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Abstract
In this paper, we give an algorithm for detecting non-trivial 3-term arithmetic
progressions in multiplicative subgroups of F)’ that is substantially more efficient
than the naive approach. It follows that certain van der Waerden-like numbers can
be computed in polynomial time.

1. Introduction

Additive structures inside multiplicative subgroups of F,’ have recently received
attention. Alon and Bourgain [1] study solutions to z +y = z in H < F), and
Chang [2] studies arithmetic progressions in H < F)’. In this paper, we define a
van der Waerden-like number for H < 5 of index n, and give a polynomial-time
algorithm for determining such numbers.

Definition 1. Let VW (n) denote the least prime ¢ = 1 (mod n) such that for
all primes p =1 (mod n) with p > ¢, the multiplicative subgroup of )’ of index n
contains a mod-p arithmetic progression of length three.

Our main results are the following two theorems.

Theorem 1. VW, (n) < (1+¢)n? for all sufficiently large n (depending on ¢). In
particular, VW (n) < 1.001n* for all n > 45.

Theorem 2. VIV, (n) can be determined by an algorithm that runs in O( n® )

logn
time.

Chang [2] proves that if H < F)’ and |H| > cp®/*, then H contains non-trivial
3-progressions. This implies our Theorem 1 with (1 4 ¢)n* replaced by cn*. We
prove our Theorem 1 because we need to make the constant explicit.
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2. Proof of Theorem 1

Proof. We use one of the basic ideas of the proof of Roth’s Theorem on 3-progressions
[3]. Let A C T, with |A] = dp. Note that a 3-progression is a solution inside A to
the equation z + y = 2z. Let N be the number of (possibly trivial) solutions to

x +y = 2z inside A. We have that
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Because of (1), we have
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Rearranging (2), we get
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where A(-) denotes the characteristic function of the set A, and f denotes the

Fourier transform of f,
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Now we can pull out the k£ = 0 term from (3):
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Let’s call §3p? the main term, and %Zi;i A(k)? - A(—Fk) the error term. We
now bound this error term.

Suppose 0 < a < 1 and |A(k)| < ap for all 0 # k € F,. In this case, we say that
A is a-uniform. Then

1 p—1 . . p—1
- A(k:)2 - A(—2k)| < = max|A(k)| A(k)2
Pz k=1
p—1
<a A(k)?
k=1
p—1
<ap A(k)?
k=1
< adp?

Therefore N > §3p? — adp?. Subtracting off the trivial solutions gives N' — ép >

53p? — 6p — adp®. Hence there is at least one non-trivial solution if

§3p% > 6p + adp?.

Let A = H be a multiplicative subgroup of F, of index n. As is well-known (see
for example [4, Corollary 2.5]), if H is a multiplicative subgroup of F,‘, then H is

a-uniform for o < p~/2. Thus it suffices to have
83p% > 6p + p~/26p? if and only if §°p® > dp + 6p>/? (4)
if and only if 6%p > 1 + p'/? (5)
if and only if (p—1)% > n?p(1 +p'/?) (6)

where the last line follows from 6 = (p—1)/(np). It is straightforward to check that
(6) is satisfied by p = (1 + ¢)n?* for sufficiently large n.
O
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The data gathered for VW3 (n), n < 100, suggest that the exponent of 4 on
n is too large; see Figure 1. These data are available at www.oeis.org, sequence
number A298566.
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Figure 1: VW, (n) for n < 100

3. A More General Framework

Before we establish our algorithm, it will be helpful to generalize to arbitrary linear
equations in three variables over F,,. Suppose we are looking for solutions to azx +
by = cz in H < T, for fixed a,b,c € F). There is a solution just in case (aH +
bH) N cH is nonempty.

The following result affords an algorithmic speedup in counting solutions to ax +
by = cz inside H:

Lemma 1. For a, b, c€ F)f and H <F},

(aH +bH)NcH # @ if and only if (¢ —aH) NbH # &.
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Notice that while the implied computation on the left side of the biconditional
is O(p?), the one on the right is O(p), since we compute |H| subtractions and |H|
comparisons. (We consider the index n fixed.)

Proof. Let H = {gk" : 0 < k < (p — 1)/n}, where n is the index of H and g is a
primitive root modulo p. Fix a,b,c € IF),.

For the forward direction, suppose (aH +bH)NcH # &, so there are z,y,z € H
such that az 4+ by = cz. Then by = cz — ax. Multiplying by z~! € H yields
b(yz~1) = ¢ — a(zz71). Therefore (¢ — aH) NbH # @. The other direction is
similar. O

Lemma 1 allows us to detect solutions to linear equations in linear time. The
caveat for the case a = b = 1, ¢ = 2 is that H + H always contains 2H, since
h 4+ h = 2h for all h € H; these solutions correspond to the trivial 3-APs h, h, h.
(Similarly, (2— H)N H is always nonempty, since 1 € H and 2—1 = 1.) To account
for this, we simply consider H' = H \ {1}, and calculate (2 — H') N H' instead.

4. Proof of Theorem 2

Proof. Here is the algorithm.
Data: An integer n > 1
Result: The value of VW5 (n)
Let P = {p prime: p < (1 +¢)n*, p=1 (mod n)}.

Set po = 1.
Set Prev_boolean = False and Current_boolean = True.
for p € P do
Let H be the subgroup of ) of index n.
Set Current_boolean to True if (2 — H') N H' is non-empty, and False
otherwise.
if Current_boolean is True and Prev_boolean is False then
| set pg = p.
end
Set Prev_boolean to the value of Current_boolean.
end
Return py

Algorithm 1: Algorithm for determining VW, (n)

nd
logn

We now argue that Algorithm 1 runs in O ( ) time. Since calculating (2 —

H'YN H' is O(p) for each prime p, our runtime is bounded by
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A standard estimate on the prime sum
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as desired. O

Our timing data suggest that the correct runtime might be more like O(n®); see
Figure 2.

5. Further Directions

For any a, b, c € Z*, we can define an analog to VW3 (n) by considering the equation
ax + by = cz instead of x +y = 2z. (Assume p is greater than a, b, and ¢.) The
bound from Theorem 1 stays the same if a+b = ¢ and goes down to n*+5 otherwise.
(If a + b # ¢, we do not have to account for trivial solutions, so

N —6p > 5%p? — 6p — adp?

gets replaced by N > §3p? — adp? in the proof of Theorem 1.) But as suggested
by the data in Figure 1, these bounds are not tight. How does the choice of a, b,
and ¢ affect the growth rate of the corresponding van der Waerden-like number?
Clearly VIV, (n) is not monotonic, but it appears to bounce above and below some
“average” polynomial growth rate. Will that growth rate vary with the choice of a,
b, and ¢? Does it depend on whether a + b = ¢ only?
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Figure 2: Runtime in seconds to determine VIV (n)
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