have the following.

• If ai = x, then i = ij for some 1 ≤ j ≤ k. Set pi+1 := pi + (1, fj).

• If ai = x′, then i = ij for some 1 ≤ j ≤ k. Set pi+1 := pi + (−1, fj).

• If ai = y, then i = ij for some 1 ≤ j ≤ k. Set pi+1 := pi + (fj , 1).

• If ai = y′, then i = ij for some 1 ≤ j ≤ k. Set pi+1 := pi + (fj ,−1).

• If ai = bxy, then set pi+1 := pi + (1, 1).

• If ai = bx′y, then set pi+1 := pi + (−1, 1).

• If ai = bx′y′ , then set pi+1 := pi + (−1,−1).

• If ai = bxy′ , then set pi+1 := pi + (1,−1).

We say that the type a1a2 . . . an−1 has coordinates [p1 . . . , pn]f1,...fk . The f1, . . . , fk
are called the free variables of a1a2 . . . an−1. When the f1, . . . , fk are clear, we
write that a1a2 . . . an−1 has coordinates [p1, p2, . . . , pn], or that [p1, p2, . . . , pn] are
the coordinates of a1a2 . . . an−1.

Let s1, s2, . . . , sn be a line-like crescent configuration with type a1a2 . . . an−1. Say
a1a2 . . . an−1 has coordinates [p1, p2, . . . , pn]. Then, up to translation, there exist
free variables f1, . . . , fk for which [s1, s2, . . . , sn] = [p1, p2, . . . , pn]f1,...,fk .
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Example 4.13. The type xyxy has coordinates

[(0, 0), (1, a), (1 + b, 1 + a), (2 + b, 1 + a+ c), (2 + b+ d, 2 + a+ c)]

for free variables |a|, |b|, |c|, |d| < 1. If, for example, we show that there exist no
|a|, |b|, |c|, |d| < 1 so that

[(0, 0), (1, a), (1+ b, 1+a), (2+ b, 1+a+ c), (2+ b+d, 2+a+ c), (1+ b+d, 3+a+ c)],

then it follows that xyxybx′y is not realizable.

Definition 4.14. Let a1a2 . . . an−1 be a realizable type with coordinates
[p1, p2, . . . , pn]f1,...,fk . Because a1a2 . . . an−1 is realizable, there exist f1, f2, . . . , fk
for which [p1, p2, . . . , pn]f1,...,fk is a line-like crescent configuration. For these choices
of f1, . . . , fk, we notate the ith order distance of [p1, p2, . . . , pn]f1,...,fk as

Di,f1,...,fk(a1a2 . . . an−1) := di = d(p1, p1+i) = · · · = d(pn−i, pn).

When the value of Di,f1,...,fk(a1a2 . . . an−1) is independent of f1, . . . , fk, we write
Di(a1a2 . . . an−1).

Remark 4.15. We typically use Definition 4.14 when the value of Di(a1a2 . . . an−1)

is independent of the free variables f1, . . . , fk. For example, consider the type xxy.
It has coordinates [p1, p2, p3, p4] = [(0, 0), (1, a), (2, a+b), (2+c, 1+a+b)]. We have
d(p1, p3) = max{2, |a + b|} and d(p2, p4) = {1 + c, 1 + b}. Because |a|, |b|, |c| < 1,
this implies d(p1, p3) = 2 and d(p2, p4) < 2. Thus, independent of free variables,
we have D2(xx) = 2 and D2(xy) < 2. In particular, this shows that D2(xxy) is
undefined. In other words, xxy is not realizable.

Finally, we prove Lemmas 5, 6, 7, 8, 9, 10, 11, 12, and 13. Their statements
can be found in Section 4.3. Throughout these proofs, we assume the first order
distance d1 = 1. Additionally, a, b, c, d denote free variables of a type. In other
words, a, b, c, d ∈ R with |a|, |b|, |c|, |d| < 1.

Proof of Lemma 5. The type bxybxy has coordinates (0, 0), (1, 1), (2, 2). This is not
realizable because these points lie on a common line. The type bxybx′y′ has co-
ordinates (0, 0), (1, 1), (0, 0). This is not realizable because the points are not dis-
tinct.

Proof of Lemma 6. Since D2(xbx′y) < 2, we have d2 < 2. The types xbx′yt for
t ∈ {x′, y, bxy, bx′y′} are not realizable because d2 < 2. The types xbx′yt for t ∈
{bx′y, bxy′} are not realizable by Lemma 5. It suffices to show that xbx′yx and
xbx′yy

′ are not 1-extendable.
The type xbx′yx has coordinates (0, 0), (1, a), (0, 1+a), (1, 1+a+b). Considering

second order distances, we have 1+a = 1+b, so a = b. Thus xbx′yx has coordinates
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(0, 0), (1, a), (0, 1+a), (1, 1+2a). Since d2 < 2, the types xbx′yxt for t ∈ {x, bxy, bxy′}
are not realizable. Additionally, xbx′yxt with t ∈ {bx′y, bx′y′} are not realizable,
because the coordinates of these types have three points on a common line (three
points with x-coordinate 0). Thus xbx′yxt is only realizable if t ∈ {y, y′}.

• The coordinates of xbx′yxy are (0, 0), (1, a), (0, 1+a), (1, 1+2a), (1+b, 2+2a).
Considering third order distances, we have max{1, 1 + a} = max{|b|, 2 + a}.
This is impossible because 2 + a > 1 and 2 + a > 1 + a. Thus xbx′yxy is not
realizable.

• The coordinates of xbx′yxy′ are (0, 0), (1, a), (0, 1 + a), (1, 1 + 2a), (1 + b, 2a).
Considering third order distances, we have max{1, 1 + 2a} = max{|b|, |a|}.
This is impossible because 1 > |b| and 1 > |a|. Thus xbx′yxy′ is not realizable.

The type xbx′yy′ has coordinates (0, 0), (1, a), (0, 1+a), (b, a). Considering second
order distances, we have 1 + a = 1 − b, so b = −a. Thus xbx′yy′ has coordinates
(0, 0), (1, a), (0, 1 + a), (−a, a). If a > 0, these points lie on the circle with corners
(−a, 0) and (1, 1 + a). If a < 0, these points lie on the circle with corners (0, a) and
(1, 1 + a). Contradiction. Thus xbx′yy′ is not realizable.

Proof of Lemma 7. It suffices to show that xx′xy, xx′y′y, xx′yx, and xx′yx are not
realizable.

The type xx′xy has coordinates (0, 0), (1, a), (0, a+b), (1, a+b+c), (1+d, 1+a+

b+ c). Considering third order distances, max{1, |a+ b+ c|} = max{|d|, |1 + b+ c|}.
Because d3 6= d1 = 1, this implies |a+ b+ c| = |1+ b+ c| > 1. Suppose 1+ b+ c < 0.
Then 1 + b+ c < −1, which implies b+ c < −2, a contradiction. Thus 1 + b+ c > 1.
Suppose a + b + c < 0. Then a + b + c < −1, and since 1 + b + c > 1, this implies
a < −1, a contradiction. Thus a+ b+ c > 1. But then a+ b+ c = 1 + b+ c, which
implies a = 1, a contradiction. Thus xx′xy is not realizable.

The type xx′y′y has coordinates (0, 0), (1, a), (0, a+b), (c,−1+a+b), (c+d, a+b).
If |a+ b| ≤ 1, then four points lie on a circle.

• If c > 0, then (0, 0), (1, a), (0, a+ b), (c,−1 + a+ b) lie on a circle.

• If c+ d > 0, then (0, 0), (1, a), (0, a+ b), (c+ d, a+ b) lie on a circle.

• Otherwise, c ≤ 0 and c + d < 0. In this case, (0, 0), (0, a + b), (c,−1 + a +

b), (c+ d, a+ b) lie on a circle.

Thus |a+ b| > 1. Considering second order distances, |a+ b| = max{1− c, 1− b} =

|c + d|. If a + b < 0, then −a − b ≥ 1 − b, which implies a ≤ −1, a contradiction.
Similarly, if c+ d < 0, then −c− d ≥ 1− c, which implies c ≤ −1, a contradiction.
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Thus a+ b > 0 and c+ d > 0. Since |a+ b| = |c+ d| > 1, this implies a, b > 0 and
c, d > 0. But max{1 − c, 1 − b} > 1 implies b < 0 or c < 0. Contradiction. Thus
xx′y′y is not realizable.

The type xx′y′x has coordinates (0, 0), (1, a), (0, a+b), (c,−1+a+b), (1+c,−1+

a + b + d). Considering second order distances, |a + b| = max{1 − c, 1 + b} =

max{1 + c, 1 + d}. Since d2 ≥ 1− c, d2 ≥ 1 + c, and d2 6= d1 = 1, we have d2 > 1.
If a + b > 0, then a + b ≥ 1 + b, so a ≥ 1, a contradiction. Thus a + b < 0,
and since |a + b| > 1, we have a + b < −1. Considering third order distances,
max{|c|, | − 1 + a + b|} = max{|c|, | − 1 + b + d|}. Because a + b < −1, we have
| − 1 + a + b| > 2, so d3 = 1 − a − b = | − 1 + b + d|. Since a + b < −1, we have
a, b < 0. So max{1− c, 1+ b} > 1 implies c < 0, and max{1+ c, 1+d} > 1 therefore
implies d > 0. Since b < 0 and d > 0, we have −1 + b + d < 0. Since c < 0 and
d > 0, we have |a+ b| = 1 + d, which implies 2 + d = 1− b− d. Rearranging gives
1 + 2d = −b. Since d > 0, we have 1 + 2d > 1, but −b < 1. Contradiction. Thus
xx′y′x is not realizable.

The type xx′y′x′ has coordinates (0, 0), (1, a), (0, a + b), (c,−1 + a + b), (−1 +

c,−1 +a+ b+ d). Considering second order distances, |a+ b| = max{1− c, 1− b} =

max{1 − c, 1 − d}. If a + b < 0, then −a − b ≥ 1 − b, which implies a ≤ −1, a
contradiction. Thus a + b > 0. Considering third order distances, max{|c|, | − 1 +

a + b|} = max{2 − c, | − 1 + b + d|}. Since a + b > 0 (and a + b < 2), we have
|−1+a+b| < 1. Since |c| < 1 and |−1+a+b| < 1, we have max{|c|, |−1+a+b|} < 1.
But 2− c > 1. Contradiction. Thus xx′y′x′ is not realizable.

Proof of Lemma 8.
Proof of (1): The type xyxy′ has coordinates (0, 0), (1, a), (1+b, 1+a), (2+b, 1+

a+ c), (2 + b+d, a+ c). Considering third order distances, max{2 + b, |1 +a+ c|} =

max{|1 + b+ d|, |c|}. This is impossible because 2 + b > |c| and 2 + b > |1 + b+ d|.
Thus xyxy′ is not realizable.

Proof of (2): The type xyx′y has coordinates (0, 0) (1, a) (1+b, 1+a), (b, 1+a+c),
(b+d, 2+a+c). Considering third order distances, max{|b|, |1+a+c|} = max{|1−
b− d|, 2 + c}. This is impossible because 2 + c > |b| and 2 + c > |1 + a+ c|. Thus
xyxy′ is not realizable.

Proof of Lemma 9. The type xyxy has coordinates (0, 0), (1, a), (1 + b, 1 + a), (2 +

b, 1 +a+ c), (2 + b+d, 2 +a+ c). Considering third order distances, max{2 + b, |1 +

a+ c|} = max{|1 + b+ d|, 2 + c}. Because 2 + b > |1 + b+ d| and 2 + c > |1 + a+ c|,
it follows that 2 + b = 2 + c is the third order distance. Thus b = c.

Now consider the type xyxyxy. Note that it contains xyxy (and its reflection
yxyx) three times. Thus it has coordinates (0, 0), (1, a), (1+b, 1+a), (2+b, 1+a+b),
(2+2b, 2+a+b), (3+2b, 2+a+2b), (3+2b+c, 3+a+2b). But (1, a), (2+b, 1+a+b),
and (3 + 2b, 2 + a + 2b) lie on a common line. Thus xyxyxy is not realizable. So
such a type c1c2 . . . cn−1 can only be realizable if n ≤ 6.
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Proof of Lemma 10. The type xyx′y′ has coordinates (0, 0), (1, a), (1 + b, 1 + a),
(b, 1 + a+ c), (b+ d, a+ c). Considering second order distances,

d2 = max{1 + b, 1 + a} = max{1− b, 1 + c} = max{1− d, 1− c}.

Considering third order distances,

d3 = max{|b|, |1 + a+ c|} = max{| − 1 + b+ d|, |c|}.

Because d2 6= 1, there are four cases.

1. Case 1 + b = 1 + c = 1− d > 1, so b = c = −d > 0. Then | − 1 + b+ d| = 1,
so d3 = max{| − 1 + b+ d|, |c|} = 1, a contradiction.

2. Case 1 + a = 1− b = 1− c > 1, so a = −b = −c > 0. Then |1 + a+ c| = 1, so
d3 = max{|b|, |1 + a+ c|} = 1, a contradiction.

3. Case 1 + a = 1− b = 1− d, so a = −b = −d > 0. Then | − 1 + b+ d| > 1, so
1 + a+ c = 1− b− d, so a+ c = −b− d, and since a = −b = −d, this implies
a = c = −b = −d > 0.

4. Case 1 + a = 1 + c = 1 − d, so a = c = −d > 0. Then |1 + a + c| > 1, so
1 + a + c = 1 − b − d, so a + c = −b − d, and since a = c = −d, this implies
a = c = −b = −d > 0.

Thus in any possible case, a = c = −b = −d. This means that xyx′y′ has coordi-
nates (0, 0), (1, a), (1− a, 1 + a), (−a, 1 + 2a), (−2a, 2a).

Now consider the type xyx′y′x. By applying the above argument to xyx′y′ and
yx′y′x, xyx′y′x has coordinates (0, 0), (1, a), (1−a, 1+a), (−a, 1+2a), (−2a, 2a), (1−
2a, 3a). But the points (1−a, 1 +a), (−a, 1 + 2a), (1− 2a, 3a) lie on a common line.
Thus xyx′y′x is not realizable. So such a type c1c2 . . . cn−1 can only be realizable
if n ≤ 5.

Proof of Lemma 11. Let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′}.
Without loss of generality, let c1 = bxy. By Lemma 5, c2 ∈ {bx′y, bxy′}, so with-
out loss of generality c2 = bx′y. By Lemma 5, c3 ∈ {bxy, bx′y′}. The coordinates
of bxybx′ybx′y′ are (0, 0), (1, 1), (0, 2), (−1, 1), which lie on a circle with corners
(−1, 1) and (1, 1). Thus c3 = bxy. Finally, we claim that c1c2c3 = bxybx′ybxy is not
1-extendable. By Lemma 5, c4 ∈ {bx′y, bxy′}.

• The type c1c2c3c4 = bxybx′ybxybx′y has coordinates (0, 0), (1, 1), (0, 2), (1, 3),
(0, 4). This is not realizable because (0, 0), (0, 2), (0, 4) lie on a common line.

• The type c1c2c3c4 = bxybx′ybxybxy′ has coordinates (0, 0), (1, 1), (0, 2), (1, 3),
(2, 2). This is not realizable because (1, 1), (2, 2), (1, 3), (2, 2) lie on a common
circle with corners (0, 1) and (2, 3).
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Proof of Lemma 12.
Proof of (1): For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′}

for all 1 ≤ i ≤ n − 1. Consider xc1c2 . . . cn−1x′. Because d2 = 2, we have c1 ∈
{bxy, bxy′} and cn−1 ∈ {bx′y, bx′y′}. Thus n ≥ 3. By Lemma 11, n ≤ 4. If n = 4,
then by Lemma 11, c1 = c3 = cn−1. This is a contradiction, thus n = 3.

When n = 3, we have xc1c2 . . . cn−1x′ = xc1c2x
′ for c1 ∈ {bxy, bxy′} and c2 ∈

{bx′y, bx′y′}. By Lemma 5, c1c2 = bxybx′y or c1c2 = bxy′bx′y′ . Without loss
of generality (reflection about the x-axis), we can assume c1c2 = bxybx′y. Then
D3(xbxybx′yx

′) < 3.
We claim that xbxybx′yx′ is not 1-extendable. Suppose xbxybx′yx′t is realizable

for some t ∈ T . Because d2 = 2, t ∈ {x′, bx′y, bx′y′}. But D3(bx′yx
′t) ≥ 3, which

contradicts d3 < 3. Thus xbxybx′yx′ is not 1-extendable.

Proof of (2): For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bx′y, bx′y′ , bxy′}
for all 1 ≤ i ≤ n. Consider xc1c2 . . . cn−1y. Because d2 = 2, we have c1 ∈ {bxy, bxy′}
and cn−1 ∈ {bxy, bx′y}. By Lemma 11, n ≤ 4. If n = 2, then c1 = bxy. If n = 3,
then by Lemma 5, c1c2 = bxybx′y or c1c2 = bxy′bxy. If n = 4, then by Lemma 11,
c1c2c3 = bxybx′ybxy or c1c2c3 = bxybxy′bxy. We treat each of these cases individually
to show that xc1c2 . . . cn−1y is not 1-extendable.

• Case xc1c2 . . . cn−1y = xbxyy. Suppose xbxyyt is realizable for some t ∈ T .
Since d2 = 2, t ∈ {y, bxy, bx′y}. Then D3(xbxyy) < 3 but D3(bxyyt) = 3, a
contradiction. Thus, xbxyy is not 1-extendable.

• Case xc1c2 . . . cn−1y = xbxybx′yy. Then D3(xbxybx′y) < 3 but D3(bxybx′yy) =

3, a contradiction. Thus, xbxybx′yy is not even realizable, and in particular
not 1-extendable.

• Case xc1c2 . . . cn−1y = xbxy′bxyy. Then D3(xbxy′bxy) = 3 but D3(bxy′bxyy) <

3, a contradiction. Thus, xbxy′bxyy is not even realizable, and in particular
not 1-extendable.

• Case xc1c2 . . . cn−1y = xbxybx′ybxyy. Suppose xbxybx′ybxyyt is realizable for
some t ∈ T . Since d2 = 2, t ∈ {y, bxy, bx′y}. Then D3(xbxybx′y) < 3, but
D3(bxyyt) = 3, a contradiction. Thus xbxybx′ybxyy is not 1-extendable.

• Case xc1c2 . . . cn−1y = xbxybxy′bxyy. Then D4(xbxybxy′bxy) = 4; however,
D4(bxybxy′bxyy) < 4, a contradiction. Thus xbxybxy′bxyy is not even realiz-
able, and in particular not 1-extendable.
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Proof of Lemma 13. For some n, let c1c2 . . . cn−1 be a type with ci ∈ {bxy, bxy′} for
all 1 ≤ i ≤ n − 1. If xc1c2 . . . cn−1bx′y is realizable, by Lemma 11, we have n ≤ 3.
If n = 3, then c1 = bx′y. If n = 2, then xc1c2 · · · cn−1bx′y = xc1bx′y, and by Lemma
5, c1 = {bxy, bx′y′}. We show that two of these three cases give types which are not
realizable.

• Case n = 3 and c1 = bx′y. The type is xbx′yc2bx′y. We are given d2 = 2, but
D2(xbx′y) < 2, a contradiction. Thus, xbx′yc2bx′y is not realizable.

• Case n = 2 and c1 = bx′y′ . The type is xbx′y′bx′y. We are given d2 = 2, but
D3(xbx′y′) < 2, a contradiction. Thus, xbx′y′bx′y is not realizable.

Thus xc1c2 . . . cn−1bx′y is realizable only if n = 2 and c1 = bxy. Now we prove (1)
and (2).

Proof of (1): Suppose there exists a t ∈ {bxy, bx′y, bx′y′ , bxy′ , x} for which xbxybx′yt
is realizable. By Lemma 11, t = bxy. Then D3(xbxybx′y) < 3 but D3(bxybx′ybxy) =

3, a contradiction. Thus, xbxybx′yt is not realizable.

Proof of (2): Suppose there exists a t ∈ {bxy, bx′y, bx′y′ , bxy′ , x} for which txbxybx′y
is realizable. Since d2 = 2, t ∈ {x, bxy, bxy′}. Then D3(xbxybx′y) < 3, but
D3(txbxy) = 3, a contradiction. Thus, txbxybx′y is not realizable.

5. Constructions of Strong Crescent Configurations

In this section, we provide constructions of strong crescent configurations. For an
overview of known constructions, see Example 2.16. In Section 5.1, we construct a
strong crescent configuration of size 4 in any norm || · ||. In Section 5.2, we construct
a strong crescent configuration of size 6 in L2. In Section 5.3, we construct strong
crescent configurations of sizes n ≤ 8 in L1 and L∞.

5.1. Strong Crescent Configuration of Size n = 4 in Any Norm

Theorem 1.6. Let || · || be any norm. Then there exists a strong crescent config-
uration of size 4 in || · ||.

Proof. There are two cases, depending on whether the unit circle of || · || is a union
of line segments.

Case 1: The unit circle of || · || is not a union of line segments. Then pick a point
D. Draw a unit circle centered at D, and pick points A, B, C on this unit circle so
that A,B,C do not lie on a common line, |AB| = |BC|, and |AD| > |AC| > |AB|.
See Figure 9.
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Case 2: The unit circle of || · || is a union of line segments. Then pick a point
D. Draw a unit circle centered at D. This circle contains at least one corner, i.e.
a point where two line segments of different slopes meet. Let B be a corner point.
Let A and C each lie on one of the two line segments which meet at B, such that
|AB| = |BC| and |AD| > |AC| > |AB|. See Figure 10.

In either case, we have the following: the distance |AD| = |BD| = |CD| occurs
three times, |AB| = |BC| occurs two times, and |AC| occurs once. Moreover, no
three points of A,B,C,D lie on a line, and the points A,B,C,D do not form a
line-like configuration. Thus A,B,C,D form a strong crescent configuration.

Figure 9: Left: a unit ball which is not a union of line segments. Right: a strong
crescent configuration of size four in this norm.

Figure 10: Left: a unit ball which is a union of line segments. Right: a strong
crescent configuration of size four in this norm.

5.2. Strong Crescent Configurations in L2

For n ≤ 5, there exist known constructions of crescent configurations in L2 which
are also strong crescent configurations. However, Palásti’s [11, 12] constructions
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of crescent configurations of sizes 6, 7, 8 are not strong. We construct a strong
crescent configuration of size 6 and conjecture that strong crescent configurations
of sizes exceeding 6 do not exist.

Theorem 1.8. In the L2 norm, there exist strong crescent configurations of size
n ≤ 6.

Proof. For constructions of sizes n ≤ 5, see [8, 11, 12, 5].
We constructed a strong crescent configuration of size 6 by searching a triangular

lattice was using a backtracking algorithm.3 The following are coordinates of a
strong configuration of size 6 produced by our code:{(
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The distance graph is depicted in Figure 11.

Figure 11: Strong crescent configuration of size 6 in L2.

Remark 5.1. We exhaustively searched a 10 × 10 triangular lattice and showed
that it does not contain a strong crescent configuration of size 7 or 8 in L2. The
search was conducted using a desktop computer with an Intel i7-6700K processor
and 16GB RAM, and the duration was roughly 400 hours.

5.3. Strong Crescent Configurations in L∞

Theorem 1.9. In the L∞ norm, there exist strong crescent configurations of sizes
n ≤ 8.

3Our code can be found at https://github.com/the-set-of-sets/nin.

https://github.com/the-set-of-sets/nin
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Proof. A square lattice was searched using a backtracking algorithm.4 In the fol-
lowing table, we list a strong crescent configuration of size n produced by our code
for 4 ≤ n ≤ 8:

n Strong crescent configuration of size n, in L∞

4 {(0, 0), (0, 1), (1, 1), (1, 3)}
5 {(0, 0), (0, 1), (1, 1), (1, 3), (2, 4)}
6 {(0, 0), (0, 1), (1, 3), (2, 1), (2, 4), (4, 5)}
7 {(0, 0), (0, 4), (1, 2), (2, 3), (3, 1), (5, 4), (6, 6)}
8 {(0, 0), (0, 6), (1, 3), (2, 4), (3, 2), (4, 1), (5, 5), (6, 7)}

The distance graphs are depicted in Figures 12 and 13.

Figure 12: Strong crescent configurations of size 4, 5, 6 in L∞.

Remark 5.2. We exhaustively searched a 9 × 9 lattice and showed that it does
not contain a strong crescent configuration of size 9 in L∞. The search was con-
ducted using a desktop computer with an Intel i3-7100 processor and 16GB RAM,
and the duration was roughly 11 hours. For large n and m, our algorithm for ex-
hausting all possible strong crescent configurations of n points on a m-point lattice
must, up to constants (such as savings from fixing the first point), consider all

(
m
n

)
possible configurations. These are order mn, and our observed runtimes followed
insurmountable growth rate.

By Lemma 2, L1 and L∞ are dual norms in R2. This gives a correspondence
between strong crescent configurations in L1 and L∞. Let P be a set of points in
L∞. Let P ′ be the set consisting of every point in P rotated by 45◦ counterclock-
wise. Then P is a strong crescent configuration if and only if P ′ is a strong crescent

4Our code can be found at https://github.com/the-set-of-sets/l1_linfty.

https://github.com/the-set-of-sets/l1_linfty
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Figure 13: Strong crescent configurations of size 7, 8 in L∞.

configuration.

Corollary 1.10. In the L1 norm, there exist strong crescent configurations of sizes
n ≤ 8.

6. Future Work

6.1. Disproving the Existence of Large (Strong) Crescent Configurations

The main open question about crescent configurations is the following: for which
n do there exist crescent configurations of size n? The only known constructions
of crescent configurations are of sizes n ≤ 8 [8, 11, 12, 5]. Attempts to find larger
crescent configurations via computer search have been unsuccessful [1]. Erdős [5]
conjectured the following.

Conjecture 6.1 (Erdős, 1989). For sufficiently large N , there do not exist crescent
configurations of size n.

The same question can also be posed about strong crescent configurations. Given
a norm || · ||, for which n do there exist strong crescent configurations of size n in
||·||? In Section 5, we provide explicit constructions of strong crescent configurations
of sizes n ≤ 8 in L1 and L∞, and of sizes n ≤ 6 in L2. Moreover, we performed
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computer searches and showed that certain lattice regions do not contain larger
strong crescent configurations in L∞ and L2 (cf. Remarks 5.1, 5.2). Extending
Conjecture 6.1, we conjecture the following.

Conjecture 6.2. Fix a norm || · ||. For sufficiently large N , there do not exist
strong crescent configurations of size n in || · ||.

We also pose a strengthening of Conjecture 6.2 for strictly convex norms. By
Corollary 4, given three points A,B,C which form a line-like configuration of size
three in || · ||, there exist exactly two points D,E so that ABCD and ABCE are
line-like configurations in || · ||. In particular, at least one of ABCD and ABCE

is a parallelogram. We can modify condition (3) of the definition of strong general
position (Definition 2.13) so that instead of forbidding all line-like configurations of
size four, we forbid line-like configurations of size four which are not non-rectangular
parallelograms. Call the sets of points which satisfy the corresponding Definition
2.15 weak crescent configurations.

Conjecture 6.3. In any strictly convex norm ||·||, we conjecture that for sufficiently
large N , there do not exist weak crescent configurations of size n in || · ||.

In L2, the weak crescent configurations are precisely the crescent configurations
(cf. Remark 2.14). When || · || is the L2 norm, Conjecture 6.3 is equivalent to
Conjecture 6.1.

6.2. Disproving the Existence of Large Line-like Configurations in Most
Norms

By Theorem 1.2 and Theorem 1.3, if the unit circle of || · || contains a line segment
or an arc contained in an L2 circle centered at the origin, then there exist infinitely
many (after scaling and translating) line-like configurations of size n in || · ||. These
constructions are generalizations of the two line-like configurations in L2: equally
spaced points on a line and on a circle (cf. Figure 1). An interesting question is
whether there exist arbitrarily large line-like configurations which do not rely on
the structure of a straight line or L2 arc. We conjecture that this is not the case.

Conjecture 6.4. Let || · || be a norm whose unit circle does not contain a line seg-
ment or an arc contained in an L2 circle centered at the origin. Then for sufficiently
large N , the only line-like configurations of size n ≥ N in || · || are n equally spaced
points on a line.

In Section 3.3, we provide numerical evidence toward this conjecture for the
special case of the Lp norm.
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6.3. Classifying Line-like Crescent Configurations in Non-strictly Convex
Norms

In Theorem 1.5, we prove that every line-like crescent configuration of size n ≥ 7

in the L∞ norm must be a perpendicular perturbation in L∞. We are particularly
interested in generalizing our result to other norms.

Conjecture 6.5. Let || · || be a norm which is non-strictly convex. Then there
exists some N for which every line-like crescent configuration of size n ≥ N in || · ||
is a perpendicular perturbation in || · ||.

For the definition of line-like crescent configurations, see Definition 4.4. For the
definition of perpendicular perturbations, see Definition 4.1.

6.4. Extensions to Higher Dimensions

In this paper, we only consider normed spaces (R2, || · ||). Burt et al. [1] considered
a generalization of the problem of Euclidean crescent configurations to higher di-
mensions. They provided constructions of crescent configurations of size n in Rn−2

for all n ≥ 3. Can the notion of higher dimensional crescent configurations be
appropriately generalized to arbitrary norms || · || : Rn → R?
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