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Abstract

By means of Abel’s lemma on summation by parts, we shall derive several infi-
nite series identities involving generalized harmonic numbers and central binomial
coefficients.

1. Introduction and Motivation

For central binomial coefficients, the following Maclaurin series [7] are well-known:∑
n≥1

(2y)2n

n2
(
2n
n

) = 2(arcsin y)2, (1)

∑
n≥1

(2y)2n

n
(
2n
n

) =
2y arcsin y√

1− y2
, (2)

∑
n≥0

(2y)2n(
2n
n

) =
1

1− y2
+

y arcsin y

(1− y2)3/2
, (3)

∑
n≥0

(2y)2n

(2n+ 1)
(
2n
n

) =
arcsin y

y
√

1− y2
, (4)

∑
n≥1

(2y)2n

n(2n+ 1)
(
2n
n

) = 2
(

1−
√

1− y2
y

arcsin y
)
. (5)

In fact, starting from (1), one can derive, without difficulty, the others by differ-

entiation and integration. When y is specified to particular values, these formulae
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have been used in [5, 7, 9] to produce numerous infinite series identities, that de-

pend substantially on the evaluation of arcsin-function. By means of the elementary

relations below

arcsin y = i ln
(√

1− y2 − iy
)

and arcsin(iy) = i ln
(√

1 + y2 + y
)
,

we construct the following short table that will be employed in this paper, together

with Abel’s lemma on summation by parts to evaluate a large class of infinite series.

θ π/2 π/6 π/4 π/3 π/5 2π/5

sin θ 1 1
2

1√
2

√
3
2

√
5−
√
5

2
√
2

√
5+
√
5

2
√
2

θ π/8 3π/8 π/10 3π/10 π/12 5π/12

sin θ

√
2−
√
2

2

√
2+
√
2

2

√
5−1
4

√
5+1
4

√
3−1
2
√
2

√
3+1

2
√
2

Table 1: Special values of the sine function

As a classical analytic instrument, Abel’s lemma has been fundamental in con-

vergence tests of infinite series. Recently, it has been utilized by Chu [2] to derive

several infinite series identities involving the classical harmonic numbers and their

variants. For subsequent applications, we reproduce this lemma as follows. With

an arbitrary complex sequence {τk}, define the backward and forward difference

operators ∇ and ∆· , respectively, by

∇τk = τk − τk−1 and ∆· τk = τk − τk+1, (6)

where ∆· is adopted for convenience in the present paper, which differs from the

usual operator ∆ only in the minus sign. Then Abel’s lemma on summation by

parts (see [2] for a proof) may be reformulated as follows. For a fixed integer ε and

two complex sequences {Uk} and {Vk}, we have∑
k≥ε

Vk∇Uk = [UV ]+ − Uε−1Vε +
∑
k≥ε

Uk∆· Vk, (7)

provided that one of both series is convergent and the following limit exists:

[UV ]+ = lim
n→∞

UnVn+1. (8)

In a paper on binomial sums involving harmonic numbers, Genčev [6] found

several remarkable identities. We reproduce his typical Example 2.1:

∑
k≥1

(3k + 5)Hk(α)

(2k + 1)(2k + 3)
(
2k
k

) =


4− 2π√

3
, α = 1;

4− (1+
√
2)π

2 , α = 1 + 1/
√

2;

4− (2+
√
3)π

3 , α = 2 +
√

3.

(9)
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Here and forth, Hk(α) is the generalized harmonic number, with a real parameter

α subject to |α| ≥ 1, defined by

Hn(α) =

n∑
k=1

1

kαk
with H0(α) = 0.

Motivated by Genčev’s work, this paper will explore further applications of Abel’s

lemma on summation by parts to evaluate the following type infinite series:∑
k≥1

Hk(α)
(4β)k(

2k
k

) R(k) with |α| ≥ 1 and |β| < 1, (10)

which involves a rational function R(k), central binomial coefficients and Hk(α).

Up to now, only very few similar series have been evaluated, which represent

just the tip of the iceberg. For example, the formulae found by Genčev [6] cor-

respond to the cases α = 1 and β ∈ {1/2, 1/4, 3/4} as well as β = 1/4 and

α ∈ {1, 2+
√

3, 1+1/
√

2} that are covered by the following five choices y =
√
β/α ∈

{ 12 ,
1√
2
,
√
3
2 ,
√
3−1
2
√
2
,

√
2−
√
2

2 } out of twelve listed in our table.

Throughout the paper, we shall fix the sequence {Uk} by setting Uk = Hk(α).

From this, it follows easily that ∇Uk = 1/(kαk) as well as U0 = 0 and U1 = 1/α.

Moreover, for ε = 1 the term Uε−1Vε vanishes, and, consequently, can be ignored

in (7). Because |α| > 1, the limit of Un exists as n→∞.

The rest of the paper will be devoted to evaluating nine classes of infinite series

specified by particular cases of the sequence {Vk} and will be divided into nine sec-

tions characterized by polynomial factors appearing in the denominators. In each

section, we shall prove a general theorem by means of Abel’s lemma on summa-

tion by parts and then derive from it some exemplified infinite series identities by

specifying the two parameters α and β with particular values.

2. Series with
(2k
k

)
(2k + 1) in Denominators

In this section, we consider ε = 1 and

Vk =
(4β)k(

2k
k

) with ∆· Vk =
(4β)k(1 + 2k − 2βk − 2β)(

2k
k

)
(2k + 1)

.

This particular choice in (7) leads to the following theorem.

Theorem 1. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:∑

k≥1

Hk(α)
(4β)k(1 + 2k − 2βk − 2β)(

2k
k

)
(2k + 1)

=
2y arcsin y√

1− y2
.
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Proof. According to the modified Abel’s lemma on summation by parts (7), we can

formally reformulate the following infinite series:

∑
k≥1

(4β/α)k

k
(
2k
k

) =
∑
k≥1

Vk∇Uk = [UV ]+ − U0V1 +
∑
k≥1

Uk∆· Vk. (11)

Now, recalling the Stirling asymptotic formula (cf. [4, Pages 267 and 292])

n! ∼
(n
e

)n√
2nπ as n→∞,

we can determine the limit∣∣[UV ]+
∣∣ = lim

n→∞

∣∣∣∣Hn(α)
(4β)n+1(

2n+2
n+1

) ∣∣∣∣ ≤ lim
n→∞

|β|n+1
√

(n+ 1)π lnn = 0

since |β| < 1. Then by means of D’Alembert’s test, we can check easily that the

series on the left of (11) is convergent and can hence be evaluated by (2) as follows:

∑
k≥1

(4β/α)k

k
(
2k
k

) =
2y arcsin y√

1− y2
,

where y =
√
β/α. Therefore, the equality (11) is valid under the condition |α| ≥ 1

and |β| < 1. Writing explicitly the sum on the right, we get the formula stated in

the theorem.

For the presence of two free parameters in Theorem 1, we can derive more con-

crete infinite series identities by specifying particular values for α and β so that√
β/α equals one of sin θ given in the table. We limit ourselves to highlight only

some representative results.

Corollary 1 (β = 1/4 in Theorem 1).

∑
k≥1

Hk(α)(3k + 1)(
2k
k

)
(2k + 1)

=


2π
3
√
3
, α = 1 : Genčev [6];

π
2(1+

√
2)
, α = 1 + 1/

√
2;

π
3(2+

√
3)
, α = 2 +

√
3.

Corollary 2 (β = 1/2 in Theorem 1).

∑
k≥1

2kHk(α) k(
2k
k

)
(2k + 1)

=


π
2 , α = 1 : Genčev [6];

π
3
√
3
, α = 2;

π
6(2+

√
3)
, α = 4 + 2

√
3.
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Corollary 3 (β = 3/4 in Theorem 1).

∑
k≥1

3kHk(α) (k − 1)(
2k
k

)
(2k + 1)

=



4π√
3
, α = 1 : Genčev [6];

2π
3
√
3
, α = 3;

π, α = 3/2;

π
3(2+

√
3)
, α = 6 + 3

√
3.

Corollary 4 (β = 2/3 in Theorem 1).

∑
k≥1

(8

3

)kHk(α) (2k − 1)(
2k
k

)
(2k + 1)

=



3π
2 , α = 4/3;

π√
3
, α = 8/3;

3π
4 (
√

2− 1), α = 4
3 (2 +

√
2);

π
2 (2−

√
3), α = 8

3 (2 +
√

3);

3π
5

√√
5−2√
5
, α = 4

3 (3 +
√

5);

9π
5

√√
5+2√
5
, α = 4

3 (3−
√

5).

3. Series with
(2k
k

)
k(2k + 1) in Denominators

From now on, the proofs of all the subsequent theorems will be omitted due to

the similarity with the proof of Theorem 1. Instead, we shall highlight only the

sequence {Vk}, its difference ∆· Vk and the equation corresponding to (7).

Specify the sequence {Vk} and then compute its difference by

Vk =
(4β)k

k
(
2k
k

) and ∆· Vk =
(4β)k(1 + 2k − 2βk)

k
(
2k
k

)
(2k + 1)

.

By means of (7), we can reformulate the following infinite series:∑
k≥1

(4β/α)k

k2
(
2k
k

) =
∑
k≥1

Vk∇Uk = [UV ]+ − U0V1 +
∑
k≥1

Uk∆· Vk.

According to (1), we establish the following summation theorem.

Theorem 2. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:∑

k≥1

Hk(α)
(4β)k(1 + 2k − 2βk)

k
(
2k
k

)
(2k + 1)

= 2(arcsin y)2.
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Corollary 5 (β = 1/4 in Theorem 2).

∑
k≥1

Hk(α) (3k + 2)

k
(
2k
k

)
(2k + 1)

=


π2

9 , α = 1;

π2

16 , α = 1 + 1/
√

2;

π2

36 , α = 2 +
√

3.

Corollary 6 (β = 1/2 in Theorem 2).

∑
k≥1

2kHk(α)(k + 1)

k
(
2k
k

)
(2k + 1)

=


π2

8 , α = 1;

π2

18 , α = 2;

π2

32 , α = 2 +
√

2.

Corollary 7 (β = 3/4 in Theorem 2).

∑
k≥1

3kHk(α)(k + 2)

k
(
2k
k

)
(2k + 1)

=


4π2

9 , α = 1;

π2

9 , α = 3;

π2

4 , α = 3/2.

Corollary 8 (β = 5/6 in Theorem 2).

∑
k≥1

(10

3

)kHk(α) (k + 3)

k
(
2k
k

)
(2k + 1)

=


3π2

8 , α = 5/3;

π2

6 , α = 10/3;

2π2

3 , α = 10/9.

4. Series with
(2k
k

)
(2k + 1)(2k + 3) in Denominators

Define the sequence {Vk} and then compute its difference by

Vk =
(4β)k(

2k
k

)
(2k + 1)

and ∆· Vk =
(4β)k(3 + 2k − 2βk − 2β)(

2k
k

)
(2k + 1)(2k + 3)

.

Then the equation corresponding to (7) becomes

∑
k≥1

(4β/α)k

k
(
2k
k

)
(2k + 1)

=
∑
k≥1

Vk∇Uk = [UV ]+ − U0V1 +
∑
k≥1

Uk∆· Vk.

Because the series on left can be evaluated by (5), we prove consequently the

general summation theorem below.
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Theorem 3. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:

∑
k≥1

Hk(α)
(4β)k(3 + 2k − 2βk − 2β)(

2k
k

)
(2k + 1)(2k + 3)

= 2− 2 arcsin y

y

√
1− y2. (12)

Letting β = 1/4 in this theorem, we recover Genčev’s formulae [6, Example 2.1],

anticipated in equation (9). Other formulae are given below.

Corollary 9 (β = 1/2 in Theorem 3).

∑
k≥1

2kHk(α) (k + 2)(
2k
k

)
(2k + 1)(2k + 3)

=


2− π

2 , α = 1;

2− π√
3
, α = 2;

2− (2+
√
3)π

6 , α = 4 + 2
√

3.

Corollary 10 (β = 3/4 in Theorem 3).

∑
k≥1

3kHk(α) (k + 3)(
2k
k

)
(2k + 1)(2k + 3)

=



4− 4π
3
√
3
, α = 1;

4− 2π√
3
, α = 3;

4− π, α = 3/2;

4− (2+
√
3)π

3 , α = 6 + 3
√

3.

Corollary 11 (β = 1/3 in Theorem 3).

∑
k≥1

(4

3

)k Hk(α) (4k + 7)(
2k
k

)
(2k + 1)(2k + 3)

=



6− π
√

3, α = 4
3 ;

6− 3π
4 (1 +

√
2), α = 2

3 (2 +
√

2);

6− π
2 (2 +

√
3), α = 4

3 (2 +
√

3);

6− 3π
5

√
5 + 2

√
5, α = 2

3 (3 +
√

5).

Corollary 12 (β = 5/8 in Theorem 3).

∑
k≥1

(5

2

)k Hk(α) (3k + 7)(
2k
k

)
(2k + 1)(2k + 3)

=



8− 2π, α = 5
4 ;

8− 4π√
3
, α = 5

2 ;

8− π(1 +
√

2), α = 5
4 (2 +

√
2);

8− 2π
3 (2 +

√
3), α = 5

2 (2 +
√

3);

8− 4π
5

√
5 + 2

√
5, α = 5

4 (3 +
√

5).
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5. Series with
(2k
k

)
k(2k + 1)(2k + 3) in Denominators

Define the sequence {Vk} and then compute its difference by

Vk =
(4β)k

k
(
2k
k

)
(2k + 1)

and ∆· Vk =
(4β)k(3 + 2k − 2βk)

k
(
2k
k

)
(2k + 1)(2k + 3)

.

Applying the modified Abel’s lemma on summation by parts (7), we can refor-

mulate the following infinite series:

∑
k≥1

(4β/α)k

k2
(
2k
k

)
(2k + 1)

=
∑
k≥1

Vk∇Uk = [UV ]+ − U0V1 +
∑
k≥1

Uk∆· Vk.

Keeping in mind of the equality

1

k2(2k + 1)
=

1

k2
− 2

k(2k + 1)
,

we can evaluate the series on the left by (1) and (5). This results in the following

general summation theorem.

Theorem 4. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:

∑
k≥1

Hk(α)
(4β)k(3 + 2k − 2βk)

k
(
2k
k

)
(2k + 1)(2k + 3)

=
4
√

1− y2
y

arcsin y + 2(arcsin y)2 − 4.

Corollary 13 (β = 1/4 in Theorem 4).

∑
k≥1

Hk(α) (k + 2)

k
(
2k
k

)
(2k + 1)(2k + 3)

=


π2

27 + 4π
3
√
3
− 8

3 , α = 1;

π2

48 + (1+
√
2)π

3 − 8
3 , α = 1 + 1/

√
2;

π2

108 + (4+2
√
3)π

9 − 8
3 , α = 2 +

√
3.

Corollary 14 (β = 1/2 in Theorem 4).

∑
k≥1

2kHk(α)(k + 3)

k
(
2k
k

)
(2k + 1)(2k + 3)

=



π2

8 + π − 4, α = 1;

π2

18 + 2π√
3
− 4, α = 2;

π2

32 + (1+
√
2)π

2 − 4, α = 2 +
√

2;

π2

72 + (2+
√
3)π

3 − 4, α = 4 + 2
√

3.
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Corollary 15 (β = 3/4 in Theorem 4).

∑
k≥1

3kHk(α)(k + 6)

k
(
2k
k

)
(2k + 1)(2k + 3)

=



4π2

9 + 8π
3
√
3
− 8, α = 1;

π2

9 + 4π√
3
− 8, α = 3;

π2

4 + 2π − 8, α = 3/2;

π2

36 + 2π
3 (2 +

√
3)− 8, α = 6 + 3

√
3.

Corollary 16 (β = 1/7 in Theorem 4).

∑
k≥1

(4

7

)k Hk(α)(12k + 21)

k
(
2k
k

)
(2k + 1)(2k + 3)

=


7π2

72 + 7π
3 (2 +

√
3)− 28, α = 4

7 (2 +
√

3);

7π2

50 + 14π
5

√
5 + 2

√
5− 28, α = 2

7 (3 +
√

5).

6. Series with
(2k+2
k+1

)
(2k + 3) in Denominators

Define the sequence {Vk}, a shifted one of that in §2, and then compute its difference

by

Vk =
(4β)k(
2k+2
k+1

) and ∆· Vk =
(4β)k(3 + 2k − 2βk − 4β)(

2k+2
k+1

)
(2k + 3)

.

According to the modified Abel’s lemma on summation by parts (7), we can

reformulate the following infinite series:∑
k≥1

(4β/α)k

k
(
2k+2
k+1

) =
∑
k≥1

Vk∇Uk = [UV ]+ − U0V1 +
∑
k≥1

Uk∆· Vk.

In view of the identity

1

k
(
2k+2
k+1

) =
1

2
(
2k
k

)(1

k
− 1

2k + 1

)
,

we can evaluate the left series displayed in the penultimate equation by (2) and (4).

As observed by an anonymous referee, this can also be done by means of (4) and (5)

taking into account that

1

k
(
2k+2
k+1

) =
k + 1

2k(2k + 1)
(
2k
k

) =
1

2(2k + 1)
(
2k
k

) +
1

2k(2k + 1)
(
2k
k

) .
This leads to the following general summation theorem.

Theorem 5. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:∑
k≥1

Hk(α)
(4β)k(3 + 2k − 2βk − 4β)(

2k+2
k+1

)
(2k + 3)

=
1

2
− (1− 2y2) arcsin y

2y
√

1− y2
.
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Corollary 17 (β = 1/4 in Theorem 5).

∑
k≥1

Hk(α) (3k + 4)(
2k+2
k+1

)
(2k + 3)

=


1− π

3
√
3
, α = 1;

1− π
4 , α = 1 + 1/

√
2;

1− π
2
√
3
, α = 2 +

√
3.

Corollary 18 (β = 1/2 in Theorem 5).

∑
k≥1

2kHk(α)(k + 1)(
2k+2
k+1

)
(2k + 3)

=



1
2 , α = 1;

1
2 −

π
6
√
3
, α = 2;

1
2 −

π
8 , α = 2 +

√
2;

1
2 −

π
4
√
3
, α = 4 + 2

√
3.

Corollary 19 (β = 3/4 in Theorem 5).

∑
k≥1

3kHk(α)k(
2k+2
k+1

)
(2k + 3)

=



1 + 2π
3
√
3
, α = 1;

1− π
3
√
3
, α = 3;

1, α = 3/2;

1− π
4 , α = 3 + 3/

√
2.

Corollary 20 (β = 1/5 in Theorem 5).

∑
k≥1

(4

5

)kHk(α)(8k + 11)(
2k+2
k+1

)
(2k + 3)

=


5
2 −

5π
8 , α = 2

5 (2 +
√

2);

5
2 −

5π
4
√
3
, α = 4

5 (2 +
√

3);

5
2 −

π
2

√
2+
√
5√

5
, α = 2

5 (3 +
√

5).

7. Series with
(2k+4
k+2

)
(2k + 5) in Denominators

Define the sequence {Vk} and then compute its difference by

Vk =
(4β)k(
2k+4
k+2

) and ∆· Vk =
(4β)k(5 + 2k − 2βk − 6β)(

2k+4
k+2

)
(2k + 5)

.

According to the modified Abel’s lemma on summation by parts (7), we can

reformulate the following infinite series:∑
k≥1

(4β/α)k

k
(
2k+4
k+2

) =
∑
k≥1

Vk∇Uk = [UV ]+ − U0V1 +
∑
k≥1

Uk∆· Vk.
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The series on the left can be evaluated by (2) and (4) because of the equality

1

k
(
2k+4
k+2

) =
1

6

(
1

k
(
2k
k

) − 1

(2k + 1)
(
2k
k

) − 1

(2k + 3)
(
2k+2
k+1

)).
This proves the following general summation theorem.

Theorem 6. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:

∑
k≥1

Hk(α)
(4β)k(5+2k−2βk−6β)(

2k+4
k+2

)
(2k + 5)

=
3+14y2

72y2
+

arcsin y

y
√

1− y2

(
y2

3
− 1

24y2
− 1

6

)
. (13)

Corollary 21 (β = 1/4 in Theorem 6).

∑
k≥1

Hk(α) (3k + 7)(
2k+4
k+2

)
(2k + 5)

=


13
18 −

π
3
√
3
, α = 1;

13+3
√
2

18 − π
12 (2 +

√
2), α = 1 + 1/

√
2;

19+6
√
3

18 − π
18 (4 + 3

√
3), α = 2 +

√
3.

Corollary 22 (β = 1/2 in Theorem 6).

∑
k≥1

2kHk(α)(k + 2)(
2k+4
k+2

)
(2k + 5)

=



5
18 −

π
24 , α = 1;

13
36 −

π
6
√
3
, α = 2;

13+3
√
2

36 − π
24 (2 +

√
2), α = 2 +

√
2;

19+6
√
3

36 − π
36 (4 + 3

√
3), α = 4 + 2

√
3.

Corollary 23 (β = 3/4 in Theorem 6).

∑
k≥1

3kHk(α)(k + 1)(
2k+4
k+2

)
(2k + 5)

=


1
2 + 2π

27
√
3
, α = 1;

13
18 −

π
3
√
3
, α = 3;

5
9 −

π
12 , α = 3/2.

Corollary 24 (β = 1/6 in Theorem 6).

∑
k≥1

(2

3

)kHk(α)(5k + 12)(
2k+4
k+2

)
(2k + 5)

=


13+3

√
2

12 − π
8 (2 +

√
2), α = 2+

√
2

3 ;

19+6
√
3

12 − π
12 (4 + 3

√
3), α = 4+2

√
3

3 ;

16+3
√
5

12 − π
10

√
38+17

√
5√

5
, α = 3+

√
5

3 .
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8. Further Series with
(2k
k

)
(2k + 1)(2k + 3) in Denominators

Define the sequence {Vk}, a variant of that treated in §4, and then compute its

difference by

Vk =
k(4β)k

(2k + 1)
(
2k
k

) and ∆· Vk =
(4β)k

{
k(2k + 3)− 2β(k + 1)2

}(
2k
k

)
(2k + 1)(2k + 3)

.

According to the modified Abel’s lemma on summation by parts (7), we can

reformulate the following infinite series:∑
k≥1

(4β/α)k(
2k
k

)
(2k + 1)

=
∑
k≥1

Vk∇Uk = [UV ]+ − U0V1 +
∑
k≥1

Uk∆· Vk.

Evaluating the sum on the left via (4), we derive the general theorem below.

Theorem 7. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:

∑
k≥1

Hk(α)
(4β)k

{
k(2k + 3)− 2β(k + 1)2

}(
2k
k

)
(2k + 1)(2k + 3)

=
arcsin y

y
√

1− y2
− 1. (14)

Corollary 25 (β = 1/4 in Theorem 7).

∑
k≥1

Hk(α) (3k2 + 4k − 1)(
2k
k

)
(2k + 1)(2k + 3)

=


4π
3
√
3
− 2, α = 1;

π√
2
− 2, α = 1 + 1/

√
2;

2π
3 − 2, α = 2 +

√
3.

Corollary 26 (β = 1/2 in Theorem 7).

∑
k≥1

2kHk(α) (k2 + k − 1)(
2k
k

)
(2k + 1)(2k + 3)

=



π
2 − 1, α = 1;

2π
3
√
3
− 1, α = 2;

π
2
√
2
− 1, α = 2 +

√
2;

π
3 − 1, α = 4 + 2

√
3.

Corollary 27 (β = 3/4 in Theorem 7).

∑
k≥1

3kHk(α) (k2 − 3)(
2k
k

)
(2k + 1)(2k + 3)

=



8π
3
√
3
− 2, α = 1;

4π
3
√
3
− 2, α = 3;

π√
2
− 2, α = 3 + 3/

√
2;

2π
3 − 2, α = 6 + 3

√
3.
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Corollary 28 (β = 3/7 in Theorem 7).

∑
k≥1

(12

7

)kHk(α) (8k2 + 9k − 6)(
2k
k

)
(2k + 1)(2k + 3)

=


14π
3
√
3
− 7, α = 12/7;

7π
2
√
2
− 7, α = 6

7 (2 +
√

2);

7π
3 − 7, α = 12

7 (2 +
√

3).

9. Series with
(2k
k

)
(2k + 1)(2k + 3)(2k + 5) in Denominators

Finally, by combining linearly the equations

20Eq(13)− 3Eq(12)− Eq(14)

and then simplifying the result, we get the following general theorem.

Theorem 8. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:∑

k≥1

Hk(α)
(4β)k

{
(2k + 5)(3k2 + 6k + 1)− 2β(k + 1)(3k2 + 12k + 10)

}(
2k
k

)
(2k + 1)(2k + 3)(2k + 5)

=
5
(
3− 4y2

)
18y2

+

(
4y4 + 10y2 − 5

)
arcsin y

6y3
√

1− y2
.

Corollary 29 (β = 1/4 in Theorem 8: Genčev [6, Example 2.2]).∑
k≥1

Hk(α)(
2k
k

) k(k + 2)(3k + 7)

(2k + 1)(2k + 3)(2k + 5)

=


40
27 −

2π
3
√
3
, α = 1;

40+30
√
2

27 − π
18 (11 + 4

√
2), α = 1 + 1/

√
2;

100+60
√
3

27 − 7π
27 (4 + 3

√
3), α = 2 +

√
3.

Corollary 30 (β = 1/2 in Theorem 8).∑
k≥1

2kHk(α)(
2k
k

) 3k3 + 12k2 + 10k − 5

(2k + 1)(2k + 3)(2k + 5)

=



5
9 + π

6 , α = 1;

20
9 −

π√
3
, α = 2;

20+15
√
2

9 − π
12 (11 + 4

√
2), α = 2 +

√
2;

10
9 (5 + 3

√
3)− 7π

18 (4 + 3
√

3), α = 4 + 2
√

3.
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Corollary 31 (β = 3/4 in Theorem 8).∑
k≥1

3kHk(α)(
2k
k

) 3k3 + 9k2 − 2k − 20

(2k + 1)(2k + 3)(2k + 5)

=



76π
27
√
3
, α = 1;

40
9 −

2π√
3
, α = 3;

40+30
√
2

9 − π
6 (11 + 4

√
2), α = 3 + 3/

√
2;

20
9 (5 + 3

√
3)− 7π

9 (4 + 3
√

3), α = 6 + 3
√

3.

Corollary 32 (β = 3/8 in Theorem 8).∑
k≥1

(3

2

)kHk(α)(
2k
k

) 15k3 + 63k2 + 62k − 10

(2k + 1)(2k + 3)(2k + 5)

=


80
9 −

4π√
3
, α = 3/2;

80+60
√
2

9 − π
3 (11 + 4

√
2), α = 3

4 (2 +
√

2);

200+120
√
3

9 − 14π
9 (4 + 3

√
3), α = 3

2 (2 +
√

3).

10. Series about Quadratic Harmonic Numbers

Before the end of this paper, we are going to show another different example. For

the sequences {Uk} and {Vk} (where Vk is the same as that in §2) defined by

Uk = H ′′k (α) =

k∑
j=1

1

j2αj
and Vk =

(4β)k(
2k
k

) ,
it is routine to check their differences

∇Uk =
1

k2αk
and ∆· Vk =

(4β)k(1 + 2k − 2βk − 2β)(
2k
k

)
(2k + 1)

as well as limiting relations

[UV ]+ = U0V1 = 0 provided that |α| ≥ 1 and |β| < 1.

According to the modified Abel’s lemma on summation by parts (7), we can

manipulate the following infinite series:∑
k≥1

(4β/α)k

k2
(
2k
k

) =
∑
k≥1

Vk∇Uk = [UV ]+ − U0V1 +
∑
k≥1

Uk∆· Vk. (15)

Evaluating the series on the left by (1), we prove the general theorem below.
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Theorem 9. Let α and β be two real numbers subject to |α| ≥ 1 and |β| < 1. Then

for y =
√
β/α, the following summation formula holds:

∑
k≥1

H ′′k (α)
(4β)k(1 + 2k − 2βk − 2β)(

2k
k

)
(2k + 1)

= 2
(

arcsin y
)2
.

Corollary 33 (β = 1/4 in Theorem 9).

∑
k≥1

H ′′k (α)(3k + 1)(
2k
k

)
(2k + 1)

=


π2

9 , α = 1;

π2

16 , α = 1 + 1/
√

2;

π2

36 , α = 2 +
√

3.

Corollary 34 (β = 1/2 in Theorem 9).

∑
k≥1

2kH ′′k (α) k(
2k
k

)
(2k + 1)

=


π2

8 , α = 1;

π2

18 , α = 2;

π2

72 , α = 4 + 2
√

3.

Corollary 35 (β = 3/4 in Theorem 9).

∑
k≥1

3kH ′′k (α) (k − 1)(
2k
k

)
(2k + 1)

=



4π2

9 , α = 1;

π2

9 , α = 3;

π2

4 , α = 3/2;

π2

36 , α = 6 + 3
√

3.

Corollary 36 (β = 2/7 in Theorem 9).

∑
k≥1

(8

7

)kH ′′k (α) (10k + 3)(
2k
k

)
(2k + 1)

=



7π2

18 , α = 8/7;

7π2

32 , α = 4
7 (2 +

√
2);

7π2

72 , α = 8
7 (2 +

√
3);

7π2

50 , α = 4
7 (3 +

√
5).

Corollary 37 (β = 2/9 in Theorem 9).

∑
k≥1

(8

9

)kH ′′k (α) (14k + 5)(
2k
k

)
(2k + 1)

=


9π2

32 , α = 4
9 (2 +

√
2);

π2

8 , α = 8
9 (2 +

√
3);

9π2

50 , α = 4
9 (3 +

√
5).
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11. Concluding Remarks

The examples exhibited in this paper suggest that there may exist potentially in-

finite difference pairs {Uk} and {Vk} fitting into our scheme. Their reformulations

carried out through Abel’s lemma on summation by parts would produce infinitely

many summation formulae involving both the generalized harmonic numbers and

the central binomial coefficients. For example, one may construct other difference

pairs {Uk} and {Vk} based on the series appeared in [1, 2, 3, 8] and [4, Page 89].

The interested reader is encouraged to explore further this approach and search for

more significant infinite series identities.
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