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Abstract
In this paper, we give an algorithm for detecting non-trivial 3-term arithmetic
progressions in multiplicative subgroups of F⇥p that is substantially more e�cient
than the naive approach. It follows that certain van der Waerden-like numbers can
be computed in polynomial time.

1. Introduction

Additive structures inside multiplicative subgroups of F⇥p have recently received
attention. Alon and Bourgain [1] study solutions to x + y = z in H < F⇥p , and
Chang [2] studies arithmetic progressions in H < F⇥p . In this paper, we define a
van der Waerden-like number for H < F⇥p of index n, and give a polynomial-time
algorithm for determining such numbers.

Definition 1. Let V W⇥
3 (n) denote the least prime q ⌘ 1 (mod n) such that for

all primes p ⌘ 1 (mod n) with p � q, the multiplicative subgroup of F⇥p of index n
contains a mod-p arithmetic progression of length three.

Our main results are the following two theorems.

Theorem 1. V W⇥
3 (n)  (1 + ")n4 for all su�ciently large n (depending on "). In

particular, V W⇥
3 (n)  1.001n4 for all n � 45.

Theorem 2. V W⇥
3 (n) can be determined by an algorithm that runs in O( n8

log n )
time.

Chang [2] proves that if H < F⇥p and |H| > cp3/4, then H contains non-trivial
3-progressions. This implies our Theorem 1 with (1 + ")n4 replaced by cn4. We
prove our Theorem 1 because we need to make the constant explicit.
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2. Proof of Theorem 1

Proof. We use one of the basic ideas of the proof of Roth’s Theorem on 3-progressions
[3]. Let A ✓ Fp with |A| = �p. Note that a 3-progression is a solution inside A to
the equation x + y = 2z. Let N be the number of (possibly trivial) solutions to
x + y = 2z inside A. We have that
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where A(·) denotes the characteristic function of the set A, and f̂ denotes the
Fourier transform of f ,

f̂(x) =
p�1X

k=0

f(k)e
�2⇡ik

p x.

Now we can pull out the k = 0 term from (3):
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Â(k)2 · Â(�2k)
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Let’s call �3p2 the main term, and 1
p

Pp�1
k=1 Â(k)2 · Â(�k) the error term. We

now bound this error term.
Suppose 0 < ↵ < 1 and |Â(k)|  ↵p for all 0 6= k 2 Fp. In this case, we say that

A is ↵-uniform. Then
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Therefore N � �3p2 �↵�p2. Subtracting o↵ the trivial solutions gives N � �p �
�3p2 � �p� ↵�p2. Hence there is at least one non-trivial solution if

�3p2 > �p + ↵�p2.

Let A = H be a multiplicative subgroup of Fp of index n. As is well-known (see
for example [4, Corollary 2.5]), if H is a multiplicative subgroup of F⇥p , then H is
↵-uniform for ↵  p�1/2. Thus it su�ces to have

�3p2 � �p + p�1/2�p2 if and only if �3p2 � �p + �p3/2 (4)

if and only if �2p � 1 + p1/2 (5)

if and only if (p� 1)2 � n2p(1 + p1/2) (6)

where the last line follows from � = (p�1)/(np). It is straightforward to check that
(6) is satisfied by p = (1 + ")n4 for su�ciently large n.
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The data gathered for V W⇥
3 (n), n  100, suggest that the exponent of 4 on

n is too large; see Figure 1. These data are available at www.oeis.org, sequence
number A298566.

Figure 1: V W⇥
3 (n) for n  100

3. A More General Framework

Before we establish our algorithm, it will be helpful to generalize to arbitrary linear
equations in three variables over Fp. Suppose we are looking for solutions to ax +
by = cz in H < F⇥p , for fixed a, b, c 2 F⇥p . There is a solution just in case (aH +
bH) \ cH is nonempty.

The following result a↵ords an algorithmic speedup in counting solutions to ax+
by = cz inside H:

Lemma 1. For a, b, c 2 F⇥p and H < F⇥p ,

(aH + bH) \ cH 6= ? if and only if (c� aH) \ bH 6= ?.
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Notice that while the implied computation on the left side of the biconditional
is O(p2), the one on the right is O(p), since we compute |H| subtractions and |H|
comparisons. (We consider the index n fixed.)

Proof. Let H = {gkn : 0  k < (p � 1)/n}, where n is the index of H and g is a
primitive root modulo p. Fix a, b, c 2 Fp.

For the forward direction, suppose (aH + bH)\ cH 6= ?, so there are x, y, z 2 H
such that ax + by = cz. Then by = cz � ax. Multiplying by z�1 2 H yields
b(yz�1) = c � a(xz�1). Therefore (c � aH) \ bH 6= ?. The other direction is
similar.

Lemma 1 allows us to detect solutions to linear equations in linear time. The
caveat for the case a = b = 1, c = 2 is that H + H always contains 2H, since
h + h = 2h for all h 2 H; these solutions correspond to the trivial 3-APs h, h, h.
(Similarly, (2�H)\H is always nonempty, since 1 2 H and 2�1 = 1.) To account
for this, we simply consider H 0 = H \ {1}, and calculate (2�H 0) \H 0 instead.

4. Proof of Theorem 2

Proof. Here is the algorithm.
Data: An integer n > 1
Result: The value of V W⇥

3 (n)
Let P = {p prime : p  (1 + ")n4, p ⌘ 1 (mod n)}.
Set p0 = 1.
Set Prev boolean = False and Current boolean = True.
for p 2 P do

Let H be the subgroup of F⇥p of index n.
Set Current boolean to True if (2�H 0) \H 0 is non-empty, and False
otherwise.
if Current boolean is True and Prev boolean is False then

set p0 = p.
end
Set Prev boolean to the value of Current boolean.

end
Return p0

Algorithm 1: Algorithm for determining V W⇥
3 (n)

We now argue that Algorithm 1 runs in O
⇣

n8

log n

⌘
time. Since calculating (2 �

H 0) \H 0 is O(p) for each prime p, our runtime is bounded by
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as desired.

Our timing data suggest that the correct runtime might be more like O(n6); see
Figure 2.

5. Further Directions

For any a, b, c 2 Z+, we can define an analog to V W⇥
3 (n) by considering the equation

ax + by = cz instead of x + y = 2z. (Assume p is greater than a, b, and c.) The
bound from Theorem 1 stays the same if a+b = c and goes down to n4+5 otherwise.
(If a + b 6= c, we do not have to account for trivial solutions, so

N � �p � �3p2 � �p� ↵�p2

gets replaced by N � �3p2 � ↵�p2 in the proof of Theorem 1.) But as suggested
by the data in Figure 1, these bounds are not tight. How does the choice of a, b,
and c a↵ect the growth rate of the corresponding van der Waerden-like number?
Clearly V W⇥

3 (n) is not monotonic, but it appears to bounce above and below some
“average” polynomial growth rate. Will that growth rate vary with the choice of a,
b, and c? Does it depend on whether a + b = c only?
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Figure 2: Runtime in seconds to determine V W⇥
3 (n)
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