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Abstract
We analyze the Sprague-Grundy functions for a class of almost disjoint selective
compound games played on Nim heaps. Surprisingly, we find that these functions
behave chaotically for smaller Sprague-Grundy values of each component game yet
predictably when any one heap is su�ciently large. In particular, we prove some
conjectures of Boros et al. and make progress on others. We conjecture some
periodicity results for almost disjoint union of games which relate to Conway’s
conjecture that all bounded octal games have periodic Sprague-Grundy functions.

1. Introduction

In this paper we concern ourselves with two-player impartial combinatorial games
under normal play. Thus the games we consider are perfect-information; both
players are allowed the same set of moves given the same configuration of the game
board, and the game eventually terminates. The player whose move terminates the
game wins. From now on, we simply refer to these as games. For an overview of
such games see [1].

Games can be modelled by a directed graph (V,E) which we call the game tree:
V denotes the set of game states, whereas an edge (v1, v2) denotes the existence
of a move from state v1 to state v2. The leaves of the tree are then the terminal
positions. It follows by easy induction on the game tree that, from every position,
either P1 or P2 has a winning strategy. Given a game G = (V,E), the Sprague-
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Grundy (SG) function N : V ! N generalizes this partition. From v 2 V , the
player who is about to play has a winning strategy if and only if N (v) 6= 0. We
usually call the Sprague-Grundy value of a game-state v its nimber.

A lot of our results build on the following recursive definition of the Sprague-
Grundy function.

Definition 1. Let G = (V,E) be a game. If v 2 V is terminal, N (v) = 0.
Otherwise, N (v) = mex {N (v0) | (v, v0) 2 E}, where mex denotes the minimum
excluded value of a set in N.

In [4] Conway suggests three potential rules for moving in compound games,
where games G and H are played simultaneously:

• The disjunctive compound, denoted G�H. Here players make a legal move
in either G or H on their turn.

• The selective compound, denoted G � H. Here on a player’s turn they select
either G, H, or both and makes legal moves in the ones selected.

• The conjunctive compound, where players always make legal moves in both
component games.

Given enough information about each of the component games, the Sprague-
Grundy theorem makes it easy to determine the SG-function N for the disjunctive
sum of two games: N (G�H) = N (G) �N (H), where the second � denotes the
bitwise xor operation on N (G) and N (H). As an example, by ⇤k we denote the
game of a Nim pile with k stones. A valid move is to remove an arbitrary amount
of stones from the pile. Then clearly by Definition 1, N (⇤k) = k. One pile Nim is
not a very interesting game; however, (⇤k)� (⇤l)� (⇤m) can be easily navigated by
computing nimbers, even though there is not always an intuitive winning strategy.

The SG-function of selective compound games, however, is not characterized by
the nimbers of its component games. For example,

N (⇤1 � ⇤0) = 1 6= N (⇤1 � (⇤1� ⇤1)) = 3

even though the nimbers of the component games agree. In fact, even for games
as simple as these, determining the SG-function can be rather complicated. In
2015, Boros et al. [3] gave a partial analysis of N (⇤a � (⇤b� ⇤c)) and noted that
this function behaves rather chaotically. We continue this analysis by proving
some of the conjectures presented in [3] as well as extending results to the game
N (⇤x1 � (⇤x2 � ...� ⇤xn)). We call this game Auxiliary Nim and, more generally,
for a given game G we call the game ⇤k � G Auxiliary G.

A lower bound and an upper bound can easily by derived for the nimber of an
Auxiliary Nim game. We show the following bounds in Corollary 2:

x1 + (x2 � x3 � · · ·� xn)  N (x1, x2, x3, · · · , xn)  x1 + x2 + x3 + · · · + xn.
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Our first two results characterize when these extreme points are realized. Firstly,
the following theorem determines under which circumstances

N (⇤x1 � (⇤x2 � ...� ⇤xn) = x1

holds, i.e., lowest achievable value by Corollary 2.

Theorem 1. For any finite natural sequence (xi)i2[n], the Sprague-Grundy function
achieves the lower bound N (⇤x1 � (⇤x2� · · ·�⇤xn)) = x1 if and only if (⇤x2� · · ·�
⇤xn) = 0 and 2blog2 x1c+1 divides all of x2, x3, · · · , xn.

The next question we address is under which circumstances the upper bound from
Corollary 2 is realized. The answer turns out to be that the upper bound is realized
when x1 is su�ciently large compared to the other xis. We first define A(x2, ..., xn)
to be the least value of x1 such that 8a � x1, N (⇤a � (⇤x2 � ...� ⇤xn) = a + x2 +
... + xn.

Theorem 2. Let (x1, x2 · · · , xn) be an Auxiliary-Nim game with n-many piles.
Then A(x2, · · · , xn) is well-defined. Furthermore, A(x2, · · · , xn) is at most O(x2 +
· · · + xn).

Further, in the special case of n = 3, we prove a linear upper bound. In Lemma
7, we show that

A(b, c)  min(⇠ b,⇠ c) + 1

where ⇠ x denotes the bitwise complement. We also provide some su�cient con-
ditions for this upper bound to be realized. The analysis of the n = 3 case brings
us to the next question, namely, can we come up with a closed-form, non-recursive
way to describe the behavior of N (⇤a � (⇤b� ⇤c), the Auxiliary Nim game with
only 3 piles? This question is still open. We partially resolved the cases where
log2 bbc = log2 bcc. In particular, we show the following.

Theorem 3. Suppose b = 2i + k and c = 2i + l with k < l < 2i. Then

N (a, b, c) =

8
>>><

>>>:

a + b + c a � 2i � l

2a + c + k + l 2i � k � l  a < 2i � l ; l  2i�1

� N (a, k, l) l > 2i�1 ; N (a, k, l) � 2i

N (a, k, l) N (a, k, l) < 2i.

This recursive structure causes the SG function to become rather complicated,
even in simple circumstances. For a qualitative view of this complexity, see Figure
1.

We also show thatN (⇤1�(⇤b�⇤c)) achieves the upper bound when c is su�ciently
large compared to any odd b. We discuss the complications when b is even after the
proof.
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Figure 1: A heat-map for the Sprague-Grundy values (nimbers) for the game (⇤1)�
(⇤x�⇤y). The behavior of the blocks of size 2n along the diagonal are characterized
by Theorem 3. The structure of the fixed blocks “decay” as they are translated to
the right/down. This is partially explained by Theorem 4.

Theorem 4. For b odd, if c � 22blog2 bc+1�2blog2 bc+2�1 then N (⇤1 � (⇤b� ⇤c)) =
1 + b + c.

Therefore, there are at least some cases where the SG-function of this game is
well-behaved. But outside the domain of the assumptions of the previous theo-
rems, even in the analysis of the simplest possible Auxiliary Game, the function
N (⇤1 � (⇤b� ⇤c)), seems to result in combinatorial chaos.

1.1. Extended Complementary Nim

We should point out that we discovered our work here has some overlap with a 2015
paper of Boros et al. [3]. The authors in [3] define the game EXCO-NIM, played
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Figure 2: A heat-map for the Sprague-Grundy values (nimbers) for the game (⇤8)�
(⇤x � ⇤y). Notice that the auxiliary pile size is larger compared to the game in
Figure 1, and the heat-map looks more “orderly”. This is partially explained by
Theorem 2, in particular, by the fact that A(b, c)  min(⇠ b,⇠ c) + 1 (Lemma
7). Nimbers achieve the minimum possible value (in this case, 8) only along the
diagonal when b = c is a multiple of 16, as shown by Theorem 1.
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on n + 1 (n � 2) piles, where a valid move can be reducing the first pile as well
as at most n � 1 of the remaining piles (but at least 1 pile has to be decreased).
Observe that EXCO-NIM when n = 2 is equivalent to the game (⇤x1�(⇤x2�⇤x3)).
They state that this case (n = 2) behaves in a chaotic way, and they provide some
partial results and conjectures. Here, we prove some of their conjectures, and make
progress on others. For the basic bounds on N (⇤x1 � (⇤x2 � ⇤x3)) our work has
considerable overlap; however, we reprove these results here for completeness.

In particular, our Theorem 1 proves their Conjecture 1 of Section 4.3. (Some
partial progress was made independently by Boros et al.) Furthermore, our The-
orems 2 and 4 prove some important cases of Conjecture 4 of Boros et al. from
Section 4.3. Finally, our Theorem 3 strengthens Lemma 7 and Corollary 2 of Boros
et al. from Section 4.2.

2. Results

From now on, we will refer to the game (⇤a) � (⇤b � ⇤c) simply as (a, b, c), and
similarly (⇤x1) � (⇤x2 � ⇤x3 � · · · � ⇤xn) as (x1, x2, x3, · · · , xn). Also, N (a, b, c)
denotes the Sprague-Grundy value of the game (a, b, c). Finally, we use (a, b, c) ! N
to state that the game (a, b, c) can reach a game with nimber N through some legal
move. Similarly, (a, b, c) 9 N means that the game (a, b, c) cannot reach a game
with nimber N . Observe that (a, b, c) ! N implies N (a, b, c) 6= N .

We begin with some preliminary results.

Lemma 1. We have the lower bound N (a, b, c) > N (a� 1, b, c) for all a 2 N.

Proof. We see that if (a�1, b, c) ! N , (a, b, c) ! N , by first setting a to a�1, and
replicating the remaining move. Moreover, (a, b, c) ! N (a�1, b, c), thus N (a, b, c) >
N (a� 1, b, c) as desired.

Corollary 1. The lower bound from Lemma 1 holds in more generality. Namely,

N (x1, x2, x3, · · · , xn) > N (x1 � 1, x2, x3, · · · , xn)

for any xi 2 N.

Lemma 2. For any a, b, c 2 N, we have the following bound: a + (b � c) 
N (a, b, c)  a + b + c.

Proof. The upper bound is trivial, since a + b + c is the depth of the game (a, b, c).
We prove the lower bound by induction on a. Let b, c be arbitrary and fixed. For
the base case, clearly N (0, b, c) = b � c � 0 + (b � c). Assuming that the bound
holds for lower values of a, we get N (a� 1, b, c) � a� 1 + (b� c) by hypothesis. By
Lemma 1, we have that N (a, b, c) � a + (b� c) as desired.
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(1 · · ·x · · · y)
(1 · · · 1 · · · 0 · · · 0 · · · 0)

�� (1 · · · 1 · · · 0 · · · 0 · · · 0)
N (a, b, c)

Figure 3: Visualization of the xor operation in the above proof.

Corollary 2. The bounds from Lemma 2 generalize. Namely, we have:

x1 + (x2 � x3 � · · ·� xn)  N (x1, x2, x3, · · · , xn)  x1 + x2 + x3 + · · · + xn.

Proof. We see that the lower bound in Corollary 2 immediately generalizes to the
case where we have an arbitrary number of piles, as moves on the right-hand side as
well as in the auxiliary pile can be replicated in a similar fashion. The upper bound
also does, as the depth of the game still is a trivial upper bound on the nimber of
the game.

Now, we begin by providing a necessary and a su�cient condition for N (a, b, c)
to simply evaluate to a, and then we generalize this to a complete proof of Theorem
1.

Lemma 3. The SG function achieves the lower bound N (a, b, c) = a if and only if
there exists k 2 N such that b = c = k · 2blog2 ac+1.

The lemma claims that N (a, b, c) = a if and only if b = c is a multiple of a power
of 2 strictly greater than a. Note this is just a special case of Theorem 1. The proof
of the special case is easier to formalize, and generalizes painlessly, so we provide a
proof.

Proof. We begin with the (() direction. If k = 0, the statement is trivial. There-
fore, let b = c be a multiple of a power of 2 strictly greater than a. Thus, in
the binary representation, b has as at least as many 0s as the number of bits
in a. It su�ces to show (a, b, b) 9 a to conclude N (a, b, b) = a, since we have
N (a, b, b) � a + (b � b) = a by Lemma 2. From the diagram below (Figure 3), we
observe that any move that decreases b to b0 ensures that b�b0 > a, since a decrease
in b implies flipping a 1 bit to the left of the leftmost bit in a, therefore in the xor
operation, the bit from the other b will fall down, to the left of a. So by the lower
bound in Lemma 2, any such move will never obtain a nimber equal to a, since
N (a, b, b0) > a.

We still need to show that (a, b, b) 9 a, but we are now only concerned with
moves that only decrease the first pile. For this case, we induct on a. Since we
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assume we can decrease a, a has to be non-zero. When a = 1, decreasing a is
equivalent to removing the first pile, thereby resulting in the game (b � b) with
nimber 0 6= a. In the inductive step, we assume that we decrease the size of the first
pile by k, yielding game (a�k, b, b). By assumption, we have b = k ·2blog2 ac+1. But
by a decrease in a, we cannot change the fact that b is still a multiple of a power
of two that is strictly greater than a. Hence, b = l · 2blog2 a�kc+1, and the inductive
hypothesis applies to show N (a�k, b, b) = a�k 6= a. This concludes the induction,
and the (() direction of the Theorem.

We will show the ()) direction by contrapositive. When b and c are not the
multiple of the power of two that we require, we want to show N (a, b, c) 6= a.
Suppose first that b 6= c. Then b� c 6= 0, and by the bound from Lemma 2, we see
that N (a, b, c) > a, so we are done.

Now, suppose b = c, but b is not a multiple of a power of two strictly greater
than a. We will show (a, b, b) ! a by induction on a.
In the base case, a = 1. Then,

2log2bac+1 = 2log2b1c+1

= 21.

Therefore, we deduce b 6= 2k by assumption, i.e., b is odd. We observe that
b� (b� 1) = 1, as b� 1 is simply b with the right-most bit inverted, since b is odd.
Thus, (1, b, b) ! 1, and we have the base case.

In the inductive step, we consider (a, b, b). We assume b is not a multiple of a
power of 2 strictly greater than a.
Case 1. b also is not a multiple of a power of 2 strictly greater than a�1. In this
case, the hypothesis applies to the game (a� 1, b, b), to show (a� 1, b, b) ! a� 1.
From the bounds in Lemma 1 and 2, it is evident that

N (a, b, b) > N (a� 1, b, b)
� (a� 1) + 1
= a.

and thus we are done.
Case 2. b is a multiple of a power of 2 strictly greater than a � 1, but not a
multiple of a power of two strictly greater than a. We conclude that in this case,
a = 2k for some k, as that is the only way the power of 2 strictly greater than a� 1
would not also be strictly greater than a.

We also see that b is a multiple of a in this case, and we thus see that in the
base 2 representation, b has to have a 1 bit at the kth index and thus contain a
“copy” of a, as otherwise, b would simply be the multiple of 2k+1, contradicting our
assumption. (This is equivalent to stating that b is an odd multiple of a.) Thus
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we have, (a, b, b) ! b � (b � a) = a, as desired. We show this bit argument in the
diagram below.

(1 · · · 0 · · · 0)
(1 · · · 1 · · · 1 · · · 0 · · · 0)

�� (1 · · · 1 · · · 1 · · · 0 · · · 0)
N (a, b, b)

The above diagram gets converted to the below diagram, with the move that
eliminates the first pile, and decreases a from the second pile. Note that in the case
when a = b, this procedure simply amounts to removing piles 1 and 2.

(1 · · · 1 · · · 0 · · · 0 · · · 0)
� (1 · · · 1 · · · 1 · · · 0 · · · 0)

(1 · · · 0 · · · 0)

We are now ready to prove Theorem 1 in full generality. For convenience, we
restate it below.

Theorem 1. The SG function achieves its lower bound N (x1, x2, x3, · · · , xn) = x1

if and only if (x2�x3� · · ·�xn) = 0 and 2blog2 x1c+1 divides all of (x2, x3, · · · , xn).

This theorem strengthens Corollary 2 to characterize all the Auxiliary Nim games
where the nimbers are equivalent to the size of the first pile. Note that, unlike in
the statement of Corollary 2, we do not and cannot mandate that all the values
(x2, x3, · · · , xn) are equivalent. We merely require that all the values xor to 0 (in
the 3 pile game, this is equivalent to saying b = c).

Proof. For the (() direction, we have that all of (x2, x3, · · · , xn) xor to 0 and each
have as many 0s as the number of bits of x1. Thus, for any move that is not
solely a decrease in the (⇤x1) pile, a decrease in a pile (⇤xi) to (⇤x0i) ensures that
(x2 � · · ·x0i � · · ·� xn) > x1. This is because a bit falls down to the left of x1 and
the xor was 0 before the move by assumption. For moves that decrease only the
(⇤x1) pile, we can induct on the value of (⇤x1) to show that all such decreases will
yield a nimber of x1� d, where d is the decrease. This step is identical in the proof
for Theorem 1.

We now show the ()) direction, again by contrapositive. By the lower bound
in Corollary 2, it follows immediately that (x2 � x3 � · · · � xn) = 0, as otherwise
N (x1, x2, x3, · · · , xn) > x1. So we assume that there exists xi 2 (x2, x3, · · · , xn)
such that 2blog2 x1c+1 does not divide xi. We again induct on the value of x1. In the
base case when x1 = 1, we conclude xi is odd, thus the move that sets x0i = xi�1 will
yield nimber 1, just like in the previous proof, contradicting N (a, b, c, · · · , z) = a.
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We again separate our inductive step into two cases. If our inductive hypothesis
applies to the same game with x01 = x1 � 1, we are done. Otherwise, x1 = 2m for
some m a power of 2, and we have an xi such that xi is a multiple of 2m, but not
2m+1, and thus xi contains a “copy” of the bits of x1, i.e. xi has a 1 bit at the mth

index. We set x0i = xi � x1 to yield a game with nimber x1, thus showing that the
nimber of the original game could not have been x1, concluding the proof.

We note that despite the fact that the SG-value of (⇤a) � (⇤b � ⇤c) is complex
when the value of a is low, the SG value merely equals a + b + c, the upper bound,
when a is large enough. In the following section of the paper, we formalize this
notion, and give some characterizations of the cases for when N (a, b, c) = a + b + c.

Definition 2. For any b, c 2 N, we define A(b, c) to be the minimum a 2 N such
that N (a, b, c) = a + b + c.

Note that it is not necessarily clear from the definition that A is even well defined.
Soon, however, we will prove this by establishing an upper bound on A(b, c).

Lemma 4. If A(b, c) is defined, for every a > A(b, c) we see that N (a, b, c) =
a + b + c.

Proof. This follows immediately from the lower bound provided by Lemma 1 and
the upper bound provided by Lemma 2.

Definition 3. Let ni be the value of the ith digit of n in its binary representation,
indexing from zero and the right. We call n a gap in a� b if n = a� b or if at the
leftmost index i in the binary representation of n where n di↵ers from a� b we have
ni = 1 and ai = bi = 0.

Note that if n � 2dlog2(max(a,b))e then n is always a gap.

Lemma 5. If n is not a gap in b� c then (0, b, c) ! n.

Proof. Consider the left most bit i in n that di↵ers from b � c. Note that to get
from (0, b, c) to n we will never have to alter bits to the left of index i. There are
two cases.
Case 1: ni = 1. Then bi = ci = 1. Let b0 = c � n. Clearly b0 � c = n. Further,
b0j = bj for all j > i as bj � cj = nj by the definition of a gap, and bi = 1 > b0i = 0,
so b > b0. Thus the move from (0, b, c) to (0, b0, c) is valid, so (0, b, c) ! n as desired.
Case 2: ni = 0. Without loss of generality let bi = 1 and ci = 0. Letting b0 = c�n
as before, by the same logic, we have the move from (0, b, c) to (0, b0, c) is valid and
N (0, b0, c) = n as desired.

We say n is the jth gap in a� b if n is a gap and there are precisely j � 1 gaps
n0 such that n0 < n. Note that a� b will always be the first gap in a� b.
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Lemma 6. Let n be the jth gap in b� c. Then N (j � 1, b, c) � n.

Proof. We proceed by induction on j. If j = 1, then there are no gaps in b� c less
than n, so by Lemma 5, N (0, b, c) � n. Now suppose j > 1 and let n0 be the (j�1)st

gap. Then by the inductive hypothesis, N (j � 2, b, c) � n0, so (j � 1, b, c) ! i for
all i 2 [n0] by reducing j � 1 to j � 2 and replicating the rest of the move. But as
there are no gaps between n and n0, (0, b, c) ! i for all i 2 [n0 + 1, n � 1]. Thus
N (j � 1, b, c) � n as desired.

Lemma 7. For any b, c 2 N, A(b, c) is defined, and A(b, c)  min(⇠ b,⇠ c) + 1,
where ⇠ x denotes the bitwise complement.

This theorem establishes a linear upper bound on A(b, c) for any b and c, thereby
proving that A(b, c) is well-defined for arbitrary values. Further, it proves Conjec-
ture 2 and a special case of Conjecture 3 posed in [3].

Proof. Let a = min(⇠ b,⇠ c) + 1. It su�ces to show for all n < a + b + c that
(a, b, c) ! n. Then by the upper bound from Lemma 2, N (a, b, c) = a + b + c, so
A(b, c)  min(⇠ b,⇠ c) + 1 as desired. We show this by induction on b + c.

For the base case, b + c = 0, it must be that b = c = 0 and the claim is true.
Now suppose b + c > 0. We will assume without loss of generality that ⇠ b ⇠ c.
Therefore, we have a =⇠ b + 1.

We will first show that (a, b, c) ! n 8n 2 [a + b, a + b + c � 1]. Let i 2 [c].
Observe that min(⇠ b,⇠ c) � min(⇠ b,⇠ (c� i)). So by the induction hypothesis,
a � A(b, c� i) and thus N (a, b, c� i) = a + b + c� i.

We will now cover the rest of the range, so we want to show (a, b, c) ! n for all
n 2 [0, a + b � 1]. From Lemma 5, we have that if there are n gaps in b � c less
than or equal to b + ⇠ b = a + b � 1 then N (n, b, c) � n0 > b + ⇠ b where n0 is
the (n + 1)st gap. So it su�ces to show that there are at most ⇠ b + 1 = a gaps
less than a + b. But by the definition of gaps, the number of gaps less than a + b is
maximized if whenever bi = 0 it is also the case that ci = 0 for i  log2(b). If this
is the case, there are precisely 2i gaps for each i  log2(b) such that bi = 0 and one
gap to account for b � c. Summing over all of these gaps, there are a =⇠ b + 1 in
total and the proof is complete.

There are indeed non-trivial instances where the upper bound provided by Lemma
7 is strict, as we will show shortly. However, it is natural to suspect from the proof
of the previous theorem that the actual number of gaps less than a + b is a suitable
candidate for a better upper bound (we had assumed that the number of gaps is as
large as it possibly can be in the proof). We now prove an extension to Lemma 7
for when this actually is the case.

Lemma 8. Let b = 2i + k and c = 2j + l where k < 2i and l < 2j and j > i.
Also assume whenever b has a 1 bit at the nth index of its binary representation, so



INTEGERS: 20 (2020) 12

does c. Then A(b, c) is bounded above by the number of gaps in b � c less than c |
(b+ ⇠ b), where | is the bitwise or operator.

Proof. We proceed by induction on b. In the base case b = 1 and the claim holds
for any valid choice of c by Lemma 7. Now let b be given, let c satisfy the conditions
of the claim, and let a be the number of gaps in b � c less than c | (b+ ⇠ b). We
will show N (a, b, c) = a + b + c.

We begin by noting that when we decrease b to b0, the number of gaps less than
c | (b+ ⇠ b) cannot increase. This is because by making a decrease in b we cannot
create a new index n, where b and c both have 0 bits that did not exist originally, by
the assumption. Therefore, (a, b, c) ! n for all n 2 [a+c, a+b+c�1] by reducing b
and applying the induction hypothesis. For the rest of the range, note that a+c = c
| (b+ ⇠ b). Values less than a+ c are either attainable by bit arguments by Lemma
5 or they are one of the a gaps less than in b� c. In the latter case by Lemma 6 we
see that (a, b, c) ! n. 8n 2 [0, a + c]. Thus N (a, b, c) = a + b + c, and A(b, c)  a,
as desired.

Unfortunately, the upper bound shown in Lemma 7 does not generalize in the
obvious sense to the game with an arbitrary number of piles. However, we can show
that A(x1, x2, · · · , xn) is well-defined and is bounded above quadratically. This was
the statement of Theorem 2, which we reproduce below for convenience.

Theorem 2. Let (x1, x2 · · · , xn) be an Auxiliary-Nim game with n-many piles.
Then, A(x2, · · · , xn) is well-defined. Furthermore, A(x2, · · · , xn) grows quadrati-
cally with respect to the sum x2 + · · · + xn.

Proof. We proceed by induction on x2 + · · ·+xn. When the sum is 0, A(x2, · · · , xn)
is trivially 0 also. Otherwise, let the sum be any positive integer. We know that
if we make a decrease in any of the piles x2 through xn, the resulting collection of
piles have a well-defined A value by induction. We set:

a⇤ = A(x2 � 1, x3, · · · , xn) + x2 + · · · + xn.

Then N (a⇤, x2, · · · , xn) > a⇤ by the lower bound from Corollary 2. For the remain-
ing nimbers, we can simply consider the move where we subtract 1 from the first
pile (⇤x2), and the nimber of the resulting game will hit the upper bound as long
as we don’t subtract more than x2 + · · · + xn from a⇤. Luckily, we only need to
remove up to this much to hit all the nimbers in the range [a⇤, a⇤ + x2 + · · ·+ xn].
This concludes the proof.

We are now in a position to begin proving explicit characterizations of A(b, c) in
several cases. We will make use of the following lemma which lower bounds the size
of A(b, c). Afterwards, we will show that in some non-trivial instances the lower
bound matches the upper bound derived from Lemma 7.
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Lemma 9. For any b, c 2 N we have A(b, c) � min(A(b� 1, c), A(b, c� 1)).

Proof. Assume for the sake of contradiction that a = A(b, c) < min(A(b � 1, c),
A(b, c� 1)) and consider (a, b, c). In this case we have that (a, b, c) ! a + b + c� 1.
But as N (a, b, c)  a + b + c by the upper bound from Lemma 2, we can only
reach this value reducing one of a, b, c by exactly 1. However, none of N (a� 1, b, c),
N (a, b� 1, c), or N (a, b, c� 1) can be a + b + c� 1 by the definition of A(b, c), and
the assumption. This is a contradiction.

Note that the proof for Lemma 9 generalizes similarly to give a lower bound for
A(x1, x2, ..., xn).

Corollary 3. For any x1, ..., xn 2 N we have A(x1, · · · , xn) � min(A(x1�1, · · · , xn),
· · · , A(x1, · · · , xn � 1)).

Lemma 9 also allows us to characterize A(b, c) when b and c are su�ciently close,
as will be explicitly stated in Lemma 10.

Lemma 10. Suppose 0  x, y < 2i. Then A(2i + x, 2i + y) = 2i �max(x, y).

Proof. Note that 2i�max(x, y) =⇠ (2i+x)+1 is precisely the upper bound given by
Lemma 7, so it su�ces to show our lower bound derived from Lemma 9 corresponds
with this as well. This is done by induction on x + y.

For the base cases, let y = 0. Then by Theorem 5 we see that A(2i+x, 2i) = 2i�x,
as x < 2i.

Now suppose the claim holds for x+y = n and consider the case where x0 +y0 =
n + 1. Without loss of generality we can consider the case where x0 = x + 1 and
y0 = y. We can also assume x, y > 0 since the other cases are covered already,
meaning we can safely assume y � 1 � 0 and apply the inductive hypothesis. By
Lemma 9 we have that:

A(2i + x + 1, 2i + y) � min(A(2i + x, 2i + y), A(2i + x + 1, 2i + y � 1))
= min(2i �max(x, y), 2i �max(x + 1, y � 1))
= 2i �max(x + 1, y).

Thus the lower bound matches the upper bound by induction.

With this we can give a more complete characterization of N (a, b, c) when blog2(b)c
= blog2(c)c. In order to do this, however, we will need a result from Boros et al.,
which we restate below for convenience:

Lemma 11. Suppose that a, b, c, i 2 N. If N (a, b, c) < 2i then N (a, b+2i, c+2i) =
N (a, b, c). On the other hand, if N (a, b, c) < 2i then N (a, b+2i, c+2i) � N (a, b, c).

Proof. See the proof of Lemma 7 in [3].
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We are now ready to prove Theorem 3, which we restate below.

Theorem 3. Suppose b = 2i + k and c = 2i + l with k < l < 2i. Then

N (a, b, c) =

8
>>><

>>>:

a + b + c a � 2i � l

2a + c + k + l 2i � k � l  a < 2i � l; l  2i�1

� N (a, k, l) l > 2i�1;N (a, k, l) � 2i

N (a, k, l) N (a, k, l) < 2i.

Proof. The first and last two cases are covered by Lemma 10 and Lemma 11
respectively, so it su�ces to show N (a, b, c) = 2a + b + c � (2i � l) whenever
0i � k � l < a < 2i � l and l  2i�1. This can be done via induction on k + l. For
the base case we have k = 0, which is covered by Theorem 5. Otherwise, suppose
k+l > 0 and that the result holds for all previous examples. In general, we can cover
all values in the range [2i � 1, 2i+1 � 1] by bit arguments alone. For a = 2i � k � l,
values in the range [2i+1, 3 ·2i�k� l�1] can be reached by moving to the positions
(a0, 2i � l � 1, 2i + l) for 0 < a0  a as 2i � l � 1 � c = 2i � l � 1 + c. Finally,
values in the range [2i+1 + l, 3 · 2i�k� 1] can be reached by moving to the position
(a0, 2i � 1, 2i + l) for 1  a0  a.

To complete this case we need only show that there is no valid move to a position
with nimber 3 · 2i � k. But this is clear: as k < l  2i�1 and a = 2i � k � l by
Lemma 11 we cannot reach this nimber by a reduction in a only, and we cannot
achieve this value by a reduction in b or c by induction. Therefore, the claim holds
when a = 2i � k � l. To see that the claim holds in the other cases as well, note
that from the induction we have that incrementing a while reducing b by 1 fills in
the nimber. Similarly, while a < 2i � l induction also gives us the necessary upper
bound.

While Theorem 3 explicitly characterizes nimbers for larger values of a, for
example if blog2(k)c 6= blog2(l)c then for smaller a’s the theorem provides little
information. Therefore, we move on to analyzing N (a, b, c) in the cases where
blog2(b)c 6= blog2(c)c.

We begin with an instance where we can explicitly determine the values of the
Sprague-Grundy function.

Theorem 5. Suppose b = 2i, c = (2k + 1)2i + r, and a < 2i � r. Then N (a, b, c)
is the (a + 1)st gap in b� c.

Proof. This is done via a nested induction on a, r, and k. For the base case, suppose
a = r = k = 0. Then N (a, b, c) = 0, the first gap.

Now suppose 0 < a < A(b, c), r = k = 0 and assume the claim holds for all
smaller values of a. Then b = c = 2i and we can reach all values less than the
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(a + 1)st gap by either bit arguments or Lemma 6. Therefore it su�ces to show
that there is no move to a position with nimber a. But this is straightforward:
this value cannot be obtained by a reduction in a only (by induction), and any
reduction in b to b0 (or equivalently c) results in a position with nimber at least
b0 � c + a � 2i > a.

Next, suppose 0 < r < 2i, 0 < a < 2i � r, k = 0, and that the claim holds for all
previous values of a and r. Similarly to above, it su�ces to show there is no move
to a position with the nimber of the (a + 1)st gap in b � c. In this case the value
is just a + (b � c) = a + r < 2i. As above, reducing only a or c by more than r,
or b at all cannot possibly result in this value by induction in the first case and the
lower bound in the latter two. Similarly, reducing c by less than r results in some
r0 in a position with nimber at most a + r0 < a + r, so there is no valid move to the
(a + 1)st gap.

Finally, suppose that a, k, r > 0. The only additional case to check in this
instance are moves that reduce c by more than 2i. However, as any move of this
form can only reduce the value of the (a + 1)st gap we are done by induction.

Unfortunately, when neither b nor c is a power of two, the function’s behavior is
in general far worse. While we cannot explicitly characterize the Sprague-Grundy
function in any more general cases, we can show that when c is su�ciently larger
than b, order starts to reappear, even for small values of a. We prove this for b odd
in the next theorem, but first we need a lemma.

Lemma 12. Let n > 0 and suppose b = (2i � 1) + n2i and n2i � c = n2i + c with
i > 0. Then A(b, c)  1.

Proof. Suppose we have b and c of the desired form and express c uniquely as
c = m2i + k, where m � 0 and k < 2i. The proof is an induction on i and k.

If i = 1 then k 2 {0, 1}. As A(b, c) = 0 in the first case for all values of
i, which takes care of the base cases for each value of i, suppose k = 1. Then
N (0, b, c) = b + c� 2, N (0, b� 1, c) = b + c� 1, and N (1, b� 1, c) = b + c and we
are done.

Now suppose the claim holds for all previous values of i and k. Similar to above,
we have that N (0, b, c) = b + c� 2k, so it su�ces to show that (1, b, c) ! x for all
x 2 [b + c� 2k, b + c]. If x 2 [b + c� 2k, b + c� k] then (0, b, c) ! x by reducing c
by some appropriate value less than k. If x 2 [b + c� k, b + c] then (1, b, c) ! x by
the I.H. as N (1, b, c� k + r) = b + c� k + r for 0  r < k.

We are now ready to prove Theorem 4.

Theorem 4. For b odd, if c � 22blog2 bc+1�2blog2 bc+2�1 then N (1, b, c) = 1+b+c.

Proof. We begin by showing this in the case were all of the gaps less than b in b� c
are consecutive and then showing that the results carry over.
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Let b = 2i + 2j � 1 where i > j > 1. From Lemma 12 we already have that if c
does not have a 1 in its i bit then N (1, b, c) = 1+b+c. Now consider the sequence of
c’s where c does have a 1 in its i bit. The first such run of c’s is c 2 [2i, 2i+1�1] and
Theorem 3 already characterizes these: N (1, b, 2i + k) = k + 2j for k 2 [0, 2i � 2j ]
and b + 2i < N (1, b, 2i + k) for k 2 [2i � 2j + 1, 2i � 1]. We use this as the base of
an induction showing that for n = 2m + 1 with m � 0 and c 2 [n2i, (n + 1)2i � 1],
there are at least m + 1 values of c for which b + n2i < N (1, b, n2i + k). In fact, we
claim something slightly stronger: after the n = 1 case, the N (1, b, n2i + k) “counts
up” along values starting from (n� 2)2i +1+ b, skipping over at least the m values
of N (1, b, c) found in the last stage of the induction.

To make this clearer, for each n > 1 as defined before, as all values in [(n�3)2i +
b, (n � 2)2i + b] can be covered via a reduction in c by Lemma 12, it is the case
for all appropriate values of k that b + (n � 2)2i < N (1, b, n2i + k). Now, if there
were no reductions in b that could result in a position with nimber N such that
b+(n�2)2i < N < n2i then as k increases N (1, b, n2i + k) would count up by 1 for
each increase in k but skipping over the x � m values found in the last iteration of
the induction. This can happen until the nimber counts up to n2i � 1, after which
point there are no more gaps in b� c less than (n + 1)2i. Further, as all values in
the range [(n � 1)2i + b, n2i + b] can be covered by Lemma 12, once the nimbers
have counted up to n2i � 1 the remaining values will all be greater than n2i + b.

Therefore, as at most (x � 1) values were skipped in the last iteration of the
induction, leading to x values in the sequence such that b + n2i < N (1, b, n2i + k),
skipping over x values in the count produces at least x + 1 of the desired values in
this iteration.

Note that after at most 2i+1 ⇤ (2i� 2) iterations (in which case c � 22blog2 bc+1�
2blog2 bc+2�1) it is the case that for all greater values of c we have b+n2i < N (1, b, c).
We claim that at this point N (1, b, c) = 1+b+c. We already had that values in the
range [(n + 1)2i, (n + 2)2i � 1] for some n achieved the upper bound by Lemma 12.
For c 2 [(n)2i, (n + 1)2i � 1] for large enough n, consider the first value: c = n2i.
In this case the condition that b + n2i = b + c < N (1, b, n2i) already tells us that
N (1, b, c) = 1 + b + c. This in turn inductively tells us that all values of c in this
range reach the maximum.

Now, we must deal with the possibility of reductions in b that lead to positions
such that b + (n � 2)2i < N (a0, b, c) < n2i. To show that such moves cannot lead
to issues, consider the first position c0 in this iteration of the induction where the
nimber di↵ers from the count described in the previous paragraph. As all values in
the range [(n� 1)2i + b, n2i + b] can still be covered by a reduction in c, there are
two cases: either b + (n� 2)2i < N (1, b, c0) < n2i or n2i + b < N (1, b, c0).

In the first case the count is potentially set back by at most 1 temporarily, but
skips the value of N (1, b, c0) later in the count for no net change. Similarly, in
the latter case although the count can potentially be set back by 1 for its entire
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duration, N (1, b, c0) becomes one of the m values needed for the induction to work.
As this is the case whenever a position di↵ers from what is predicted by the count,
no problems arise.

Finally, suppose that not all gaps of b � c are consecutive. Then b = 2j � 1 +
(2n+1)2i for some i > j +1 > 0 and note that applying the procedure from before
on 2i + 2j � 1 shows that for large enough c, we have

N (1, 2i + 2j � 1, c) = 1 + 2i + 2j � 1 + c

As none of the arguments necessary to prove this are e↵ected by the addition of
leading 1’s in c, this procedure can be applied inductively to each sub-component
of b (based on the number of leading ones in b) to show the result in general.

For b even, while a similar analysis can provide periodicity results in the a = 1
case, doing so is far more dependent on the initial conditions of the induction. This
is due to the following lemma, which ensures that N (1, b, c) 6= 1 + b + c for values
when c is also even and b� c 6= b + c, and thus complicates the recursive structure
of (1, b, c).

Lemma 13. If b and c are both even, then A(b, c) 6= 1.

Proof. Suppose b = 2i + 2m and c = 2i+r + 2n. The proof is again via nested
induction.

From Theorem 3 and Theorem 5, if any of m, n or r are 0 then either A(b, c) = 0
or A(b, c) � 2 as desired. This covers the base case for each part of the induction.

Now suppose b = 2i + 2m and c = 2i+r + 2n where m,n, r > 0 and the claim
holds for all previous values m,n, r. If b � c = b + c then we are done. If not,
there are two cases: either the bit representation of b and c intersect only in their
rightmost filled bit or not.

If we are in the first case, let x be the index of the rightmost filled bit of b and
c. Then b � c = b + c � 2x+1 and (1, b, c) 9 b + c � 2x � 1. This is because the
trivial upper and lower bounds give that this value can only possibly be achieved
by a reduction in b or c by either 2x�1 or 2x�2. However, in the first case Lemma
12 gives us that the resulting nimber will be too large, and in the latter case the IH
gives the resulting nimber will be too small.

Therefore, in this case N (1, b, c)  b + c� 2x � 1.
Now suppose we are in the second case. Consider how (1, b, c) ! b + c and

(1, b, c) ! b + c � 1. To reach b + c, it must be the case that either A(b � 1, c)
or A(b, c � 1) = 1, so without loss of generality assume A(b � 1, c) = 1. Then,
as b and c overlap somewhere other than their rightmost filled bit it is the case
that both A(b � 2, c) and A(b, c � 2) 6= 0. Therefore, by the induction hypothesis
(1, b, c) cannot reach b + c � 1 by a reduction in b or c by two. Therefore, unless
N (1, b, c� 1) = b + c � 1 the claim holds. However, under these circumstances in
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order for A(b� 1, c) = 1 it must be the case that A(b� 1, c� 1) = 1. But then it is
impossible for N (1, b, c� 1) = b + c� 1 and the proof is complete.

Therefore, while we can prove periodicity results for b even and a = 1 in several
cases, there are enough exceptions to the general rule that we cannot do so in
general. However, for a = 2 a similar analysis to Theorem 4 should show that
N (2, b, c) = 1 + b + c for all large c.

3. Discussion

3.1. Further Directions with Auxiliary Nim

To recap, at this point we have characterized the Sprague-Grundy function of (a, b, c)
whenever: (1) a is su�ciently large; (2) blog2(b)c = blog2(c)c, or (3) c >> b. In
some cases we have also extended these results to general auxiliary-nim games.

One potential line of further work is doing a more detailed analysis of the re-
maining cases: can we give a closed form expression for N (a, b, c)?

Question 1. Determine a non-recursive description of the behavior of N (a, b, c).

Figure 1 suggests that a closed-form solution, at least a simple one, is unlikely
to emerge.

We have also not fully analyzed how the results regarding the c >> b cases might
generalize to the general Auxiliary Nim.

Question 2. Characterize N (x1, x2, · · · , xn) when xn is “su�ciently large”.

Perhaps more interestingly, however, more general “auxiliary” games could be
analyzed. What can we say about the game (⇤k) � A, where A is an arbitrary
impartial combinatorial game?

Question 3. Characterize the games A where there exists k0 2 N such that 8k > k0,

N ((⇤k) � A) = k + depth(A)

We already know that Nim has this property. Do more exotic games?
Using the notation presented in [2] we note that n heap auxiliary-nim is the game

NIMH where H = {{1}, ..., {n}, {1, 2}, {1, 3}, ..., {1, n}}. Here, the game NIMH
is played on |V (H)| heaps were a valid move is selecting a hyperedge in H and
making reductions in all non-empty heaps within that edge. Are there more general
hypergraphs H where NIMH behaves similarly to Auxiliary Nim?

Question 4. Do results presented here extend to more general hypergraph games?
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3.2. Periodicity

We do know that not all games A satisfy the property mentioned in Question 3.
For example, consider games of the following form.

Definition 4. A general subtraction game is a sequence of games Gn such that the
set of positions that Gn can move to is {Gm | m 2 g(n)} where g : N ! 2N is such
that for all n 2 N, g(n) ✓ [n� 1]. We call g the function associated with Gn.

Definition 5. A finite fixed set subtraction game is a subtraction game Gn such
that there exists a set S ✓ N for some N 2 N such that the function g associated
with Gn satisfies g(n) = {n� x | x  n ^ x 2 S}. We call S the set of Gn.

It is not hard to prove that the Sprague-Grundy values for ⇤k � Gn is periodic
with respect to n if Gn is a finite subtraction game, although the upper bound on
the length of the period is exponential. Note that periodicity immediately tells us
that the property mentioned in Question 3 cannot hold.

Theorem 6. If Gn is a finite subtraction game, then the Sprague-Grundy function
of Gn � ⇤k is periodic for any k 2 N.

Proof. Let Gn be a finite subtraction game with set S, and let m = max(S) + 1.
Since any position in Gn � ⇤k has at most m choices for which move to make in
the left game (note that m is larger now because we include the possibility of not
moving in the left game), and at most k + 1 choices for which move to make in the
right game, the total number of moves possible from Gn � ⇤k is at most (k + 1)m,
and thust N (Gn � ⇤k)  (k + 1)m (so the nimbers are bounded).

Note also that the nimber of Gn �⇤k is completely determined by the nimbers of
Gn�x � ⇤(k � y) where 0 < x  m and 0  y  k. Note that we need not consider
x = 0, because in fact the nimbers for the positions of this form where x = 0
are completely determined by the rest. That is, the N (Gn � ⇤0) is completely
determined by {N (Gn�x � ⇤0)}, and thus N (Gn � ⇤1) is completely determined
by {N (Gn�x � ⇤0)} [ {N (Gn�x � ⇤1)}, and so on.

Thus, if we have that for some a, b 2 N, and for every 0 < x  m and 0  y  k,
N (Ga�x � ⇤(k � y)) = N (Gb�x � ⇤(k � y))), then we must also have that for every
0  y  k, N (Ga � ⇤(k � y)) = N (Gb � ⇤(k � y)). Thus, if such an a and b exist
with a 6= b we have, by induction, that Gn � ⇤k is periodic with period at most
|b� a|.

To see that such an a and b must exist, we simply note that since the nimbers
are bounded by (k + 1)m, and the number of choices for x and y is only (k + 1)m,
there are only ((k + 1)m)(k+1)m possibilities for the nimbers of the positions for
the form Gn�x � ⇤(k � y), so by PHP, there must exist 0  a < b < m + ((k +
1)m)(k+1)m such that for every 0 < x  m and 0  y  k, N (Ga�x � ⇤(k � y)) =
N (Gb�x � ⇤(k � y)), and thus, by the above observations, Gn � ⇤k is periodic.
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It is not hard to construct artificial sequences of games An such that An is
periodic but ⇤1 � An is not. However, it appears as though, if the sequence is
constructed with certain structural regularities, such as the case of finite subtraction
games, periodicity is preserved. Therefore, we have another interesting question at
hand.

Question 5. For which sequences of games An is N (⇤k � An) periodic with respect
to n for any k 2 N?

For instance, consider the game GRAPHG played on a simple graph G: on
each turn, the players select a vertex, and remove a positive integer many edges
incident on that vertex. Terminal positions are edgeless graphs. When this game
is played on a path graph, it is isomorphic to a game of Kayles [6]. KAYLESn

(or GRAPHPn where Pn is a path of edge-length n) is known to be periodic with
a period of 12. The proof of this fact is data-driven: there exists a threshold value
of N such that when KAYLESn is verified computationally to be periodic up to
the threshold value, then we can deduce that it will remain periodic forever. This
threshold argument works for a large class of games.

Definition 6. An octal game is a game played with tokens divided into heaps,
where valid moves are one of the following.

• Remove some (possibly all) of the tokens in one heap

• Remove some (not all) of the tokens in a heap, and divide the rest into two
non-empty heaps.

Observe that normal single-heap Nim is an octal-game, but not periodic. The
following theorem formalizes the threshold argument for most octal games. Call Gn

(starting configuration is single heap with n tokens) a bounded octal game if the
number of tokens that can be removed from any single heap is bounded.

Theorem 7. Let Gn be a bounded octal game with bound k 2 N. Suppose that
there exists n0, p � 1 such that N (Gn) = N (Gn + p) for all n satisfying n0  n 
2n0 + p + k. Then, Gn is periodic.

The proof follows by a simple induction on n. For a proof and a more extensive
survey, see [6]. A prominent conjecture in combinatorial game theory, initially
proposed by John Conway, is the following.

Conjecture 1. All bounded octal games are periodic.

The conjecture is convincing, but it o↵ers no upper bound on the period and
computational verification on a large scale is mostly intractable.

Disappointingly, other than through Theorem 7 and computational search, we
do not have a way to prove that a sequence of games will be periodic, even given
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Figure 4. The game STARKAYLES5,n. A valid move is picking a vertex, and
removing a positive number of edges from it. We conjecture that all games of this
form will be periodic.

(starting configuration is single heap with n tokens) a bounded octal game if the
number of tokens that can be removed from any single heap is bounded.

Theorem 7. Let Gn be a bounded octal game with bound k 2 N. Suppose that

there exists n0, p � 1 such that N (Gn) = N (Gn + p) for all n satisfying n0  n 

2n0 + p+ k. Then, Gn is periodic.

The proof follows by a simple induction on n. For a proof and a more extensive
survey, see [6]. A prominent conjecture in combinatorial game theory, initially
proposed by John Conway, is the following.

Conjecture 1. All bounded octal games are periodic.

The conjecture is convincing, but it o↵ers no upper bound on the period and
computational verification on a large scale is mostly intractable.

Disappointingly, other than through Theorem 7 and computational search, we
do not have a way to prove that a sequence of games will be periodic, even given
that a sequence with almost identical structure is periodic. We believe however that
this is a promising direction. Consider the following game.

Definition 7. STARKAYLESk,n is the game GRAPHG, where G is obtained by
starting with a star graph on k vertices, and then extending one of the branches to
be a path of edge-length n.

Observe that STARKAYLES1n is the same as KAYLESn. We have compu-
tationally verified for small values of k that STARKAYLESk,n is periodic, with
period a multiple of 12. We conjecture that this generalizes, since the fixed star
should not intuitively have a structural e↵ect on the asymptotic behavior of the
sequence.

Conjecture 2. For all k, STARKAYLESk,n is periodic, with period a multiple of

12.

To move beyond computational verification, we suggest the following direction
of research.

Figure 4: The game STARKAYLES5,n. A valid move is picking a vertex, and
removing a positive number of edges from it. We conjecture that all games of this
form will be periodic.
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Question 6. Can we prove that STARKAYLES2,n is periodic, without relying
on Theorem 7, and only on the fact that KAYLESn is periodic?

Of course, there should not be anything special about starting with a star as
opposed to any other fixed graph, and extending a path of length n from a vertex.
However, STARKAYLES2,n seems to be the simplest extension to KAYLES that
also preserves periodicity.

The operation �(⇤k) cannot model attaching a fixed graph to a vertex in
KAYLESn; however, it is similar. We also conjecture the following.

Conjecture 3. KAYLESn � (⇤1) is periodic.

This conjecture is virtually impossible to computationally verify, since computing
nimbers involve looking at roughly P (n) (partition number of n) many games (which
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is exponential in n), as the �(⇤1) prevents us from calculating the nimber of a
disjoint union of KAYLES games by simply XORing the nimbers. We hope that
techniques that can address Question 6 can generalize to prove Conjecture 3.
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