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Abstract

Consider the following game played by Maker and Breaker on the vertices of the

cycle Cn, with first move given to Breaker. The aim of Maker is to maximize the

number of adjacent pairs of vertices that are both claimed by her, and the aim of

Breaker is to minimize this number. The aim of this paper is to find this number

exactly for all n when both players play optimally, answering a related question of

Dowden, Kang, Mikalački and Stojaković.

1. Introduction

Consider the following game, called the ‘Toucher-Isolator’ game on a graph G, in-

troduced by Dowden, Kang, Mikalački and Stojaković [4]. The two players, Toucher

and Isolator, claim edges of G alternately with Toucher having the first move. Let

t (G) be the number of vertices that are incident to at least one of the edges claimed

by Toucher. The aim of Toucher is to maximize t (G) and the aim of Isolator is to

minimize t (G). Hence this is a ‘quantitative’ Maker-Breaker type of game.

For given G, let u (G) be the number of isolated vertices, i.e. the number of

vertices that are not incident to any of the edges claimed by Toucher at the end of

the game when both players play optimally. In [4], the authors gave bounds for the

size of u (G) for general graphs G, and studied some particular examples as well

which included cycles and paths. In particular, they proved that

3

16
(n− 3) ≤ u (Cn) ≤ n

4

and

3

16
(n− 1) ≤ u (Pn) ≤ n

4
,

where Cn is a cycle with n vertices and Pn is a path with n edges.
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Note that these bounds imply that the asymptotic proportion of untouched ver-

tices is between 3
16 and 1

4 in both cases. Dowden, Kang, Mikalački and Stojaković

asked what the correct asymptotic proportion of untouched vertices is, and sug-

gested that the correct answer could be 1
5 . In this paper we prove that this is the

correct asymptotic proportion, and in fact we give the exact values of u (Cn) and

u (Pn) for all n.

Theorem 1. When G = Cn with n ≥ 3 and both players play optimally, there will

be
⌊
n+1
5

⌋
untouched vertices.

Theorem 2. When G = Pn with n ≥ 2 and both players play optimally, there will

be
⌊
n+4
5

⌋
untouched vertices.

Although this paper is self-contained, for general background on Maker-Breaker

type games; see Beck [2]. There are many other papers dealing with achievement

games on graphs – see e.g. a classical paper of Chvátal and Erdős [3], and subsequent

papers [1, 5].

For convenience we work on a ‘dual version’ of these games. Consider a game

played on the vertices of a cycle Cn with two players Maker and Breaker claiming

vertices in alternating turns, with first move given to Breaker. For this game, define

the score to be the number of adjacent pairs of vertices claimed by Maker on the

cycle. It is easy to see that this game is identical to the Toucher-Isolator game

played on Cn, with Maker corresponding to Isolator and Breaker corresponding to

Toucher. Indeed, this follows from the fact that claiming adjacent pairs of vertices

on the dual game corresponds to claiming two edges whose endpoints meet in the

original game, which is precisely the same as isolating the vertex where they meet.

When considering the dual version for the path, we have to be a bit more careful

due to irregular behaviour at the endpoints. For that reason it turns out to be useful

to define three different games which essentially only differ at the endpoints of the

path. First we define a game F (n) played on the elements of {1, . . . , n} with two

players Maker and Breaker claiming elements in alternating turns with first move

given to Maker. For this game, define the score to be the number of pairs {i, i+ 1}
such that both i and i+ 1 are claimed by Maker, and as usual Maker is aiming to

maximize this score and Breaker is aiming to minimize this score. Let α (n) be the

score attained when both Maker and Breaker play optimally.

Similarly as with Cn, the game F (n− 1) and the Toucher-Isolator game on Pn

have a strong relation with Maker corresponding to Isolator and Breaker corre-

sponding to Toucher. However, unlike with the game on the cycle, they are not

exactly the same game as first and last vertex can be isolated by claiming only

the first or last edge respectively, and also because Toucher has first move in the

Toucher-Isolator game whereas Maker has first move in the game F (n− 1).

We also define the games G (n) and H (n) both played on {1, . . . , n}, with players

Maker and Breaker claiming elements in alternating turns with first move given to
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Maker. In G (n), we increase the score by one for each pair {i, i+ 1} with both i

and i+1 claimed by Maker, and the score is also increased by 1 if Maker claims the

element 1. In a sense, this can be viewed as a game on the board {0, . . . , n} with

0 assigned to Maker initially. Similarly on H (n), we increase the score by one for

each pair {i, i+ 1} with both i and i + 1 claimed by Maker, and additionally the

score is increased by 1 for claiming either of the elements 1 or n. Again, this can

be viewed as a game on the board {0, . . . , n+ 1} with both 0 and n+ 1 assigned to

Maker initially. Define β (n) and γ (n) to be the scores of these games when both

players play optimally.

The idea behind defining these games is the following. If B is a game of the

form F (n), G (n) or H (n), and if Breaker plays her first move adjacent to Maker’s

first move, then the board B splits into two disjoint boards, which are of the form

F (m), G (m) or H (m) - however, note that these two boards are not in general of

the same form, and not necessarily of the same form as the original board. Hence

it turns out to be useful to analyze all of these games at the same time.

Consider the dual game played on Cn with vertex set {1, . . . , n}, and recall that

in this dual version the first move is given to Breaker. By the symmetry of the cycle,

we may assume that Breaker claims n on her first move. Hence after this first move,

the available winning lines that can increase the score are {1, 2} , . . . , {n− 2, n− 1}.
These are exactly the winning lines of the game F (n− 1), and since Maker has the

next move it follows that the subsequent game is equivalent to the game F (n− 1).

Hence u (Cn) = α (n− 1), and thus it suffices to find the value of α (n) for all n.

To analyze the Toucher-Isolator game on Pn, define the game Hb (n) in exactly

the same way as H (n), but with the first move given to Breaker, and let γb (n) be

the score of this game when both players play optimally. It is easy to see that the

Toucher-Isolator game and Hb (n) are equivalent in the same sense as the Toucher-

Isolator game on Cn and F (n− 1) are. Hence it follows that u (Pn) = γb (n), and

thus it suffices to find the value of γb (n).

We start by focusing on F (n) and finding a lower bound for α (n). Since Maker

is trying to maximize the score, it seems sensible for her to start by claiming some

suitably chosen i, and then trying to claim as long a block of consecutive elements as

possible. As long as i 6∈ {1, n}, she can certainly guarantee a block of length at least

2. Now suppose she has claimed a block of length t, and she cannot proceed in this

way. This means that Breaker must have claimed the points next to the endpoints

of this block (or one of the endpoints is 1 or n). Removing this block, together with

the endpoints Breaker has claimed, leaves a path with n− t−1 elements containing

at most t− 1 elements claimed by Breaker, and no elements claimed by Maker.

This motivates the definition of the following game, which can be viewed as a

delayed version of F (n). Let F (n, k) be the game played on {1, . . . , n}, where at

the start of the game Breaker is allowed to claim k points, and then the players

claim elements alternately, with the score defined in the same way as for F (n).
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Thus F (n) and F (n, 0) are identical games.

Let α (n, k) be the score attained when both players play optimally. It turns out

that by following the strategy described above with a suitable choice of the initial

move, we can prove a good enough lower bound for α (n, k), and almost the same

argument also works for γb (n).

One can observe from the proof of the lower bound of α (n, k) that allowing

Maker to have multiple ‘long blocks’ would allow Maker to achieve a better score

than the one stated in Theorem 2. This suggests that Breaker should claim an

element next to the element claimed by Maker, and hence the initial board splits

into two disjoint boards. Hence it is natural to consider games G that are disjoint

unions of F (l1) , . . . , F (lr), G (m1) , . . . , G (ms) and H (n1) , . . . ,H (nt).

The plan of the paper is as follows. In Section 2 we prove a lower bound for

α (n, k) and deduce a lower bound for γb (n). In Section 3 we prove an upper bound

for the score of games G that are disjoint unions of games of the form F (l), G (m)

and H (n), and conclude the Theorems 1 and 2 from these upper and lower bounds.

2. The Lower Bound

Recall that F (n, k) is defined to be the game played on {1, . . . , n}, where at the

start of the game Breaker is allowed to claim k elements, and then the players claim

elements in alternating order, and α (n, k) is the score attained when both players

play optimally. We start by proving the following lower bound on α (n, k), which is

later used to deduce a lower bound on γb (n).

Lemma 1. Let n be a positive integer and let 0 ≤ k ≤ n. Then α (n, k) ≥
⌊
n−3k+2

5

⌋
.

Proof. Suppose that Breaker claims the elements s1, . . . , sk on her first move. These

elements split the path into k + 1 (possibly empty) intervals of lengths l0, . . . , lk,

with li = si+1−si−1 (with the convention s0 = 0 and sk+1 = n+1). By symmetry

we may assume that l0 is the longest interval.

If l0 ≤ 2, then n ≤ k + 2 · (k + 1) = 3k + 2, and hence
⌊
n−3k+2

5

⌋
= 0. Thus the

claim follows immediately in this case, and hence we may assume that l0 ≥ 3. We

treat the cases l0 ≥ 4 and l0 = 3 individually. In both cases the proof follows the

same idea, however the choice of the initial move is slightly different for l0 = 3 since

an interval with only 3 elements is ‘too short’ for the general argument.

Case 1. l0 ≥ 4.

The aim for Maker is to build a long block of consecutive elements inside the

interval. Initially, she claims the element 3. Assuming she has already claimed

exactly the elements {t, . . . , t+ r}, she claims one of t+ r + 1 or t− 1, if possible.

If not, she stops.
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Consider the point when this process terminates, and suppose that at the point

of termination she has claimed the set of elements {t, . . . , t+ r}. As one of these is

the element 3, we must have t+ r ≥ 3 and t ∈ {1, 2, 3}. Also note that the element

t + r + 1 must be claimed by Breaker, and also either t = 1 or the element t − 1

is claimed by Breaker. Since l0 ≥ 4, it follows that the elements 2 and 4 are not

claimed after Maker’s first move. Because Breaker cannot claim both of these on

her first move, it follows that Maker can always guarantee that r ≥ 1.

Let T1 = {t+ r + 2, . . . n} and let b be the number of elements claimed by Breaker

in T1. Note that Breaker has claimed k + r + 1 elements in total, and one of these

must be t + r + 1. Furthermore, if t > 1 then one of them must be t − 1 as well.

Hence b ≤ k+ r, and if t ≥ 2 we also have b ≤ k+ r− 1. Also note that Maker has

not claimed any elements in T1.

Note that claiming the elements {t, . . . , t+ r} increases the score by exactly r,

and this is the only contribution for the score coming outside T1. Thus the total

score that Maker can attain is at least r + α (n− t− r − 1, b). By induction, it

follows that the score is at least

r +

⌊
n− t− r − 1− 3b+ 2

5

⌋
. (1)

If t = 1, it follows that b ≤ k + r. Also, the condition t + r ≥ 3 implies that

r ≥ 2. Hence (1) implies that Maker can guarantee that the score is at least⌊
n− 3k + r + 1− t

5

⌋
≥
⌊
n− 3k + 2

5

⌋
,

as required.

If t ≥ 2, it follows that b ≤ k + r − 1. Recall that we always have t ≤ 3 and

r ≥ 1. Hence (1) implies that Maker can guarantee that the score is at least⌊
n− 3k − t+ r + 4

5

⌋
≥
⌊
n− 3k − 3 + 1 + 4

5

⌋
=

⌊
n− 3k + 2

5

⌋
.

Hence we have α (n, k) ≥
⌊
n−3k+2

5

⌋
, as required.

Case 2. l0 = 3.

Again, Maker is aiming to claim as long a block of consecutive elements in {1, 2, 3}
as possible. Initially she claims the element 2. Since Breaker cannot pick both 1

and 3 on her first move, Maker can always guarantee that the length of this block

is at least 2. If possible, she picks the last element on her third move.

Thus at the end of this process, exactly one of the following are true:

1. Maker has claimed all three elements in {1, 2, 3}.

2. Maker has claimed two consecutive elements in {1, 2, 3} and Breaker has

claimed the third element in {1, 2, 3}.
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In both cases, consider the other moves of the game that are played on T1 =

{5, . . . , n}. Let a be the number of elements Maker claims in {1, 2, 3}. Note that

in both cases Breaker claims all the other elements in {1, 2, 3, 4} not claimed by

Maker, and thus Breaker claims 4− a elements in {1, 2, 3, 4}. Since Breaker claims

in total a+ k elements, it follows that she claims k + 2a− 4 elements on T1. Note

that Maker has not yet claimed any elements in T1, and hence Maker can increase

the score on T1 by α (n− 4, k + 2a− 4). Given that she has achieved a score of

a− 1 outside T1 with her block of a consecutive elements, it follows that the total

score achieved is a− 1 + α (n− 4, k + 2a− 4).

By induction, it follows that the score achieved is at least

a− 1 +

⌊
n− 4− 3 (k + 2a− 4) + 2

5

⌋
=

⌊
n− 3k − a+ 5

5

⌋
.

Since a ∈ {2, 3}, it follows that

α (n, k) ≥
⌊
n− 3k + 2

5

⌋
,

as required.

Thus Lemma 1 holds by induction.

Lemma 2. γb (n) ≥
⌊
n+4
5

⌋
for n ≥ 2 and γb (1) = 0.

Proof. When n = 1, the claim is trivial as the only move is given to Breaker. Now

we consider the case n ≥ 2.

At the start of the game, Maker is aiming to claim as long blocks of consecutive

elements as possible near the endpoints. Once this is no longer possible, she starts

using the same strategy as in Lemma 1. We start by describing this initial process

formally.

Suppose that after Maker’s kth move the set of elements claimed by Maker is

of the form {1, . . . t} ∪ {n− k + t+ 1, . . . , n} for some t ∈ {0, . . . , k}, with the

convention that {1, . . . , t} = ∅ when t = 0 and {n− k + t+ 1, . . . , n} = ∅ when

t = k. Note that this certainly holds when k = 0, as Maker has not claimed any

elements before her first move. If at least one of the elements t+1 or n−k+ t is not

yet claimed before Maker’s k + 1th move, then Maker claims one of these elements

which is still available, and thus the set of vertices claimed by Maker is of this form

also after k+ 1 moves. If both t+ 1 and n− k+ t are claimed by Breaker, then the

process stops.

This process terminates trivially, as Breaker must claim an element during the

game. Suppose that when the process terminates, the set of vertices claimed by

Maker is of the form {1, . . . t}∪{n− k + t+ 1, . . . , n} for some k and t ∈ {0, . . . , k}.
Note that we must have k ≥ 1, as Breaker cannot claim both elements 1 and n on

her first move.
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Let T = {t+ 2, . . . , n− k + t− 1}, and note that by the choice of k and t it

follows that Maker has not yet claimed any elements in T . Because the process has

terminated at this stage, it follows that Breaker must have claimed the elements

t+ 1 and n− k+ t. Since Breaker started the game, she has claimed k+ 1 elements

in total, and thus k − 1 of these elements must be in T .

Note that any increment of the score arising outside T occurs from the sets

{1, . . . , t} and {n− k + t+ 1, . . . , n}. On the other hand, since Maker has not

claimed any elements in T and Breaker has claimed k − 1 elements in T , the rest

of the game on T corresponds to the game F (n− k − 2, k − 1). Hence Maker can

increase the score by at least α (n− k − 2, k − 1) in T .

It is easy to check that the contribution on the score arising from the intervals

{1, . . . , t} and {n− k + t+ 1, . . . , n} is exactly t+ (k − t) = k. Hence by Lemma 1,

it follows that Maker can guarantee that the score is at least

k + α (n− k − 2, k − 1) ≥ k +

⌊
n− k − 2− 3 (k − 1) + 2

5

⌋
=

⌊
n+ k + 3

5

⌋
.

Since k ≥ 1, it follows that Maker can always guarantee that the score is at least⌊
n+4
5

⌋
, which completes the proof.

3. The Upper Bound

In this section, all congruences are considered modulo 5 unless otherwise stated,

and hence we omit (mod 5) from the notation. Furthermore, we write n ≡ 0 or 1

instead of n ≡ 0 or n ≡ 1, and n 6≡ 0 and 1 instead of n 6≡ 0 and n 6≡ 1.

Lemma 3. Suppose T is a disjoint union of games F (l1) , . . . , F (lr), G (m1) , . . . ,
G (ms) and H (n1) , . . . ,H (nt), with Maker having the first move. Let f (l;m;n) be
the score of this game when both players play optimally. Let N1 = |{i : li ≡ 3 or 4}|,
N2 = |{i : mi ≡ 0 or 1}|, N3 = |{i : ni 6= 2 and ni ≡ 2 or 3}|, N4 = |{i : ni = 2}|
and N5 = |{i : ni = 1}|. Let ε ∈ {0, 1} be chosen such that N5 ≡ ε (mod 2). Then
we have

f (l;m;n) ≤
r∑

i=1

⌊
li + 2

5

⌋
+

s∑
i=1

⌊
mi + 5

5

⌋
+

t∑
i=1

⌊
ni + 8

5

⌋
−N4+ε−

⌊
N1 +N2 +N3 + ε

2

⌋
.

(2)

By looking at the proof of Lemma 1, it is reasonable for Breaker to claim one

of the points next to the point Maker claimed on her first move, as in this case

Breaker can restrict the length of intervals created by Maker. Such a first pair of

moves splits the original board into two new boards, which motivates the idea of

considering unions of disjoint boards. It might be tempting to say that Breaker

can always follow Maker into the board where she plays her next move, and hence
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proceed by using an inductive proof. However, sometimes Breaker may gain an

‘extra move’ if one of these boards has no sensible moves left (i.e. the component is

F (1) or F (2)).

Ignoring these extra moves completely would make the proof much shorter, but

the bound obtained that way would not even be good enough asymptotically. Since

Maker is free to alternate between these two boards, she has some control on the

time of the game when Breaker is given this extra move. In particular, in this case

we cannot assume that these extra moves are given at the start of the game, which

was the case in Section 2. To keep track of these extra moves, we need to consider

arbitrary disjoint unions of boards.

We start by briefly outlining the structure of the proof and explaining where the

upper bound in (2) comes from. The proof is by induction on the sum of the lengths

of the paths. The aim is to prove that for any possible initial move for Maker, there

is a move for Breaker that can be used to show that (2) holds by induction. This

move will in general depend on the position of the initial move modulo 5, however

we have to be slightly more careful if the initial move is close to the endpoints of

a board. For the same reason, one has to be careful with small components of the

board as well.

Since there are 3 possible board types, 5 possible locations for the initial move

(mod 5), and two possible cases for the size of the initial length of the component

(depending on whether the initial length is involved in one of N1, N2 or N3, or

not), it follows that there are in some sense 30 cases to be considered. In addition,

we have to cover small cases as well. Fortunately, some of these cases can be

treated simultaneously, and in general the techniques used to prove various cases

are identical or use very similar techniques.

In a sense, the key idea behind the proof is to come up with a suitable upper

bound in (2) that is strong enough for an inductive argument to work. Once a

suitable upper bound is chosen, identifying possible ‘response moves’ for Breaker is

reasonably easy. Finally, the proof itself is mathematically not challenging, but it

is reasonably tedious.

Why should we choose this particular upper bound in (2)? For B = F (l), G (m)

or H (n) (with n ≥ 3) it turns out that Breaker can always guarantee that the score

is at most
⌊
l+2
5

⌋
,
⌊
m+5
5

⌋
or
⌊
n+8
5

⌋
, respectively. This explains the first three sums

in the upper bound. Moreover, if l ≡ 3 or 4, m ≡ 0 or 1 or n ≡ 2 or 3 (and n ≥ 3) it

turns out that Breaker has a strategy which allows her to force Maker to either play

the last non-trivial move (i.e. after which all components are either empty, F (1)

or F (2)), or Maker can only attain a score which is strictly less than this bound.

Hence the quantity N1 + N2 + N3 is measuring the number of these ‘additional

moves’. Given such an additional move, Breaker can make another component of

the board slightly shorter, which either reduces the score by one or guarantees that

she will gain an extra move from that board as well.
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However, one has to be careful with small values of n. Indeed, it turns out that

on H (2) Maker can only increase the score by 1 (instead of 2), and Breaker cannot

gain an extra turn. This is the reason behind the (−N4)-term. Also, on H (1)

Maker can score 2 points (instead of 1), and Breaker gains an extra turn. Note that

if the number of components of the form H (1) is even, then Breaker can always

claim a point on another component that is H (1). If the number is odd, she can

follow this pairing strategy until the number of such boards decreases to 1, in which

case she has to use the extra move elsewhere. This is the reason behind the fact

that only the parity of N5 matters.

In a sense, dealing with boards of the form H (n) is the hardest task due to

irregular behavior of these boards when n is small. Hence we start the proof by

considering these type of boards, and during the proof we also introduce some

standard arguments that can be easily used when dealing with boards of the form

F (l) or G (m). In those cases, we do not always give full justification.

Note that the bound (2) may not always be tight for arbitrary disjoint unions

of boards, but by a similar argument as presented in Section 2 one could verify

that it is tight for any of F (l), G (m) or F (n), which is good enough for our pur-

poses. The reason why the bound is not necessarily tight is the fact that sometimes

Breaker could have a better place to play her extra move, rather than the ‘worst

case scenario’ that is considered in the proof.
For convenience define

g (l;m;n) =

r∑
i=1

⌊
li + 2

5

⌋
+

s∑
i=1

⌊
mi + 5

5

⌋
+

t∑
i=1

⌊
ni + 8

5

⌋
−N4+ ε−

⌊
N1 +N2 +N3 + ε

2

⌋
,

y (l;m;n) =

r∑
i=1

⌊
li + 2

5

⌋
+

s∑
i=1

⌊
mi + 5

5

⌋
+

t∑
i=1

⌊
ni + 8

5

⌋
and

z (l;m;n) = −N4 + ε−
⌊
N1 +N2 +N3 + ε

2

⌋
.

For later purposes, it is convenient to observe that we may rewrite z as

z (l;m;n) = −N4 −
⌊
N1 +N2 +N3 − ε

2

⌋
. (3)

Proof. Define N =
∑r

i=1 li +
∑s

i=1mi +
∑t

i=1 ni. The proof is by induction on
N , and it is easy to check that the claim holds for all possible configurations when
N = 1 or N = 2. Suppose the claim holds whenever N ≤ M − 1 for some M ≥ 3,
and suppose that l, m, n are chosen so that

∑r
i=1 li +

∑s
i=1mi +

∑t
i=1 ni = M .

We now split the proof into several cases depending on Maker’s first move. In
each case, let S (T ) be the maximum score that Maker can attain given this first
move and given that Breaker plays optimally.
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Case 1. Maker plays on H (nt).

For convenience set n = nt. The game H (n) is played on {1, . . . , n}, and since
both endpoints of the board are symmetric we may assume that Maker claims first
an element j satisfying j ≤

⌈
n
2

⌉
. We prove that apart from small values of n,

claiming one of j − 1 or j + 1 is a suitable choice for Breaker, where the choice is
made depending on the value of j (mod 5), as indicated in Table 1. If j ≥ 3, after
the first pair of moves it is easy to see that the H (n)-component of the board splits
into a disjoint union of H (a) and G (b) for some a, b with n = a+ b+ 2. However,
as the boards H (1) and H (2) behave in a different way compared to other boards
of the form H (n), it turns out to be convenient to consider the cases j = 1, j = 2
and (j, n) = (3, 5) individually.

If 4 ≤ j ≤
⌈
n
2

⌉
, then the board splits into H (a) and G (b) with a ≥ 3. If j = 3,

then as indicated in Table 1 Breaker claims the element 2. Hence the boards splits
into G (1) and H (n− 3), which is one of H (1) or H (2) only if n = 5, as j ≤

⌈
n
2

⌉
.

Hence j = 1, j = 2 and (j, n) = (3, 5) are the only special cases which could change
the number of boards of the form H (1) or H (2).

Denote the new set of parameters obtained after the first pair of moves as l′, m′

and n′, and let si denote the increment of the score caused by Maker’s first move.
Throughout the proof it is convenient to define the quantities d1 = z (l;m;n) −
z
(
l′;m′;n′

)
and d2 = y (l;m;n) − y

(
l′;m′;n′

)
. Note that g (l;m;n) = d1 + d2 +

g
(
l′;m′;n′

)
.

By induction we know that S (T ) ≤ g
(
l′;m′;n′

)
+ si. Since our aim is to prove

that S (T ) ≤ g (l;m;n), it suffices to prove that we always have d1 + d2 ≥ si. In
fact, we will prove that for all possible initial moves by Maker there exists a move
for Breaker that satisfies d1 + d2 ≥ si.

We start with the general case j ≥ 3 and n ≥ 6, and we deal with the special
cases later.

F (n)
Condition on

a or b
G (n)

Condition on
a or c

H (n)
Condition on

a or b
j ≡ 0 j + 1 b ≡ 4 j − 1 a ≡ 3 j − 1 b ≡ 3
j ≡ 1 j − 1 a ≡ 4 j − 1 a ≡ 4 j − 1 b ≡ 4
j ≡ 2 j + 1 b ≡ 1 j + 1 c ≡ 1 j + 1 a ≡ 1
j ≡ 3 j − 1 a ≡ 1 j − 1 a ≡ 1 j − 1 b ≡ 1
j ≡ 4 j − 1 a ≡ 2 j + 1 c ≡ 3 j + 1 a ≡ 3

Table 1: Choices for Breaker’s first move depending on j

Case 1.1. n ≥ 6, j ≥ 3.

In this case we have si = 0, so it suffices to prove that d1 + d2 ≥ 0. It is easy
to see that N1, N4 and ε are unaffected in this case. Since N2 certainly cannot
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increase and N3 can decrease by at most 1, it follows that d1 ≥ −1.

Note that we have d2 =
⌊
n+8
5

⌋
−
⌊
a+8
5

⌋
−
⌊
b+5
5

⌋
. By using the trivial upper and

lower bounds x − 1 ≤ bxc ≤ x and the fact that n = a + b + 2, it follows that
d2 ≥ n+3

5 −
a+b+13

5 = −8
5 . As d2 is an integer, it follows that d2 ≥ −1. We now split

into two subcases based on the value of n (mod 5) in order to improve our bounds
on d1 and d2 to attain d1 + d2 ≥ 0.

Case 1.1.1. n ≡ 2 or 3.

We start by improving the bound on d2. Since n ≡ 2 or 3, it follows that
⌊
n+8
5

⌋
≥

n+7
5 . Hence by using the trivial bounds for the other terms, we obtain that d2 ≥

n+7
5 −

a+b+13
5 = −4

5 . Since d2 is an integer, it follows that d2 ≥ 0.

First suppose that a ≡ 2 or 3. Then N3 cannot decrease, so in fact we have
d1 ≥ 0. Hence we have d1 + d2 ≥ 0, as required.

Now suppose that b ≡ 0 or 1. Then N3 decreases by at most 1 and N2 increases
by 1. Hence the sum N2 +N3 certainly cannot decrease. Thus we also have d1 ≥ 0,
and thus it follows that d1 + d2 ≥ 0, as required.

Finally suppose that a 6≡ 2 and 3 and b 6≡ 0 and 1. Then we have
⌊
a+8
5

⌋
+⌊

b+5
5

⌋
≤ a+6

5 + b+3
5 = a+b+9

5 . Note that the equality holds if and only if a ≡ 4 and
b ≡ 2, but by Table 1 it follows that this can never happen. Hence this inequality
must be strict, and hence it follows that d2 >

n+7
5 −

a+b+9
5 = 0. Hence we must

have d2 ≥ 1, and combining this with the trivial bound d1 ≥ −1 it follows that
d1 + d2 ≥ 0, as required. This completes the proof of Case 1.1.1.

Case 1.1.2. n 6≡ 2 and 3.

Since n 6≡ 2 and 3, it follows that N3 cannot decrease. Hence we must have
d1 ≥ 0.

First suppose that a ≡ 2 or 3 and b ≡ 0 or 1. Then both N2 and N3 increase by
1, and hence it follows that d1 ≥ 1. Combining this with the trivial bound d2 ≥ −1
implies that d1 + d2 ≥ 0, as required.

Now suppose that a 6≡ 2 and 3 or b 6≡ 0 and 1. As in Case 1.1.1, in both cases
we can improve the upper bound on

⌊
a+8
5

⌋
+
⌊
b+5
5

⌋
to
⌊
a+8
5

⌋
+
⌊
b+5
5

⌋
≤ a+b+11

5 ,
and note that the equality holds if and only if (a ≡ 4 and b ≡ 0) or (a ≡ 2 and
b ≡ 2). However, note that by Table 1 both of these cases are impossible. Hence
the inequality must be strict, and thus we have d2 >

n+4
5 −

a+b+11
5 = −1. Hence

it follows that d2 ≥ 0, and thus we have d1 + d2 ≥ 0, which completes the proof of
Case 1.1.2.

Case 1.2. j = 1.

Here we split into three cases based on the size of n. First, we consider the case
n ≥ 3 which should be viewed as the main part of the argument. Then we consider
the cases n = 2 and n = 1 individually, as these behave in a slightly different way
as the boards are small. The case n = 1 turns out to be very tedious and lengthy,
and it does not really contain any interesting ideas either. In some sense, the only
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task in this case is to find out a good enough way for Breaker to use her additional
move.

Case 1.2.1. n ≥ 3.

Suppose Breaker claims the element 2. Since Maker claimed 1 on board H (n)
with n ≥ 3, it follows that si = 1. Hence it suffices to prove that with this move
Breaker can achieve d1+d2 ≥ 1. First of all, note that the board H (n) was replaced
by G (n− 2), which is non-empty as n ≥ 3. As n ≥ 3, and n ≡ 2 or 3 if and only
if n − 2 ≡ 0 or 1, it follows that N3 decreases by 1 if and only if N2 increases by
1. In particular, it follows that d1 = 0. On the other hand, it is easy to check that

d2 =
⌊
n+8
5

⌋
−
⌊
(n−2)+5

5

⌋
= 1. Hence we always have d1 + d2 = 1, which completes

the proof of Case 1.2.1.

Case 1.2.2. n = 2.

Suppose Breaker claims the element 2. Since the board H (2) has only two
elements, it follows that all elements of the board are occupied after this pair of
moves. Note that we certainly have si = 1, and d2 =

⌊
2+8
5

⌋
= 2. On the other

hand, it is clear that N1, N2, N3 and ε remain unaffected while N4 decreases by
1. Hence we have d1 = −1, and thus d1 + d2 = 1 as required. This completes the
proof of Case 1.2.2.

Case 1.2.3. n = 1.

Since n = 1, it follows that si = 2. First suppose N5 > 1, and that Breaker
chooses another board of the form H (1) and claims the only element on that board.
Hence N5 decreases by 2, so ε remains unaffected and thus we have d1 = 0. On the
other hand, we have d2 = 2

⌊
1+8
5

⌋
= 2, and hence it follows that d1 + d2 = si, as

required.

Otherwise we must have N5 = 1, and hence we certainly have ε = 1. Since the
total number of points on T is strictly more than 1, it follows that there exists
another component B of T .

First suppose that B = H (2) and that Breaker claims the element 1. Then N2

increases by 1, N4 decreases by 1 and ε is replaced by 1− ε. Hence N1 +N2 +N3− ε
increases by 2 and −N4 increases by 1, so we have d1 = 0. Note that d2 =

⌊
1+8
5

⌋
+⌊

2+8
5

⌋
−
⌊
1+5
5

⌋
= 2, and thus it follows that d1 + d2 = si, as required.

Now suppose that B = H (m) with m ≥ 3. Suppose that Breaker claims the
element 1, and hence B is replaced by G (m− 1). Then N4 remains unaffected, N3

decreases by at most 1 and N2 increases by at most one. Since ε changes from 1
to 0, it follows that N1 +N2 +N3 − ε cannot decrease, and hence we have d1 ≥ 0.
Note that we have d2 =

⌊
1+8
5

⌋
+
⌊
m+8
5

⌋
−
⌊
m+4
5

⌋
, and thus we trivially have d2 ≥ 1.

If m ≡ 1, then m− 1 ≡ 0 and thus N2 increases by 1 but N3 does not decrease.
Hence N1 +N2 +N3−ε increases by 2, and thus d1 ≥ 1. If m 6≡ 1, then we certainly
have d2 ≥ 2. Hence in either case we have d1 + d2 ≥ 2, as required.
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Next suppose that B = G (m), and suppose that Breaker claims the element 1.
Hence B is replaced by F (m− 1). As above, it is easy to deduce that N4 remains
unaffected and N1 + N2 + N3 − ε cannot decrease, and hence we have d1 ≥ 0. We
also have d2 =

⌊
1+8
5

⌋
+
⌊
m+5
5

⌋
−
⌊
m+1
5

⌋
, and thus d2 ≥ 1.

If m ≡ 4, then m− 1 ≡ 3 and thus N1 increases by 1 but N2 does not decrease.
Hence we can similarly deduce that d1 ≥ 1. Otherwise, it is easy to see that d2 ≥ 2.
Hence in either case we have d1 +d2 ≥ 2, as required. Note that the same argument
also applies even when m = 1 (with the convention that F (0) is an empty board).

Finally suppose that B = F (m), and suppose that Breaker claims the element
m − 2. Hence B is replaced by disjoint union of F (m− 3) and F (2), but the
component of the form F (2) can be omitted as on this board Breaker can follow
pairing strategy to avoid any increment in the score. Again, we know that N1

cannot increase by more than 1, and hence d1 ≥ 0. We also have d2 =
⌊
1+8
5

⌋
+⌊

m+2
5

⌋
−
⌊
m−1
5

⌋
, and hence d2 ≥ 1.

If m ≡ 3, 4 or 5, then we certainly have d2 ≥ 2. If m ≡ 1 or 2, then m − 3 ≡
3 or 4, and hence N1 increases by 1. Hence N1 + N2 + N3 − ε increases by 2, and
thus we must have d1 ≥ 1. Hence in either case we have d1+d2 ≥ 2. This completes
the proof of Case 1.2.3.

Case 1.3. j = 2.

Since j ≤
⌈
n
2

⌉
, it follows that we must have n ≥ 3. Hence we split into cases

based on whether n ≥ 5, n = 4 or n = 3.

Case 1.3.1. n ≥ 5.

Suppose Breaker claims the element 1. Hence si = 0, and the board becomes a
copy of H (n− 2). Since n− 2 ≥ 3, it follows that N4 and ε remain unchanged.

If n 6≡ 2 and 3, then N3 cannot decrease. Hence it follows that d1 ≥ 0. We also
have d2 =

⌊
n+8
5

⌋
−
⌊
n+6
5

⌋
≥ 0, and thus d1 + d2 ≥ 0 as required.

If n ≡ 2 or 3, then N3 decreases by at most 1 and hence we have d1 ≥ −1. We
again have d2 =

⌊
n+8
5

⌋
−
⌊
n+6
5

⌋
, and since n ≡ 2 or 3 it follows that d2 ≥ 1. Thus

d1 + d2 ≥ 0, which completes the proof of Case 1.3.1.

Case 1.3.2. n = 4.

Again suppose that Breaker claims the element 1. Hence si = 0, and since
4 6≡ 2 and 3 it follows that N1, N2, N3 and ε remain unaffected. On the other
hand, by definition we know that N4 increases by 1 as after this pair of moves the
board becomes H (2). Hence we have d1 = 1. We also have d2 =

⌊
4+8
5

⌋
−
⌊
2+8
5

⌋
= 0,

and thus it follows that d1 + d2 = 1 > 0, which completes the proof of Case 1.3.2.

Case 1.3.3. n = 3.

Again suppose that Breaker claims the element 1, and thus we have si = 0. Note
that after this pair of moves we are left with H (1), and it is easy to verify that
d2 =

⌊
3+8
5

⌋
−
⌊
1+8
5

⌋
= 1.
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It is clear that N1, N2 and N4 remain unchanged. It is easy to observe that N3

decreases by 1, and ε is replaced by 1− ε. Hence in the worst case N3− ε decreases
by 2, and thus by (3) it follows that d1 ≥ −1, and hence we have d1 + d2 ≥ 0. This
completes the proof of Case 1.3.3.

Case 1.4. n = 5 and j = 3.

Suppose that Breaker claims the element 2. Hence the board H (5) splits into
G (1) and H (2), and we have si = 0. Hence N4 increases by 1, N2 increases by 1 and
N1, N3 and ε remain unaffected. Thus we must have d1 ≥ 1. On the other hand,
note that d2 =

⌊
5+8
5

⌋
−
⌊
2+8
5

⌋
−
⌊
1+5
5

⌋
= −1. Hence it follows that d1 + d2 ≥ 0,

which completes the proof of Case 1.4.

This completes the proof of Case 1.

Case 2. Maker plays on G (ms).

For convenience set n = ms. The game G (n) is played on {1, . . . , n}, and note
that in this case the board is not symmetric. Hence we choose the labeling so that
claiming the element 1 increases the score by 1, but claiming the element n does
not.

Assume that Maker plays her first move in position j. As before we prove that
claiming j − 1 or j + 1 is a suitable choice for Breaker, and this choice is again
determined by j (mod 5). We use the same notation as before, however in this case
there are two options on how the board might split: the board either splits into
components of the form G (a) and G (b) if Breaker claims j− 1, or into components
of the form H (c) and F (d) if Breaker claims j + 1. In this case we only need to
consider the cases j = 1, j = 2 and j = n individually, and note that hence we may
assume that n ≥ 4. We start by checking the special cases, and we skip some of the
details when they are identical to the arguments used in Case 1.

Case 2.1. j = 1.

This is essentially identical to the proof of Case 1.2.1. Indeed, suppose Breaker
claims the element 2. Hence after the first pair of moves the board becomes F (n− 2)
and we have si = 1. As in the proof of Case 1.2.1, we have si = 1 and d2 =⌊
n+5
5

⌋
−
⌊
n
5

⌋
= 1. Also as in Case 1.2.1, it follows that N2 decreases by 1 if and

only if N1 increases by 1, and hence d1 = 0. Thus d1 + d2 = 1, which completes the
proof of Case 2.1.

Case 2.2. j = 2.

Suppose that Breaker claims the element 1. Note that in this case we do not
claim the response move according to Table 1, as claiming the element 3 would
generate H (1) as one of the component. In this case the irregular behaviour of
H (1) would cause some difficulties.
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It is easy to see that after the first pair of moves the board becomes G (n− 2),
and we have si = 0. Note that N2 can decrease by at most 1, and hence d1 ≥ −1.
We also have d2 =

⌊
n+5
5

⌋
−
⌊
n+3
5

⌋
, and thus we certainly have d2 ≥ 0.

If n ≡ 0 or 1, it is easy to verify that we have d2 = 1, and hence d1 + d2 ≥ 0
as required. Otherwise it follows that N2 cannot decrease, and hence we must have
d1 ≥ 0. Thus d1 + d2 ≥ 0 holds in this case as well, which completes the proof of
Case 2.2.

Case 2.3. j = n.

Suppose that Breaker claims the element n − 1. After this pair of moves the
board becomes G (n− 2), and by using exactly the same analysis as in Case 2.2 it
follows that d1 + d2 ≥ 0.

Case 2.4. 3 ≤ j ≤ n− 1.

Suppose that Breaker chooses the appropriate move indicated in Table 1 depend-
ing on the value of j (mod 5). Note that depending on the value of j, the board
may split into components of the form G (a) and G (b) or of the form H (c) and
F (d). We now consider several cases, depending on the value value of n (mod 5)
and depending on how the board splits into two components. As in Case 1.1, we
have the trivial lower bounds d1 ≥ −1 and d2 ≥ −1.

Case 2.4.1. n ≡ 0 or 1 and j ≡ 0, 1 or 3.

As Breaker claims the element j − 1, the board splits into components of the
form G (a) and G (b). As in Case 1.1.1, by using the trivial upper and lower bounds
for bxc it follows that d2 ≥ n+4

5 −
a+b+10

5 = −4
5 . Since d2 is an integer, it follows

that d2 ≥ 0.

Note that from Table 1 we can conclude that a ≡ 1, 3 or 4. First suppose that
a ≡ 1 or b ≡ 0 or 1. Then N2 certainly does not decrease, so d1 ≥ 0. Hence
d1 + d2 ≥ 0, as required.

Otherwise we must have a ≡ 3 or 4 and b ≡ 2, 3 or 4. Hence we must have⌊
a+5
5

⌋
+
⌊
b+5
5

⌋
≤ a+2

5 + b+3
5 = n+3

5 . Since n ≡ 0 or 1, it follows that d2 ≥ n+4
5 −

n+3
5 > 0, and thus d2 ≥ 1. Hence d1 + d2 ≥ 0, which completes the proof of Case

2.4.1.

Case 2.4.2. n ≡ 0 or 1 and j ≡ 2 or 4.

As in the previous case we can deduce that d2 ≥ 0. Since Breaker claims the
element j + 1, the board splits into components of the form H (c) and F (d). Since
j > 2, it follows that j ≥ 4 and thus c ≥ 3. Hence N4 and ε are unaffected by the
first pair of moves. Again, we will split into cases depending on whether or not one
of c ≡ 2 or 3 or d ≡ 3 or 4 holds. The details follow exactly as in the previous case,
and hence we omit the proof.

Case 2.4.3. n 6≡ 0 and 1.
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Now regardless of how the board splits into two components we can deduce that
d1 ≥ 0, as none of the Ni’s can decrease. Again, the rest of the proof is similar
to the proof of Case 1.1.2 (with appropriate modifications similar to those done in
Case 2.4.1). Hence we skip the details.

This completes the proof of Case 2.

Case 3. Maker plays on F (lr).

For convenience set n = lr. The game F (n) is played on {1, . . . , n}, and this
time the board is again symmetric. Hence we may assume that Maker plays her
first move j in a position with j ≤

⌈
n
2

⌉
.This time the only special case that needs

to be considered is j = 1, and again we prove that for j ≥ 2 claiming j − 1 or j + 1
is a suitable choice for Breaker, and this choice is determined by j (mod 5). Apart
from the case j = 1, the board always splits into two boards of the form F (a) and
G (b) for some a and b with n = a + b + 2. We use the same notation as in the
earlier cases.

Case 3.1. j = 1.

Suppose Breaker claims the element 2. Then si = 0 and the board becomes
F (n− 2). Hence d2 =

⌊
n+2
5

⌋
−
⌊
n
5

⌋
, which is certainly always non-negative. Since

N1 decreases by at most 1, it follows that d1 ≥ −1.

If n ≡ 3 or 4 then we have d2 ≥ 1 and hence d1 + d2 ≥ 0, as required. Otherwise
N1 is certainly not decreasing, so d1 ≥ 0. Thus we again have d1 + d2 ≥ 0, which
completes the proof of Case 3.1.

Case 3.2. j 6= 1 and n ≡ 3 or 4.

The proof is identical to the proof of Case 1.1.1.

Case 3.3. j 6= 1 and n 6≡ 3 and 4.

The proof is identical to the proof of Case 1.1.2.

This completes the proof of Claim 3, and hence Lemma 3 holds by induction.

Recall from the Introduction that Hb (n) is the game played on the same board
as H (n), but with Breaker having the first move. Also recall that we have u (Pn) =
γb (n) and u (Cn) = α (n− 1). We now deduce Theorems 1 and 2 from our earlier
results.

Proof of Theorem 1. Note that Lemma 2 implies that u (Pn) = γb (n) ≥
⌊
n+4
5

⌋
.

In order to prove the upper bound, consider the game Hb (n) and suppose that
Breaker claims the element n on her first move. After this initial move, the game is
equivalent to the game on the same board as G (n− 1) with Maker having the first
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move. Hence it follows that γb (n) ≤ f (∅;n− 1; ∅), and thus Lemma 3 implies that

γb (n) ≤
⌊
(n−1)+5

5

⌋
. Therefore we have u (Pn) =

⌊
n+4
5

⌋
, as required.

Proof of Theorem 2. Recall that we have u (Cn) = α (n− 1). Hence Lemma 1 im-

plies that u (Cn) ≥
⌊
(n−1)+2

5

⌋
, and Lemma 3 implies that u (Cn) ≤ f (n− 1; ∅; ∅) =⌊

(n−1)+2
5

⌋
. Thus it follows that u (Cn) =

⌊
n+1
5

⌋
, as required.

In particular, for both G = Pn and G = Cn it follows that the asymptotic
proportion of isolated vertices is 1

5 when both players play optimally.

4. Conclusion

There are many questions that are open concerning the value of u (G) for general
G. In [4], the authors gave bounds for u (G) that depended on the degree sequence
of the graph G. As a consequence they concluded that if the minimum degree of G
is at least 4, then u (G) = 0. They also noted that there exists a 3-regular graph
with u (G) > 0, and they proved that the largest possible proportion of untouched
vertices among all 3-regular graphs is between 1

24 and 1
8 . It would be interesting to

know what the exact value is. Their example for the proportion 1
24 is not connected,

so it would also be interesting to know what the maximal proportion is for connected
3-regular graphs.

They also proved that if T is a tree with n vertices, then it follows that
⌈
n+2
8

⌉
≤

u (T ) ≤
⌊
n−1
2

⌋
. The upper bound is tight when T is a star, but they did not find a

similar infinite family of examples for which the lower bound is tight. It would be
interesting to know whether this lower bound is asymptotically correct.
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