

ARITHMETIC PROGRESSIONS OF LENGTH THREE IN MULTIPLICATIVE SUBGROUPS OF \mathbb{F}_p

Jeremy F. Alm

Department of Mathematics, Lamar University, Beaumont, Texas
alm.academic@gmail.com

Received: 2/25/19, Accepted: 12/7/19, Published: 4/27/20

Abstract

In this paper, we give an algorithm for detecting non-trivial 3-term arithmetic progressions in multiplicative subgroups of \mathbb{F}_p^\times that is substantially more efficient than the naive approach. It follows that certain van der Waerden-like numbers can be computed in polynomial time.

1. Introduction

Additive structures inside multiplicative subgroups of \mathbb{F}_p^\times have recently received attention. Alon and Bourgain [1] study solutions to $x + y = z$ in $H < \mathbb{F}_p^\times$, and Chang [2] studies arithmetic progressions in $H < \mathbb{F}_p^\times$. In this paper, we define a van der Waerden-like number for $H < \mathbb{F}_p^\times$ of index n , and give a polynomial-time algorithm for determining such numbers.

Definition 1. Let $VW_3^\times(n)$ denote the least prime $q \equiv 1 \pmod{n}$ such that for all primes $p \equiv 1 \pmod{n}$ with $p \geq q$, the multiplicative subgroup of \mathbb{F}_p^\times of index n contains a mod- p arithmetic progression of length three.

Our main results are the following two theorems.

Theorem 1. $VW_3^\times(n) \leq (1 + \varepsilon)n^4$ for all sufficiently large n (depending on ε). In particular, $VW_3^\times(n) \leq 1.001n^4$ for all $n \geq 45$.

Theorem 2. $VW_3^\times(n)$ can be determined by an algorithm that runs in $\mathcal{O}(\frac{n^8}{\log n})$ time.

Chang [2] proves that if $H < \mathbb{F}_p^\times$ and $|H| > cp^{3/4}$, then H contains non-trivial 3-progressions. This implies our Theorem 1 with $(1 + \varepsilon)n^4$ replaced by cn^4 . We prove our Theorem 1 because we need to make the constant explicit.

2. Proof of Theorem 1

Proof. We use one of the basic ideas of the proof of Roth's Theorem on 3-progressions [3]. Let $A \subseteq \mathbb{F}_p$ with $|A| = \delta p$. Note that a 3-progression is a solution inside A to the equation $x + y = 2z$. Let \mathcal{N} be the number of (possibly trivial) solutions to $x + y = 2z$ inside A . We have that

$$\frac{1}{p} \sum_{k=0}^{p-1} e^{\frac{-2\pi ik}{p}x} = \begin{cases} 1, & \text{if } x \equiv 0 \pmod{p}; \\ 0, & \text{if } x \not\equiv 0 \pmod{p}. \end{cases} \quad (1)$$

Because of (1), we have

$$\mathcal{N} = \sum_{x \in A} \sum_{y \in A} \sum_{z \in A} \frac{1}{p} \sum_{k=0}^{p-1} e^{\frac{-2\pi ik}{p}(x+y-2z)} \quad (2)$$

Rearranging (2), we get

$$\begin{aligned} & \frac{1}{p} \sum_{k=0}^{p-1} \sum_{x \in A} \sum_{y \in A} \sum_{z \in A} e^{\frac{-2\pi ik}{p}x} \cdot e^{\frac{-2\pi ik}{p}y} \cdot e^{\frac{2\pi ik}{p}2z} \\ &= \frac{1}{p} \sum_{k=0}^{p-1} \left[\sum_{x \in A} e^{\frac{-2\pi ik}{p}x} \cdot \sum_{y \in A} e^{\frac{-2\pi ik}{p}y} \cdot \sum_{z \in A} e^{\frac{2\pi ik}{p}2z} \right] \\ &= \frac{1}{p} \sum_{k=0}^{p-1} \left[\sum_{x \in \mathbb{F}_p} A(x) e^{\frac{-2\pi ik}{p}x} \cdot \sum_{y \in \mathbb{F}_p} A(y) e^{\frac{-2\pi ik}{p}y} \cdot \sum_{z \in \mathbb{F}_p} A(-2z) e^{\frac{2\pi ik}{p}z} \right] \\ &= \frac{1}{p} \sum_{k=0}^{p-1} \hat{A}(k)^2 \cdot \hat{A}(-2k), \end{aligned} \quad (3)$$

where $A(\cdot)$ denotes the characteristic function of the set A , and \hat{f} denotes the Fourier transform of f ,

$$\hat{f}(x) = \sum_{k=0}^{p-1} f(k) e^{\frac{-2\pi ik}{p}x}.$$

Now we can pull out the $k = 0$ term from (3):

$$\begin{aligned}
(3) &= \frac{1}{p} \hat{A}(0)^3 + \frac{1}{p} \sum_{k=1}^{p-1} \hat{A}(k)^2 \cdot \hat{A}(-2k) \\
&= \frac{|A|^3}{p} + \frac{1}{p} \sum_{k=1}^{p-1} \hat{A}(k)^2 \cdot \hat{A}(-2k) \\
&= \delta^3 p^2 + \frac{1}{p} \sum_{k=1}^{p-1} \hat{A}(k)^2 \cdot \hat{A}(-2k).
\end{aligned}$$

Let's call $\delta^3 p^2$ the *main term*, and $\frac{1}{p} \sum_{k=1}^{p-1} \hat{A}(k)^2 \cdot \hat{A}(-2k)$ the *error term*. We now bound this error term.

Suppose $0 < \alpha < 1$ and $|\hat{A}(k)| \leq \alpha p$ for all $0 \neq k \in \mathbb{F}_p$. In this case, we say that A is α -uniform. Then

$$\begin{aligned}
\left| \frac{1}{p} \sum_{k=1}^{p-1} \hat{A}(k)^2 \cdot \hat{A}(-2k) \right| &\leq \frac{1}{p} \max |\hat{A}(k)| \cdot \left| \sum_{k=1}^{p-1} \hat{A}(k)^2 \right| \\
&\leq \alpha \left| \sum_{k=1}^{p-1} \hat{A}(k)^2 \right| \\
&\leq \alpha p \left| \sum_{k=1}^{p-1} A(k)^2 \right| \\
&\leq \alpha \delta p^2.
\end{aligned}$$

Therefore $\mathcal{N} \geq \delta^3 p^2 - \alpha \delta p^2$. Subtracting off the trivial solutions gives $\mathcal{N} - \delta p \geq \delta^3 p^2 - \delta p - \alpha \delta p^2$. Hence there is at least one non-trivial solution if

$$\delta^3 p^2 > \delta p + \alpha \delta p^2.$$

Let $A = H$ be a multiplicative subgroup of \mathbb{F}_p of index n . As is well-known (see for example [4, Corollary 2.5]), if H is a multiplicative subgroup of \mathbb{F}_p^\times , then H is α -uniform for $\alpha \leq p^{-1/2}$. Thus it suffices to have

$$\delta^3 p^2 \geq \delta p + p^{-1/2} \delta p^2 \text{ if and only if } \delta^3 p^2 \geq \delta p + \delta p^{3/2} \quad (4)$$

$$\text{if and only if } \delta^2 p \geq 1 + p^{1/2} \quad (5)$$

$$\text{if and only if } (p-1)^2 \geq n^2 p (1 + p^{1/2}) \quad (6)$$

where the last line follows from $\delta = (p-1)/(np)$. It is straightforward to check that (6) is satisfied by $p = (1 + \varepsilon)n^4$ for sufficiently large n . □

The data gathered for $VW_3^\times(n)$, $n \leq 100$, suggest that the exponent of 4 on n is too large; see Figure 1. These data are available at www.oeis.org, sequence number A298566.

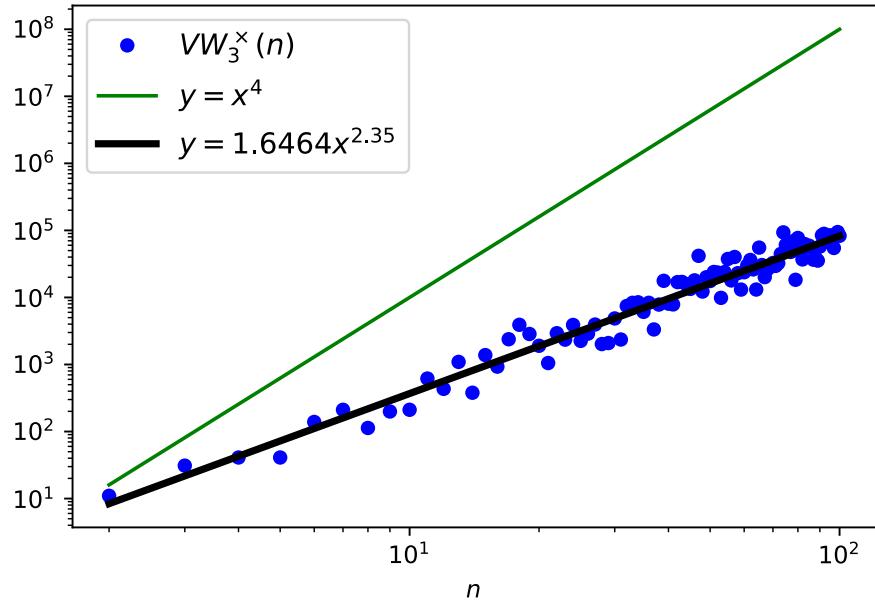


Figure 1: $VW_3^\times(n)$ for $n \leq 100$

3. A More General Framework

Before we establish our algorithm, it will be helpful to generalize to arbitrary linear equations in three variables over \mathbb{F}_p . Suppose we are looking for solutions to $ax + by = cz$ in $H < \mathbb{F}_p^\times$, for fixed $a, b, c \in \mathbb{F}_p^\times$. There is a solution just in case $(aH + bH) \cap cH$ is nonempty.

The following result affords an algorithmic speedup in counting solutions to $ax + by = cz$ inside H :

Lemma 1. For $a, b, c \in \mathbb{F}_p^\times$ and $H < \mathbb{F}_p^\times$,

$$(aH + bH) \cap cH \neq \emptyset \text{ if and only if } (c - aH) \cap bH \neq \emptyset.$$

Notice that while the implied computation on the left side of the biconditional is $\mathcal{O}(p^2)$, the one on the right is $\mathcal{O}(p)$, since we compute $|H|$ subtractions and $|H|$ comparisons. (We consider the index n fixed.)

Proof. Let $H = \{g^{kn} : 0 \leq k < (p-1)/n\}$, where n is the index of H and g is a primitive root modulo p . Fix $a, b, c \in \mathbb{F}_p$.

For the forward direction, suppose $(aH + bH) \cap cH \neq \emptyset$, so there are $x, y, z \in H$ such that $ax + by = cz$. Then $by = cz - ax$. Multiplying by $z^{-1} \in H$ yields $b(yz^{-1}) = c - a(xz^{-1})$. Therefore $(c - aH) \cap bH \neq \emptyset$. The other direction is similar. \square

Lemma 1 allows us to detect solutions to linear equations in linear time. The caveat for the case $a = b = 1, c = 2$ is that $H + H$ *always* contains $2H$, since $h + h = 2h$ for all $h \in H$; these solutions correspond to the trivial 3-APs h, h, h . (Similarly, $(2 - H) \cap H$ is always nonempty, since $1 \in H$ and $2 - 1 = 1$.) To account for this, we simply consider $H' = H \setminus \{1\}$, and calculate $(2 - H') \cap H'$ instead.

4. Proof of Theorem 2

Proof. Here is the algorithm.

Data: An integer $n > 1$

Result: The value of $VW_3^\times(n)$

Let $\mathcal{P} = \{p \text{ prime} : p \leq (1 + \varepsilon)n^4, p \equiv 1 \pmod{n}\}$.

Set $p_0 = 1$.

Set `Prev_boolean` = False and `Current_boolean` = True.

for $p \in \mathcal{P}$ **do**

 Let H be the subgroup of \mathbb{F}_p^\times of index n .

 Set `Current_boolean` to True if $(2 - H') \cap H'$ is non-empty, and False otherwise.

if `Current_boolean` is True and `Prev_boolean` is False **then**

 | set $p_0 = p$.

end

 Set `Prev_boolean` to the value of `Current_boolean`.

end

Return p_0

Algorithm 1: Algorithm for determining $VW_3^\times(n)$

We now argue that Algorithm 1 runs in $\mathcal{O}\left(\frac{n^8}{\log n}\right)$ time. Since calculating $(2 - H') \cap H'$ is $\mathcal{O}(p)$ for each prime p , our runtime is bounded by

$$\sum_{\substack{p \leq (1+\varepsilon)n^4 \\ p \equiv 1 \pmod{n}}} \mathcal{O}(p) = \mathcal{O} \left(\sum_{\substack{p \leq (1+\varepsilon)n^4 \\ p \equiv 1 \pmod{n}}} p \right).$$

A standard estimate on the prime sum

$$\sum_{\substack{p \leq x \\ p \equiv 1 \pmod{n}}} p$$

is asymptotically $\frac{x^2}{\varphi(n) \log x}$, giving

$$\begin{aligned} \mathcal{O} \left(\sum_{\substack{p \leq (1+\varepsilon)n^4 \\ p \equiv 1 \pmod{n}}} p \right) &= \mathcal{O} \left(\frac{n^8}{\varphi(n) \log(n^4)} \right) \\ &= \mathcal{O} \left(\frac{n^8}{\log(n)} \right) \end{aligned}$$

as desired. \square

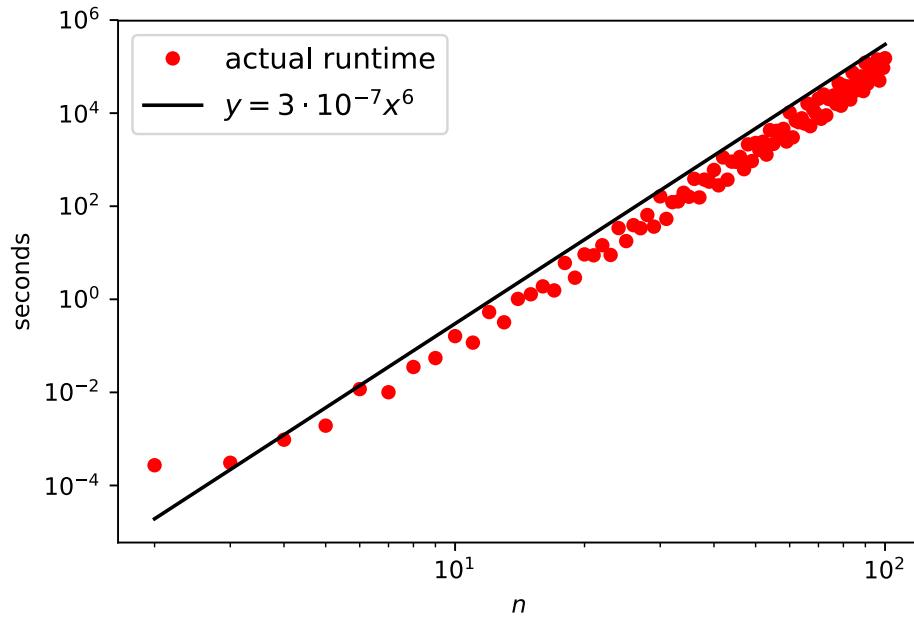
Our timing data suggest that the correct runtime might be more like $\mathcal{O}(n^6)$; see Figure 2.

5. Further Directions

For any $a, b, c \in \mathbb{Z}^+$, we can define an analog to $VW_3^\times(n)$ by considering the equation $ax + by = cz$ instead of $x + y = 2z$. (Assume p is greater than a , b , and c .) The bound from Theorem 1 stays the same if $a+b = c$ and goes down to $n^4 + 5$ otherwise. (If $a+b \neq c$, we do not have to account for trivial solutions, so

$$\mathcal{N} - \delta p \geq \delta^3 p^2 - \delta p - \alpha \delta p^2$$

gets replaced by $\mathcal{N} \geq \delta^3 p^2 - \alpha \delta p^2$ in the proof of Theorem 1.) But as suggested by the data in Figure 1, these bounds are not tight. How does the choice of a , b , and c affect the growth rate of the corresponding van der Waerden-like number? Clearly $VW_3^\times(n)$ is not monotonic, but it appears to bounce above and below some “average” polynomial growth rate. Will that growth rate vary with the choice of a , b , and c ? Does it depend on whether $a+b = c$ only?

Figure 2: Runtime in seconds to determine $VW_3^\times(n)$

Acknowledgements. The author wishes to thank Andrew Shallue and Valentin Andreev for many productive conversations.

References

- [1] N. Alon and J. Bourgain, Additive patterns in multiplicative subgroups, *Geom. Funct. Anal.* **24** (2014), 721-739.
- [2] M.-Ch. Chang, Arithmetic progressions in multiplicative groups of finite fields, *Israel J. Math.* **222** (2017), 631-643.
- [3] K. Roth, On certain sets of integers, *J. London Math. Soc.* **28** (1953), 104-109.
- [4] T. Schoen and I. Shkredov, Additive properties of multiplicative subgroups of \mathbb{F}_p , *Q. J. Math.* **63** (2012), 713-722.