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Abstract
Sinkhorn’s alternative minimization algorithm applied to a positive n ⇥ n matrix
converges to a doubly stochastic matrix. If the algorithm, applied to a 2⇥2 matrix,
converges in a finite number of iterations, then it converges in at most two iterations,
and the structure of such matrices is determined.

1. The Alternate Minimization Algorithm

A positive matrix is a matrix with positive coordinates. Let diag(x1, . . . , xn) denote
the n⇥n diagonal matrix with coordinates x1, . . . , xn on the main diagonal. A pos-
itive diagonal matrix is a diagonal matrix whose diagonal coordinates are positive.
If A is an m⇥n positive matrix, X is an m⇥m positive diagonal matrix, and Y is
an n⇥ n positive diagonal matrix, then XA and AY are m⇥ n positive matrices.

Let A = (ai,j) be an n⇥ n matrix. The ith row sum of A is

rowi(A) =
nX

j=1

ai,j .

The jth column sum of A is

colj(A) =
nX

i=1

ai,j .

The matrix A is row stochastic if rowi(A) = 1 for all i 2 {1, . . . , n}. The matrix A
is column stochastic if colj(A) = 1 for all j 2 {1, . . . , n}. The matrix A is doubly
stochastic if it is both row stochastic and column stochastic.

For example, a positive 2 ⇥ 2 matrix A is doubly stochastic if and only if there
exist ↵,� 2 (0, 1) such that ↵ + � = 1 and

A =
✓

↵ �
� ↵

◆
.
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If ↵,�, � 2 (0, 1) satisfy ↵ + 2� = � + 2� = 1, then the 3⇥ 3 symmetric matrix
0

@
↵ � �
� � �
� � �

1

A

is doubly stochastic.
Let A = (ai,j) be a positive n⇥n matrix. We have rowi(A) > 0 and colj(A) > 0

for all i, j 2 {1, . . . , n}. Define the n⇥ n positive diagonal matrix

X(A) = diag
✓

1
row1(A)

,
1

row2(A)
, . . . ,

1
rown(A)

◆
.

Multiplying A on the left by X(A) multiplies each coordinate in the ith row of A
by 1/ rowi(A), and so

rowi (X(A)A) =
nX

j=1

(X(A)A)i,j =
nX

j=1

ai,j

rowi(A)
=

rowi(A)
rowi(A)

= 1

for all i 2 {1, 2, . . . , n}. The process of multiplying A on the left by X(A) to obtain
the row stochastic matrix X(A)A is called row scaling or row normalization. We
have X(A)A = A if and only if A is row stochastic if and only if X(A) = I. Note
that the row stochastic matrix X(A)A is not necessarily column stochastic.

Similarly, we define the n⇥ n positive diagonal matrix

Y (A) = diag
✓

1
col1(A)

,
1

col2(A)
, . . . ,

1
coln(A)

◆
.

Multiplying A on the right by Y (A) multiplies each coordinate in the jth column
of A by 1/ colj(A), and so

colj(AY (A)) =
nX

i=1

(AY (A))i,j =
nX

i=1

ai,j

colj(A)
=

colj(A)
colj(A)

= 1

for all j 2 {1, 2, . . . , n}. The process of multiplying A on the right by Y (A) to obtain
a column stochastic matrix AY (A) is called column scaling or column normalization.
We have AY (A) = A if and only if Y (A) = I if and only if A is column stochastic.
The column stochastic matrix AY (A) is not necessarily row stochastic.

The following elementary identity shows that column scaling can be replaced by
row scaling, and conversely. .

Lemma 1. Let At denote the transpose of the n ⇥ n positive matrix A = (ai,j).
Row and column scaling satisfy the following transpose symmetries:

AY (A) =
�
X(At) At

�t

and
X(A)A =

�
At Y (At)

�t
.
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Proof. Let At = (at
i,j), where at

i,j = aj,i. We have

rowi(At) =
nX

j=1

at
i,j =

nX

j=1

aj,i = coli(A)

and so

X(At) = diag
✓

1
row1(At)

, . . . ,
1

rown(At)

◆

= diag
✓

1
col1(A)

, . . . ,
1

coln(A)

◆

= Y (A).

Because the transpose of a diagonal matrix D is Dt = D, we obtain
�
X(At) At

�t =
�

At
�t �

X(At)
�t = A X(At) = A Y (A).

The proof of the identity X(A)A = (At Y (At))t is similar.

For example, if A =
✓

a b
c d

◆
, then At =

✓
a c
b d

◆
and

X(At) =
✓

1/(a + c) 0
0 1/(b + d)

◆
= Y (A).

We have

�
X(At) At

�t =
✓

a/(a + c) c/(a + c)
b/(b + d) d/(b + d)

◆t

=
✓

a/(a + c) b/(b + d)
c/(a + c) d/(b + d)

◆

= A Y (A).

Sinkhorn [4] proved that row and column scaling satisfy the following uniqueness
theorem.

Theorem 1. Let A be a positive matrix, and let X1, X2, Y1, and Y2 be positive
diagonal matrices. If

S1 = X1AY1 and S2 = X2AY2

are doubly stochastic matrices, then

S1 = S2
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and there exists � > 0 such that

X2 = �X1 and Y2 = ��1Y1.

If the positive matrix A is symmetric, then there is a unique positive diagonal matrix
D such that S = DAD is doubly stochastic.

The following algorithm is called “alternate minimization” (perhaps, more ap-
propriately called “alternate scaling” or “alternate normalization”). The proof of
the convergence of the algorithm is due to Sinkhorn [4] and Sinkhorn and Knopp [5].

Theorem 2. Let A = (ai,j) be a positive n ⇥ n matrix. Construct inductively an
infinite sequence of positive n⇥n matrices by alternate operations of column scaling
and row scaling:

A(0) = A

A(1) = A(0) Y
⇣
A(0)

⌘

A(2) = X
⇣
A(1)

⌘
A(1)

A(3) = A(2) Y
⇣
A(2)

⌘

A(4) = X
⇣
A(3)

⌘
A(3)

A(5) = A(4) Y
⇣
A(4)

⌘

... .

The sequence of matrices
�
A(`)

�1
`=0

converges to a doubly stochastic matrix S(A),
and there exist positive diagonal matrices X and Y such that

S(A) = XAY.

The sequence of matrices
�
A(`)

�1
`=0

is called the alternate minimization sequence
associated with A, and the matrix

S(A) = lim
`!1

A(`)

is the alternate minimization limit (also called the Sinkhorn limit) of A.
For example, if

A = A(0) =
✓

1 3
3 4

◆
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then the next three matrices in the sequence
�
A(`)

�1
`=0

are

A(1) = A(0) Y
⇣
A(0)

⌘
=
✓

1/4 3/7
3/4 4/7

◆

A(2) = X
⇣
A(1)

⌘
A(1) =

✓
7/19 12/19
21/37 16/37

◆

A(3) = A(2) Y
⇣
A(2)

⌘
=
✓

37/94 111/187
57/94 76/187

◆
.

Let P and Q be positive diagonal n ⇥ n matrices. It follows from Theorem 1
that the alternate minimization limit of the positive n⇥ n matrix A is equal to the
alternate minimization limit of the matrix PAQ. In particular, the matrices A and
X(A)A have the same limits, and so it makes no di↵erence if we start the alternate
minimization sequence by column scaling or by row scaling.

Let A be a positive matrix, and let
�
A(`)

�1
`=0

be the alternate minimization se-
quence of matrices constructed in Theorem 2. If A(L) is doubly stochastic for some
L, then A(`) = A(L) for all ` � L, and so the sequence of matrices

�
A(`)

�1
`=0

is
eventually constant. In this presumably exceptional case, we say that the alternate
minimization algorithm terminates in at most L steps. Note that, if the n ⇥ n
matrix A has positive rational coordinates, then the matrix A(`) has positive ratio-
nal coordinates for all ` � 1. It follows that, if the Sinkhorn limit has irrational
coordinates, then the alternate minimization algorithm cannot terminate in a finite
number of steps. In Section 3, we prove that, for 2 ⇥ 2 matrices, if the algorithm
terminates in a finite number of steps, then the algorithm terminates in at most
two steps.

There is a vast literature on alternate minimization algorithms and Sinkhorn
limits. For a recent survey, see Idel [2]. In complexity theory, it is the asymptotics
of the approximating sequence

�
A(`)

�1
`=0

that is important (for example, Allen-Zhu,
Li, Oliveira, and Wigderson [1]). This paper is concerned with number theoretic
aspects of the algorithm, and with the classification of matrices for which the al-
ternate minimization algorithm terminates in a finite number of steps. It is also of
interest to consider the application of the algorithm to simultaneous approximation
of irrational numbers by rational numbers.

2. Alternate Minimization Limits for 2 ⇥ 2 matrices

Theorem 3. Let
A =

✓
a b
c d

◆
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be a positive 2⇥ 2 matrix. Define the positive diagonal matrices

X =
✓p

cd 0
0

p
ab

◆

and

Y =

0

B@

⇣
a
p

cd + c
p

ab
⌘�1

0

0
⇣
b
p

cd + d
p

ab
⌘�1

1

CA

The limit of the alternate minimization sequence
�
A(`)

�1
`=0

is the doubly stochastic
matrix

S(A) = XAY =
✓

↵ �
� ↵

◆
(1)

with

↵ =
p

adp
ad +

p
bc

and � =
p

bcp
ad +

p
bc

. (2)

Proof. Simply compute the product XAY . That the matrix XAY is the alternate
minimization limit follows from uniqueness (Theorem 1).

Corollary 1. Let A =
✓

a b
c d

◆
2M+

2 (Q). The alternate minimization limit of the

matrix A has rational coordinates if and only if ad/bc is the square of a rational
number.

For example, if A1 =
✓

1 3
3 4

◆
, then

S(A1) =
✓

2
p

3 0
0

p
3

◆✓
1 3
3 4

◆ �
5
p

3
��1

0
0

�
10
p

3
��1

!

=
✓

2 0
0 1

◆✓
1 3
3 4

◆✓
1/5 0
0 1/10

◆

=
✓

2/5 3/5
3/5 2/5

◆
.

If A2 =
✓

1 2
3 4

◆
, then

S(A2) =
✓

2
p

3 0
0

p
2

◆✓
1 2
3 4

◆ �
2
p

3 + 3
p

2
��1

0
0

�
4
p

3 + 4
p

2
��1

!

=
✓p

6� 2 3�
p

6
3�

p
6
p

6� 2

◆
.
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Because A2 has rational coe�cients and S(A2) has irrational coe�cients, the al-
ternate minimization algorithm for A2 must have infinite length, that is, does not
terminate in a finite number of steps.

Theorem 4. Consider the positive symmetric matrix

A =
✓

a b
b d

◆
.

Let
� =

⇣
abd + b2

p
ad
⌘�1/2

and

D =
✓

�
p

bd 0
0 �

p
ab

◆
.

The Sinkhorn limit of A is the doubly stochastic matrix

S(A) = DAD =
✓

↵ �
� ↵

◆

with

↵ =
p

adp
ad + b

and � =
bp

ad + b
.

Proof. The row scaling matrix

X(A) =
✓p

bd 0
0

p
ab

◆

and the column scaling

Y (A) =

0

B@

⇣
a
p

bd + b
p

ab
⌘�1

0

0
⇣
b
p

bd + d
p

ab
⌘�1

1

CA

satisfy
D = �X(A) = ��1Y (A).

By Theorem 3, the matrix

XAY = (�X)A
�
��1Y

�
= DAD =

✓
↵ �
� ↵

◆

is doubly stochastic with ↵ =
p

ad/(
p

ad + b). This completes the proof.
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For example, if A3 =
✓

1 2
2 4

◆
, then

D =
✓p

2/2 0
0

p
2/4

◆

and

DA3D =
✓p

2/2 0
0

p
2/4

◆✓
1 2
2 4

◆✓p
2/2 0
0

p
2/4

◆

=
✓

1/2 1/2
1/2 1/2

◆
.

If A4 =
✓

1 1
1 1

◆
, then

D =
✓

1/
p

2 0
0 1/

p
2

◆

and

DA4D =
✓

1/
p

2 0
0 1/

p
2

◆✓
1 1
1 1

◆✓
1/
p

2 0
0 1/

p
2

◆

=
✓

1/2 1/2
1/2 1/2

◆
.

Note that the matrices
✓

1 2
2 4

◆
and

✓
1 1
1 1

◆
have the same Sinkhorn limits.

3. Limits for 2 ⇥ 2 Matrices in Finitely Many Steps

Theorem 5. Let A be a positive 2⇥ 2 matrix that is not doubly stochastic. If the
column scaled matrix AY (A) is doubly stochastic, then A is a matrix of the form

A =
✓

a ct
c at

◆
(3)

and
S(A) = AY (A) =

✓
a/(a + c) c/(a + c)
c/(a + c) a/(a + c)

◆
.

If the row scaled matrix X(A)A is doubly stochastic, then A is a matrix of the form

A =
✓

a b
bt at

◆
(4)

and
S(A) = X(A)A =

✓
a/(a + b) b/(a + b)
b/(a + b) a/(a + b)

◆
.
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For example, column scaling the matrix
✓

1 12
3 4

◆
and row scaling the matrix

✓
1 3
12 4

◆
both produce the doubly stochastic matrix

✓
1/4 3/4
3/4 1/4

◆
.

Proof. Column scaling a matrix of the form (3) and row scaling a matrix of the
form (4) both produce doubly stochastic matrices.

Conversely, let A =
✓

a b
c d

◆
. The column scaled matrix

AY (A) =
✓

a/(a + c) b/(b + d)
c/(a + c) d/(b + d)

◆

is doubly stochastic if and only if

a

a + c
+

b

b + d
=

c

a + c
+

d

b + d
= 1

if and only if
ab = cd.

Defining t = b/c = d/a, we obtain

A =
✓

a ct
c at

◆
and S(A) = AY (A) =

✓
a/(a + c) c/(a + c)
c/(a + c) a/(a + c)

◆
.

Similarly, the row scaled matrix

X(A)A =
✓

a/(a + b) b/(a + b)
c/(c + d) d/(c + d)

◆

is doubly stochastic if and only if

a

a + b
+

c

c + d
=

b

a + b
+

d

c + d
= 1

if and only if
ac = bd.

Defining t = c/b = d/a, we obtain

A =
✓

a b
bt at

◆
and S(A) = X(A)A =

✓
a/(a + b) b/(a + b)
b/(a + b) a/(a + b)

◆
.

This completes the proof.

Theorem 6. Let A be a positive 2 ⇥ 2 row stochastic matrix that is not column
stochastic. If column scaling A produces a doubly stochastic matrix S(A) = AY (A),

then A =
✓

a 1� a
a 1� a

◆
with a 6= 1/2, and S(A) =

✓
1/2 1/2
1/2 1/2

◆
.
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Let A be a positive 2 ⇥ 2 column stochastic matrix that is not row stochastic.
If row scaling A produces a doubly stochastic matrix S(A) = X(A)A, then A =✓

a a
1� a 1� a

◆
with a 6= 1/2, and S(A) =

✓
1/2 1/2
1/2 1/2

◆
.

Proof. Let A be a positive 2⇥2 matrix that is not doubly stochastic. By Theorem 5,

if column scaling A produces a doubly stochastic matrix, then A =
✓

a ct
c at

◆
for

some t > 0. If A is also row stochastic, then

a + ct = c + at = 1

and so
(a� c)(1� t) = 0.

If t = 1, then a + c = 1 and A is doubly stochastic, which is absurd. Therefore,

t 6= 1 and a = c. It follows that A =
✓

a at
a at

◆
=
✓

a 1� a
a 1� a

◆
with a 6= 1/2 and

AY (A) =
✓

1/2 1/2
1/2 1/2

◆
.

Similarly, if row scaling A produces a doubly stochastic matrix, then Theorem 5

implies that A =
✓

a b
bt at

◆
for some t > 0. If A is also column stochastic, then

a + bt = b + at = 1

and so
(a� b)(1� t) = 0.

If t = 1, then a + b = 1 and A is doubly stochastic, which is absurd. Therefore,

t 6= 1 and a = b. It follows that A =
✓

a a
at at

◆
=
✓

a a
1� a 1� a

◆
with a 6= 1/2

and X(A)A =
✓

1/2 1/2
1/2 1/2

◆
. This completes the proof.

Theorem 7. Let A be a positive 2 ⇥ 2 matrix that is not doubly stochastic. If
the alternate minimization algorithm produces a doubly stochastic matrix S(A) in
a finite number of steps, then the algorithm terminates in at most two steps.

Suppose that the algorithm terminates in exactly two steps. The matrix S(A) =
A(2) is obtained from A(1) by column scaling if and only if there exist positive real
numbers p, r, and t with t 6= 1 such that

A =
✓

p pt
r rt

◆
.
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The matrix S(A) = A(2) is obtained from A(1) by row scaling if and only if there
exist positive real numbers p, q, and t with t 6= 1 such that

A =
✓

p q
pt qt

◆
.

In both cases, the alternate minimization limit is S(A) =
✓

1/2 1/2
1/2 1/2

◆
.

Note that we obtain the limit matrix S(A) either by first column scaling and
then row scaling, or by first row scaling and then column scaling.

Proof. Let L be a positive integer such that the alternate minimization algorithm
for A terminates in exactly L steps. There is a sequence of matrices

�
A(`)

�L
`=0

with
A(0) = A and A(L) = S(A) such that, for ` = 1, . . . , L, the matrix A(`) is obtained
from A(`�1) by alternate column and row scalings.

Suppose that L � 3. There are two cases. Either A(L) is obtained from A(L�1)

by column scaling, or A(L) is obtained from A(L�1) by row scaling,
If A(L) is obtained from A(L�1) by column scaling, then A(L�1) is obtained from

A(L�2) by row scaling, and A(L�2) is obtained from A(L�3) by column scaling. We
have the diagram

Similarly, if row scaling A produces a doubly stochastic matrix, then Theorem 5

implies that A =

✓
a b
bt at

◆
for some t > 0. If A is also column stochastic, then

a+ bt = b+ at = 1

and so
(a� b)(1� t) = 0.

If t = 1, then a + b = 1 and A is doubly stochastic, which is absurd. Therefore,

t 6= 1 and a = b. It follows that A =

✓
a a
at at

◆
=

✓
a a

1� a 1� a

◆
with a 6= 1/2

and X(A)A =

✓
1/2 1/2
1/2 1/2

◆
. This completes the proof.

Theorem 7. Let A be a positive 2 ⇥ 2 matrix that is not doubly stochastic. If
the alternate minimization algorithm produces a doubly stochastic matrix S(A) in
a finite number of steps, then the algorithm terminates in at most two steps.

Suppose that the algorithm terminates in exactly two steps. The matrix S(A) =
A(2) is obtained from A(1) by column scaling if and only if there exist positive real
numbers p, r, and t with t 6= 1 such that

A =

✓
p pt
r rt

◆
.

The matrix S(A) = A(2) is obtained from A(1) by row scaling if and only if there
exist positive real numbers p, q, and t with t 6= 1 such that

A =

✓
p q
pt qt

◆
.

In both cases, the alternate minimization limit is S(A) =

✓
1/2 1/2
1/2 1/2

◆
.

Note that we obtain the limit matrix S(A) either by first column scaling and
then row scaling, or by first row scaling and then column scaling.

Proof. Let L be a positive integer such that the alternate minimization algorithm

for A terminates in exactly L steps. There is a sequence of matrices
�
A(`)

�L
`=0

with

A(0) = A and A(L) = S(A) such that, for ` = 1, . . . , L, the matrix A(` is obtained
from A(`�1 by alternate column and row scalings.

Suppose that L � 3. There are two cases. Either A(L) is obtained from A(L�1)

by column scaling, or A(L) is obtained from A(L�1) by row scaling,
If A(L) is obtained from A(L�1) by column scaling, then A(L�1) is obtained from

A(L�2) by row scaling, and A(L�2) is obtained from A(L�3) by column scaling. We
have the diagram

A = A(0) // ... // A(L�3) col // A(L�2) row // A(L�1) col // A(L) = S(A).

10
The matrix A(L�1) = X(A(L�2))A(L�2) is row stochastic but not column stochas-

tic. By Theorem 6, A(L�1) =
✓

a 1� a
a 1� a

◆
with a 6= 1/2. If L � 3, then the matrix

A(L�2) is column stochastic, and A(L�1) = X(A(L�2))A(L�2). We have

A(L�2) =
✓

u v
1� u 1� v

◆

for some u, v 2 (0, 1), and
✓

a 1� a
a 1� a

◆
= A(L�1) = X(A(L�2))A(L�2)

=
✓

u/(u + v) v/(u + v)
(1� u)/(2� u� v) (1� v)/(2� u� v)

◆
.

Therefore,
u

u + v
= a =

1� u

2� u� v
.

Equivalently,

2u� u2 � uv = u(2� u� v) = (1� u)(u + v) = u + v � u2 � uv
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and so u = v and
A(L�2) =

✓
u u

1� u 1� u

◆
.

Thus, the matrix

A(L�1) = X(A(L�2))A(L�2) =
✓

1/(2u) 0
0 1/(2� 2u)

◆✓
u u

1� u 1� u

◆

=
✓

1/2 1/2
1/2 1/2

◆

is doubly stochastic, which is absurd. Therefore, A(L�2) is not column stochastic,
and so L  2.

Suppose that L = 2. Let A = A(0) =
✓

p q
r s

◆
. Because A(1) is row stochastic

but not column stochastic and A(2) is doubly stochastic, there exists a 2 (0, 1),
a 6= 1/2, such that

✓
a 1� a
a 1� a

◆
= A(1) = X

⇣
A(0)

⌘
A(0)

=
✓

p/(p + q) q/(p + q)
r/(r + s) s/(r + s)

◆

and so
p

p + q
=

r

r + s
.

Equivalently, ps = qr and s = qr/p. Thus, with t = q/p, we obtain

A = A(0) =
✓

p q
r qr/p

◆
=
✓

p pt
r rt

◆
.

If t = 1, then A(1) is doubly stochastic, which is absurd. Therefore, t 6= 1. Thus, if
L = 2, then the alternate minimization sequence is

A =
✓

p pt
r rt

◆
!
✓

1/(1 + t) t/(1 + t)
1/(1 + t) t/(1 + t)

◆
!
✓

1/2 1/2
1/2 1/2

◆
.

A similar argument works in the second case, where the matrix A(L) is obtained
from A(L�1) by row scaling. This completes the proof.

4. An Alternate Minimization Limit for an n ⇥ n Matrix

There are no formulae analogous to (1) and (2) for the alternate minimization limit
of a positive 3 ⇥ 3 matrix. Nathanson [3] has explicitly computed the alternate
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minimization limits of some classes of symmetric positive 3⇥ 3 matrices. Here is a
simple example of an explicit calculation.

Let n � 3 and K > 0. We consider the positive symmetric n⇥ n matrix

A =

0

BBBBB@

K 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
1 1 1 · · · 1

1

CCCCCA
.

By Theorems 1 and 2, there exists a unique positive diagonal matrix

D = diag(x1, x2, . . . , xn) =

0

BBBBB@

x1 0 0 0 0
0 x2 0 0 0
0 0 x3 0 0
...

...
0 0 0 0 xn

1

CCCCCA

such that the matrix

S(A) = DAD =

0

BBBBB@

Kx2
1 x1x2 x1x3 · · · x1xn

x2x1 x2
2 x2x3 · · · x2xn

x3x1 x3x2 x2
3 · · · x3xn

...
...

xnx1 xnx2 xnx3 · · · x2
n

1

CCCCCA

is doubly stochastic. Equivalently,

Kx2
1 + x1

nX

j=2

xj = 1

and

xi

nX

j=1

xj = 1

for i = 2, 3, . . . , n. It follows that

xi =
1Pn

j=1 xj

for i = 2, 3, . . . , n, and

S(A) =

0

BBBBB@

↵ � � · · · �
� � � · · · �
� � � · · · �
...

...
� � � · · · �

1

CCCCCA
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where

↵ = Kx2
1

� = x1x2 =
1� ↵

n� 1

� = x2
2 =

1� �

n� 1
=

n� 2 + ↵

(n� 1)2
.

We obtain ✓
1� ↵

n� 1

◆2

= �2 = x2
1x

2
2 =

↵

K

✓
n� 2 + ↵

(n� 1)2

◆

and so
(K � 1)↵2 � (2K + n� 2)↵ + K = 0.

If K = 1, then ↵ = � = � = 1/n.
If K 6= 1, then

↵ =
2(K � 1) + n ±

p
4(n� 1)K + (n� 2)2

2(K � 1)
.

The inequality 0 < ↵ < 1 implies that

↵ =
2(K � 1) + n�

p
4(n� 1)K + (n� 2)2

2(K � 1)

if K > 1 and if 0 < K < 1.
For example, if n = 3, then

↵ =
2K + 1�

p
8K + 1

2(K � 1)
.

If n = 3 and K = 2, then

↵ =
5�

p
17

2
, � =

�3 +
p

17
4

, � =
7�

p
17

8
,

x1 =

s
5�

p
17

4
and x2 =

�3 +
p

17p
5�

p
17

,

and

S(A) = DAD =

0

B@

5�
p

17
2

�3+
p

17
4

�3+
p

17
4

�3+
p

17
4

7�
p

17
8

7�
p

17
8

�3+
p

17
4

7�
p

17
8

7�
p

17
8

1

CA .

If n = 3 and K = 3, then

↵ =
1
2
, � =

1
4
, � =

3
8
.
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For n = 3 and integers K � 2, the doubly stochastic matrix S(A) is rational if and
only if K is a triangular number, that is, a number of the form K = (k2 + k)/2 for
some positive integer k. In this case, we have

↵ =
k2 � k

k2 + k � 2

� =
k � 1

k2 + k � 2

� =
k2 � 1

2(k2 + k � 2)
.

If n = 4, then

↵ =
K + 1�

p
3K + 1

K � 1
.

If n = 4 and K = 2, then

↵ = 3�
p

7, � =
�2 +

p
7

3
, � =

5�
p

7
9

,

If n = 4 and K = 5, then

↵ = 1/2, � = 1/6, � = 5/18.

5. Open Problems

Problem 1. Does there exist a positive 3⇥3 matrix that is row stochastic but not
column stochastic, and becomes doubly stochastic after one column scaling? This
is equivalent to asking if there is a positive 3 ⇥ 3 matrix that, with respect to the
alternate minimization algorithm, has finite length L � 2.

Problem 2. Let n � 3. Does there exist an integer L⇤(n) such that, if A is a
positive n⇥n matrix for which the alternate minimization algorithm terminates in
a finite number of steps, then the alternate minimization algorithm terminates in
at most L⇤(n) steps?

Problem 3. Let K be a subfield of R, and let M+
n (K) be the set of positive

n ⇥ n matrices with coordinates in K. If A 2 M+
n (K), then A(`) 2 M+

n (K) for
all matrices in the alternate minimization sequence

�
A(`)

�1
`=0

. It follows that if
S(A) /2 M+

n (K), then the alternate minimization algorithm for the matrix A has
infinite length. Thus, if A 2M+

n (Q) and if the doubly stochastic limit S(A) contains
an irrational coordinate, then the alternate minimization algorithm has infinite
length. In this case, the coordinates in the matrices

�
A(`)

�1
`=0

are sequences of
rational numbers that simultaneously converge to the coordinates of S(A). It is of
interest to understand the rate of convergence.
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Problem 4. Let r =

0

B@
r1
...

rm

1

CA 2 Rm and c =

0

B@
c1
...

cn

1

CA 2 Rn be vectors with positive

coordinates such that
mX

i=1

ri =
nX

j=1

cj .

Let A = (ai,j) be an m⇥ n matrix. The matrix is A is r-row stochastic if

rowi(A) =
nX

j=1

ai,j = ri

for all i 2 {1, . . . ,m}. The matrix is A is c-column stochastic if

colj(A) =
mX

i=1

ai,j

for all j 2 {1, . . . , n}. The matrix is A is (r, c) stochastic if it is both r-row stochastic
and c-column stochastic.

Let A be a positive m⇥ n matrix, and let

Xr(A) = diag
✓

r1

row1(A)
,

r2

row2(A)
, . . . ,

rm

rowm(A)

◆

and
Yc(A) = diag

✓
c1

col1(A)
,

c2

col2(A)
, . . . ,

cn

coln(A)

◆
.

The matrix Xr(A) A is r-row stochastic, and the matrix A Yc(A) is r-column
stochastic. The analogous (r, c)-alternate minimization algorithm applied to a pos-
itive m⇥ n matrix always converges to an (r, c)-stochastic matrix.

Let m,n � 2. Does there exist an integer L⇤(m,n) such that, if A is a positive
m⇥ n matrix for which the (r, c)-alternate minimization algorithm terminates in a
finite number of steps, then the (r, c)-alternate minimization algorithm terminates
in at most L⇤(m,n) steps?

Problem 5. Does there exist a constant Cn with the following property: If A is
an positive n ⇥ n matrix such that the alternate minimization algorithm, starting
with row scaling, terminates in N1 steps, and the alternate minimization algorithm,
starting with column scaling, terminates in N2 steps, then |N1 �N2| < Cn?

Note added in proof. S. B. Ekhad and D. Zeilberger (Answers to some questions
about explicit Sinkhorn limits posed by Mel Nathanson, arXiv:1902.10783) solved
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Problem 1 by constructing a positive 3 ⇥ 3 matrix that is row stochastic but not
column stochastic, and becomes doubly stochastic after one column scaling. M.
B. Nathanson (Matrix scaling limits in finitely many iterations, arXiv:1903.06778)
generalized this construction to n⇥ n matrices.

Alex Cohen (unpublished) solved Problem 2 by proving that L⇤(n) = 2 for all n �
3. This also solves Problem 5. Extending Cohen’s proof, Nathanson (unpublished)
solved Problem 4 by showing that L⇤(m,n) = 2 for all m,n � 2.
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