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Abstract

We examine short combinatorial games for three or more players under a new play
convention in which a player who cannot move on their turn is the unique loser.
We show that many theorems of impartial and partizan two-player games under
normal play have natural analogues in this setting. For impartial games with three
players, we investigate the possible outcomes of a sum in detail, and determine the
outcomes and structure of three-player Nim.

1. Introduction

The vast majority of prior work in combinatorial game theory has focused on two-

player games. In this paper, we investigate a novel play convention for N -player

games. When no move is available, the next player is declared the unique loser of

the game, and the other players all win equally. This convention was independently

conceived by Salt in [7]. In one sense, this complicates matters, since more than

one player may have a winning strategy. However, as compared to previous work

on multiplayer games, this convention leads to results that better parallel those for

two-player games under the normal play convention. Our work and objects of study

fit into the general framework for combinatorial game theory laid out in [9].

A summary of much of the prior work done on combinatorial games with three

or more players can be found in I.4 of [8]. This paper is closely connected with the

related work of Propp, Cincotti, and Doles.

In [6], Propp considers three-player impartial games with a certain play con-

vention: in analogy with two-player normal play, when no move is available, the

previous player is declared the unique winner of the game. This yields a recursive

characterization of outcome classes N , O, and P in which the test for O contains a

proviso reminiscent of the misère play convention for two-player games.

In [1], Cincotti considers three-player partizan games under a convention which

reduces to Propp’s in the impartial case. When a player cannot move on their turn,
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they are eliminated. The other players continue to play from that position. The

last player remaining is the unique winner. Cincotti extends this convention to

N -player games in [2].

In [3], Doles considers three-player partizan games with a convention similar to

Propp’s. The last player to move wins first place. The player before that wins

second place. And the player who cannot move on their turn loses and is ranked

in third place. Under this convention, an assumption that players always play

rationally leads to some player having a winning strategy.

In this paper, we consider the play convention in which the first player with-

out an available move is the unique loser of the game. In Section 2, we examine

three-player impartial games and give special attention to three-player Nim, closely

paralleling the work in [6]. We examine how the outcome of a disjunctive sum can

vary depending on the outcomes of the summands, discuss reverting games, con-

struct some undetermined games which make all sums undetermined, and derive

the finite quotient describing play in three-player Nim. In Section 3, we generalize

much of the content of the previous section to N players. We do not completely

characterize the outcomes of a sum or of Nim, but some partial results are obtained,

including the outcomes of all Nim positions with two heaps. In Section 4, we con-

sider partizan games with N players. We define a preorder based on favorability

to a particular player in disjunctive sums, characterize all comparisons with the

empty game 0 (and show that 0 is not equal to any other partizan game), show

that the simplification theorems regarding dominated and reversible options have

natural analogues for N players, and examine some particular games related to

the two-player integer games. We conclude in Section 5 with a collection of open

questions.

2. Three-Player Impartial Games

2.1. Preliminaries

In this subsection, we introduce the games under discussion, the notation and ter-

minology we use for three-player impartial games, and some initial observations.

2.1.1. Notation

Unless otherwise specified, all games in this paper are assumed to be short games;

they have finitely many distinct subpositions, and admit no infinite runs.

As is common, an impartial game is usually considered to be the set of its options,

+ denotes the disjunctive sum of games, n ·G denotes the sum of n copies of G, G′

and G∗ typically denote an option of a game G, etc. We use ∼= to indicate that two

games are isomorphic (i.e. the game trees are isomorphic). Additionally, we also
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make use of structural induction in proofs throughout, often without comment.

Many impartial games in this paper are built out of nim-heaps. A nim-heap of

size n is denoted by ∗n. Equivalently, ∗n ∼= {∗0, ∗1, . . . , ∗(n− 1)}. As special cases,

0 denotes the game with no options {}, and ∗ denotes ∗1 (so that ∗ ∼= {0}).
We define the normal play convention for three-player games to be the one in

which the next player to move is the unique loser of the empty game 0. The other

two players both win equally.

Definition 2.1. The (normal-play) outcome o(G) of a game G is a subset of

{N,O,P} whose members are determined recursively as follows.

• N ∈ o(G) exactly when there exists an option G∗ with P ∈ o (G∗).

• O ∈ o(G) exactly when every option G′ satisfies N ∈ o(G′).

• P ∈ o(G) exactly when every option G′ satisfies O ∈ o(G′).

By an induction argument, the elements of o(G) tell us who has a winning strat-

egy in G. N represents the next player to move, P, the previous player, and O, the

other player. When discussing a single position, we often use “Next”, “Other”, and

“Previous” to refer to the players.

For brevity, we use ∅, N , O, P, PN , NO, OP, and NOP to denote the corre-

sponding subsets of {N,O,P}. For example, NO = {N,O}.
Unlike in the two-player case, the outcome of a game need not correspond to the

set of winners when all players play perfectly. (This is also noted in [3] and [6].)

Proposition 2.2. In G ∼= {0, ∗2}, Next can only guarantee that they win by winning

with Previous. However, Next and Other can collude to ensure that Previous loses.

Proof. If Next plays perfectly, then they must move to 0. Otherwise, Other could

choose to move to ∗ on their turn. However, if Next moves to ∗2, then Other can

choose to move to 0 to force (the original) Previous to lose. Thus, o(G) = N despite

the fact that both Next and Previous would win if Next were to play perfectly.

2.1.2. Observations

Proposition 2.3. o(G) is always a proper subset of NOP.

Proof. Let G be a game with o(G) = NOP. Then, by the recursive Definition 2.1,

we can choose G∗ with o(G∗) = NOP. Since games do not admit any infinite runs,

no such G can exist.

Proposition 2.4. N ∈ o(G) exactly when O ∈ o ({G}), O ∈ o(G) exactly when

P ∈ o ({G}), and P ∈ o(G) exactly when N ∈ o ({G}).

Proof. Immediate from the recursive definitions of Definition 2.1.
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Proposition 2.5. All seven proper subsets of NOP are possible outcomes.

Proof. These examples are readily verified: o(0) = OP, o(∗) = PN , o ({∗}) = NO,

o(∗2) = N , o ({∗2}) = O, o ({{∗2}}) = P, and o ({∗2, {∗2}}) = ∅.

Definition 2.6. A game G is said to be undetermined if o(G) = ∅.

Proposition 2.7. If G has an undetermined option G∗ and has no option G′ with

P ∈ o(G′), then G is undetermined.

Proof. The existence of G∗ means that O,P /∈ o(G), and the other condition forces

N /∈ o(G).

2.2. General Results

In this subsection, we investigate the outcomes of sums of games, and derive an

inequation and some equations for games.

2.2.1. Outcomes of Sums

In the two-player theory of impartial games under normal play, if we put aside

the more-precise Sprague–Grundy Theory, there are two main facts worth noting

about the outcomes of sums as compared to the outcomes of the summands: (1)

the outcome of G + G, and (2) the possible outcomes of G + H—if o(H) = P then

o(G + H) = o(G), but if o(G) = o(H) = N then o(G + H) can be either P or N .

We examine three-player analogues of these results.

Theorem 2.8 (Next Generation). If N /∈ o(H), then o(G + H) ⊆ o(G).

In other words, adding on a component to a game cannot introduce a winning

strategy for a new player unless Next has a winning strategy in the new component.

Since o(0) = OP, this is similar to the two-player result that adding a P-position

to a game does not change its outcome.

Proof. Let G,H be games, and suppose N /∈ o(H).

If P /∈ o(G), then we can choose an option G∗ with O /∈ o (G∗). But then

O /∈ o (G∗ + H) by inductive hypothesis, so that P /∈ o(G + H).

If O /∈ o(G), then we can choose an option G∗ with N /∈ o (G∗). But then

N /∈ o (G∗ + H) by induction, so that O /∈ o(G + H).

If N /∈ o(G), then P /∈ o (G′) for all options G′. Similarly, P /∈ o (H ′) for

all options H ′. Therefore, by induction, we have both P /∈ o (G′ + H) and P /∈
o (G + H ′) for arbitrary options. As such, N /∈ o(G + H) by definition.

Corollary 2.9. If G and H are undetermined, then G + H is undetermined.
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Proof. By Theorem 2.8 (Next Generation), N /∈ o(H) yields o(G + H) ⊆ o(G) =

∅.

Theorem 2.8 (Next Generation) has an important consequence for sums of two

games.

Theorem 2.10 (Other Procreation). If O /∈ o(G), o(H), then P /∈ o(G + H).

In other words, a sum of two games cannot produce a winning strategy for

Previous unless Other has a winning strategy in one of the summands.

Proof. Since O /∈ o(G), o(H), we can choose options G∗ and H∗ such that N /∈
o (G∗) , o (H∗). By Theorem 2.8 (Next Generation), N /∈ o (G∗ + H∗), so that

O /∈ o (G + H∗) and P /∈ o(G + H).

With Theorem 2.10 (Other Procreation) in hand, we can strengthen Corol-

lary 2.9.

Corollary 2.11. If o(G), o(H) ⊆ P, then G + H is undetermined.

Proof. By Theorem 2.8 (Next Generation), o(G+H) ⊆ o(G) ⊆ P. But by Theorem

2.10 (Other Procreation), P /∈ o(G + H). Therefore, o(G + H) = ∅.

Corollary 2.12. If G is undetermined, then P /∈ o(G + H) for any H.

Proof. Suppose (G,H) is a counterexample. By Theorem 2.8 (Next Generation),

N ∈ o(H) as otherwise o(G+H) ⊆ o(G) = ∅. Also, since N /∈ o(G), we have o(G+

H) ⊆ o(H) so that P ∈ o(H) as well. Since o(H) 6= NOP, we have O /∈ o(H), and

the contradiction follows immediately from Theorem 2.10 (Other Procreation).

With two players, G + H can have any normal-play outcome not disallowed by

the two-player version of Theorem 2.8 (Next Generation) (e.g. if o(G) = o(H) = N
then o(G + H) can be either P or N ). This result has a three-player analogue.

Theorem 2.13. All outcomes of a sum of two games not immediately disallowed by

Theorem 2.8 (Next Generation) or Theorem 2.10 (Other Procreation) are possible.

Proof. For a list of representative examples, see Table 9 in the Appendix. For

instance, o(∗2) = N , o(∗) = PN , and o(∗2 + ∗) = NO.

The possible outcomes of sums are summarized in Table 1, where entries indicate

that any subset (other than NOP) is possible. For example, if o(G) = O and

o(H) = PN , then o(G + H) may be any of ∅,N ,P,PN .

As in [6], we also examine sums of a game with itself. For example, if o(G) = ∅
or o(G) = P, then o(G + G) = ∅ by Corollary 2.11. And if o(G) = O, then

o(G + G) = O or o(G + G) = ∅, by Theorem 2.8 (Next Generation). In fact, there

are no new obstructions for o(G + G).
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+ ∅ N O P NO OP PN
∅ ∅ N ∅ ∅ NO ∅ N
N N NO N N NOP N NO
O ∅ N O ∅ NO O PN
P ∅ N ∅ ∅ NO P N
NO NO NOP NO NO NOP NO NOP
OP ∅ N O P NO OP PN
PN N NO PN N NOP PN NO

Table 1: The three-player pairwise addition table

Theorem 2.14. G+G can have any outcome not disallowed by Theorem 2.8 (Next

Generation) and Theorem 2.10 (Other Procreation).

Proof. For examples of all 23 cases, see Table 7 in the Appendix. For instance,

o(∗2) = N and o(∗2 + ∗2) = O.

The possible outcomes of the sum of a game with itself are summarized in Table 2.

o(G) o(G + G)
∅ = ∅
N ⊆ NO
O ⊆ O
P = ∅
NO ⊆ NOP
OP ⊆ OP
PN ⊆ NO

Table 2: The three-player doubling table

In the impartial two-player setting, the Tweedledum–Tweedledee strategy yields

o(G + G) = P. A similar result holds for three players.

Proposition 2.15. For all games G, N /∈ o(G + G + G).

Proof. The other two players can guarantee Next’s loss by mirroring their moves in

the other two components.

Combined with Theorem 2.8 (Next Generation) and Theorem 2.10 (Other Pro-

creation), this theorem reduces the possibilities for o(G + G + G) to those listed in

Table 3.
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o(G) o(G + G + G)
∅ = ∅
N ⊆ OP
O ⊆ O
P = ∅
NO ⊆ OP
OP ⊆ OP
PN ⊆ OP

Table 3: The three-player trebling table

Proposition 2.16. All cases in Table 3 are possible, except perhaps for o(G) = N ,

where it is not known whether P ∈ o(G + G + G) occurs.

Proof. See Table 8 in the Appendix for example games covering the known cases.

For instance, o(∗) = PN , but o(∗+ ∗+ ∗) = OP.

2.2.2. Equality of Impartial Games

As in the two-player case, we are interested in when games are similar enough to

be replaced in disjunctive sums without affecting the outcome. As is standard, we

define = by the fundamental equivalence (see [8]).

Definition 2.17. (Impartial Equality) We say G equals H and write G = H if

o(G + X) = o(H + X) for all impartial games X.

We first examine reversible moves, as they are key to understanding equality

classes of two-player games, both in normal and misère play. Our presentation is

based on the similar Definition V.1.3 in [8].

Definition 2.18. Let G,H be games. We say that H is revertible to G if both of

the following hold.

• For every option G′ of G, H has a corresponding option Ĝ′ equal to G′.

• For every option H ′ of H not equal to some G′, H ′ has a second option H ′
∗∗

equal to G.

In two-player settings, if H is revertible to G (with a slight modification in misère

play), then H = G. With three players under normal play, only one inclusion holds

in general (see Proposition 2.21).

Theorem 2.19. If H is revertible to G, then o(H + X) ⊆ o(G + X) for all X.

Proof. Suppose N ∈ o(H + X). If the winning move has the form H + X∗, then

P ∈ o(H + X∗) so that P ∈ o(G + X∗) by induction. Hence, the same move would



INTEGERS: 20A (2020) 8

win in G + X, and N ∈ o(G + X). Now suppose the winning move in H + X

is to something of the form Ĝ∗ + X with Ĝ∗ equal to an option G∗ of G. Then

P ∈ o(Ĝ∗+X) = o(G∗+X), so that N ∈ o(G+X). Finally, if the winning move is

to an option H∗ not equal to an option of G, then the other two players can move

to yield some H∗∗∗+X where H∗∗∗ = G. Note that N ∈ o(H∗∗∗+X) as we started

with a winning move in H + X. From H∗∗∗ = G it follows that N ∈ o(G + X), as

desired.

Suppose O ∈ o(H + X). Then N ∈ o(H + X ′) for all options X ′. By induction,

N ∈ o(G + X ′) for all X ′, as well. Since O ∈ o(H + X), we also have N ∈
o(Ĝ′+X) = o(G′+X) for all options G′, as well. We have shown N ∈ o ((G + X)′)

for all options, so O ∈ o(G + X).

The argument for P ∈ o(H + X) is exactly analogous to that for O.

The phrasing of Corollary 2.20 is from the Replacement Lemma V.1.2 in [8].

Corollary 2.20. Suppose that G ∼= {G′i : i ∈ I}, H ∼= {H ′i : i ∈ I}, and G′i = H ′i
for all i. Then G = H.

Proof. By symmetry, it suffices to show that o(H + X) ⊆ o(G + X) for all X. But

that follows immediately from Theorem 2.19 since H is revertible to G.

Unfortunately, the reverse inclusion for Theorem 2.19 does not always hold in

this three-player setting. For instance, it is not true that 3 · ∗ = 0, even though

in the two-player setting, 2 · ∗ = 0 holds in the both the partizan normal-play and

impartial misère-play contexts.

Proposition 2.21. 3 · ∗ 6= 0.

Proof. It is useful to give the players consistent names throughout, even though

which one is next to play varies; for this purpose, we call the first three players to

move “Nicky”, “Olly”, and “Pat”.

Define X ∼= {{0, ∗+∗}}. In 0+X, Olly can win by making the move to 0. But in

the sum 3 · ∗+X, Nicky and Pat can stop Olly from winning. First, Nicky moves in

the 3 · ∗ component to ∗+ ∗. Then, no matter which move Olly makes, it’s possible

for Pat to move to a position isomorphic to {3 · ∗, ∗, {0, ∗+ ∗}}, from which Nicky

can move to 3 · ∗. The lines of play are illustrated in the game graph below.
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OP

PN

PN

NO

OP

N
PN

o(X) = NO

NO
NO O

PN

o(3 · ∗+ X) = N

P

Definition 2.22. A game G is said to be absorbing if G + H is undetermined for

any game H.

Proposition 2.23. If G and H are absorbing games, then G = H.

Proof. Note that o(G + X) = ∅ = o(H + X) for all X.

Therefore, there is at most one equality class of absorbing games.

Proposition 2.24. If G is an absorbing game, then G + H = G for any H.

Proof. Note that o ((G + H) + X) = o (G + (H + X)) = ∅ = o(G + X).

Proposition 2.24 justifies the name “absorbing”.

Theorem 2.25 (Absorbing Game Construction). Suppose that G has at least one

option, and all options G′ are undetermined (o(G′) = ∅). Then G is an absorbing

game.

Proof. Let G be as in the statement. Since o(G′) = ∅ for all options G′, P /∈
o(G′+X) by Corollary 2.12. By induction, o(G+X ′) = ∅ for all X ′. If X � 0, then

o(G+X) = ∅ by Proposition 2.7 since o (G + X∗) = ∅ for some option X∗. If X ∼= 0,

then since G has at least one option G∗ with o (G∗) = ∅, o(G + X) = o(G) = ∅ by

Proposition 2.7.

Corollary 2.26. An absorbing game exists.
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Proof. By Proposition 2.5, o ({∗2, {∗2}}) = ∅. Therefore, by Theorem 2.25 (Ab-

sorbing Game Construction), {{∗2, {∗2}}} is an absorbing game.

The Nim position 3 · ∗3 is also absorbing (see Lemma 2.37). By Proposition 2.23,

all such games are equal.

Proposition 2.27. If G,H, J are undetermined, then all options of G+H +J are

undetermined.

Proof. Let G,H, J be undetermined. Suppose, for the sake of contradiction, that

G+H +J has an option that is not undetermined. Without loss of generality, sup-

pose J∗ is an option of J satisfying o (G + H + J∗) 6= ∅. Since G is undetermined,

Corollary 2.12 yields P /∈ o (G + (H + J∗)). Therefore, either N ∈ o (G + H + J∗)

or O ∈ o (G + H + J∗).

Suppose N ∈ o (G + H + J∗). Then either P ∈ o (G + H + J∗∗) for some J∗∗

or (without loss of generality) P ∈ o (G + H∗ + J∗) for some H∗. But both are

impossible by Corollary 2.12.

Now suppose O ∈ o (G + H + J∗). Since N /∈ o(J), J∗ � 0. Hence, we can

choose a second option J∗∗. Then N ∈ o (G + H + J∗∗). By the argument from

the previous paragraph, Corollary 2.12 yields a contradiction in this case, too.

Corollary 2.28. If G is undetermined, then 3 ·G is an absorbing game.

Proof. Combine Proposition 2.27 with Theorem 2.25 (Absorbing Game Construc-

tion).

Note that we can find many equal absorbing games with Proposition 2.24 and

Corollary 2.28. And by using Corollary 2.20, we can build many games equal to a

given one that has an absorbing subposition.

2.3. Three-Player Nim

Nim is a classic ruleset in combinatorial game theory that can serve as a demonstra-

tive case study. In this subsection, we calculate the outcomes of all Nim positions,

as well as the quotient corresponding to playing only Nim. When playing Nim with

three players under normal play, there are only finitely many different classes of po-

sitions to be concerned with, though more than in the play convention considered

in [6].

In the language of [4], the positions of three-player Nim form a three-player

analogue of a “universe”. But it is not “parental” as all Nim positions are impartial.

And it is not “dense” even in an impartial sense, as no Nim position has outcome

P (see Theorem 2.40).
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2.3.1. Outcomes of Nim Positions

We classify the outcomes of Nim positions. We start by noting the outcomes of

40 particular positions, and then use a few lemmas to justify that the apparent

patterns extend to all positions. This approach is similar to applications of the

Octal Periodicity Theorem (see Thm. IV.2.7 of [8]).

Lemma 2.29. The outcomes of 40 Nim positions of the form k · ∗+G are recorded

in Table 4.

G\k 0 1 2 3
0 OP PN NO OP
∗2 N NO PN N
∗3 N NO N N
∗4 N NO N N

∗2 + ∗2 O N NO O
∗2 + ∗3 ∅ N NO ∅
∗2 + ∗4 ∅ N NO ∅

∗2 + ∗2 + ∗2 ∅ ∅ ∅ ∅
∗2 + ∗2 + ∗3 ∅ ∅ ∅ ∅
∗2 + ∗2 + ∗4 ∅ ∅ ∅ ∅

Table 4: The three-player outcomes of 40 Nim positions

Proof. These outcomes can be calculated manually or with a computer program.

Definition 2.30. A game G is said to be 3-periodic if the infinite sequence of

outcomes (o(G), o(∗+ G), o(2 · ∗+ G), . . . ) has period 3.

Lemma 2.31 (Nim Periodicity). Let G be a game. Suppose that all options G′ are

3-periodic and that o (G) = o (3 · ∗+ G). Then G is 3-periodic as well.

Proof. Let k ≥ 4. Then the options of k · ∗ + G are (k − 1) · ∗ + G and those of

the form k · ∗+G′ for options G′. These have the same outcomes as (k − 4) · ∗+G

(by induction on k) and (k − 3) · ∗ + G′ (since G′ is 3-periodic), respectively. But

those are exactly all of the options of (k − 3) · ∗+ G. Since k · ∗+ G has the same

outcomes of options, o (k · ∗+ G) = o ((k − 3) · ∗+ G), as desired.

Lemma 2.32 (Nim Stability). Let G be a game. Suppose that for all subpositions H

of G (including G itself) o (H + ∗4) = o (H + ∗3). Then o (G + ∗m) = o (G + ∗3)

for all m ≥ 3.

Proof. Let m ≥ 4. Via induction on m, it suffices to verify that o (G + ∗ (m + 1)) =

o (G + ∗m).
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The options of G + ∗ (m + 1) are G + ∗m, those of the form G + ∗` for ` < m

(all of which are options of G + ∗m), and those of the form G′ + ∗ (m + 1).

By induction on m, o (G + ∗m) = o (G + ∗ (m− 1)). And by induction on G,

o (G′ + ∗ (m + 1)) = o (G′ + ∗m). Trivially, o (G + ∗`) = o (G + ∗`). In all cases,

an option of G + ∗ (m + 1) has the same outcome as an option of G + ∗m.

Conversely, the options of G + ∗m are those of the form G + ∗` for ` < m, and

those of the form G′+ ∗m. All of which have outcome equal to that of an option of

G + ∗ (m + 1).

As outcomes of options are the same, o (G + ∗(m + 1)) = o(G + ∗m).

Lemma 2.33. The patterns of outcomes for the Nim positions of the form k · ∗+G

in Table 5 are accurate.

Proof. Apply Lemma 2.31 (Nim Periodicity) to the upper 7 rows of Table 4, and

then apply Lemma 2.32 (Nim Stability) to 0, followed by ∗2.

G\k (mod 3) ≡ 0 ≡ 1 ≡ 2
0 OP PN NO
∗2 N NO PN
∗m N NO N

∗2 + ∗2 O N NO
∗2 + ∗m ∅ N NO

Table 5: The outcomes of some Nim positions of the form k · ∗+ G (m ≥ 3)

Lemma 2.34. For all k ≥ 0, and m2 ≥ m1 ≥ 3, o (k · ∗+ ∗m1 + ∗m2) = ∅.

Proof. Set G ∼= k · ∗ + ∗m1 + ∗m2. If k = 0, then G has the undetermined option

∗2 + ∗m2 by Lemma 2.33. If k ≥ 1, then G has the undetermined option (k − 1) ·
∗ + ∗m1 + ∗m2 by induction on k. By Proposition 2.7, it suffices to show that no

option G′ has P ∈ o(G′). By induction and Lemma 2.33, the only subpositions

with that property are of the form j · ∗+ ∗2 or j · ∗, neither of which is possible for

an option.

Lemma 2.35. For all k ≥ 0 and n ≥ 2, o(k · ∗+ ∗2 + ∗2 + ∗n) = ∅.

Proof. Apply Lemma 2.31 (Nim Periodicity) to the lower 3 rows of Table 4, and

then apply Lemma 2.32 (Nim Stability) to ∗2 + ∗2.

Lemma 2.36. For all k ≥ 0, and m2 ≥ m1 ≥ 3, o (k · ∗+ ∗2 + ∗m1 + ∗m2) = ∅.

Proof. By Lemma 2.34, the option k ·∗+∗m1+∗m2 is undetermined. The outcomes

of options G′ are listed by Lemmas 2.33 through 2.35. And the only subpositions
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where Previous has a winning strategy are of the form j · ∗ + ∗2 or j · ∗. By

Proposition 2.7, k · ∗+ ∗2 + ∗m1 + ∗m2 is undetermined.

Lemma 2.37. For all m1,m2,m3 ≥ 3, ∗m1 + ∗m2 + ∗m3 is an absorbing game.

Proof. By the Theorem 2.25 (Absorbing Game Construction) (Theorem 2.25), it

suffices to show that all options have outcome ∅. If all heaps of an option have size

at least 3, then the outcome is ∅ by induction. If an option has reduced a heap

to ∗2, then the outcome is ∅ by Lemma 2.36. If the move reduces a heap to ∗ or

eliminates a heap, then the outcome is ∅ by Lemma 2.34.

Lemma 2.38. For all n2 ≥ n1 ≥ 2, ∗2 + ∗2 + ∗n1 + ∗n2 is an absorbing game.

Proof. By the Theorem 2.25 (Absorbing Game Construction), it suffices to show

that all options have outcome ∅. If an option has four heaps of size at least 2 then

the outcome is ∅ by induction. Otherwise, the outcome is ∅ by Lemma 2.35 or 2.36,

as applicable.

Lemma 2.39. Any Nim position that has at least three heaps of size at least 3, or

at least four heaps of size at least 2 is an absorbing game.

Proof. By Lemmas 2.37 and 2.38, any such position has an absorbing game as a

summand. By Proposition 2.24, the entire position is an absorbing game.

Theorem 2.40. The outcome of a Nim position is determined by the numbers of

heaps of size 1, size 2, and size at least 3. Specifically, the outcome is ∅ unless the

position has the form k · ∗+∗n or k · ∗+∗2 +∗n, in which case the outcome is listed

in Table 5.

Proof. This follows immediately from Lemma 2.29 and Lemmas 2.33 through 2.39.

2.3.2. Nim Quotient

In direct analogy to misère quotients (as covered in V.4 of [8]), we define an equiva-

lence relation on the set of Nim positions which is coarser than equality. While the

two-player misère quotient of Nim is infinite, the three-player normal play quotient

of Nim has size 16.

Definition 2.41. If G and H are Nim positions, then we write G ≡ H if o(G+X) =

o(H + X) for all Nim positions X.

Proposition 2.42. If G,H, J are Nim positions and G ≡ H, then G+J ≡ H +J .
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Proof. Since Nim positions are closed under addition, J + X is a Nim position

whenever X is, so that o ((G + J) + X) = o (G + (J + X)) = o (H + (J + X)) =

o ((H + J) + X), where the middle equation comes from G ≡ H.

Proposition 2.43. If G,H, J,K are Nim positions and both G ≡ H and J ≡ K

hold, then G + J ≡ H + K.

Proof. By two applications of Proposition 2.42, G+J ≡ H+J ∼= J +H ≡ K+H ∼=
H + K.

For convenience, let Q be the set of equivalence classes of Nim positions under

≡. Note that since 0 is a Nim position, Proposition 2.43 gives Q the structure of a

commutative monoid. As with the convention for misère quotients, let Φ(G) denote

the equivalence class of a Nim position G. We follow convention to write elements

of Q with lowercase letters and the operation multiplicatively. For example, if

x = Φ(G) and y = Φ(H), then xy = Φ(G + H); we also write 1 = Φ(0).

Proposition 2.44. For a Nim position G, Φ(G) determines o(G).

Proof. Since 0 is a Nim position, note that G ≡ H implies o(G) = o(G + 0) =

o(H + 0) = o(H).

Since the restriction of o to the Nim positions factors through Q, we adopt

notation from V.6 of [8] and use Π to denote the corresponding map on Q. For

example, Π(1) = Π (Φ(0)) = OP.

Definition 2.45. The Nim quotient is the structure (Q, ·,Π).

For convenience, for the remainder of this subsection, define a = Φ(∗), b = Φ(∗2),

and c = Φ(∗3).

Theorem 2.46. The Nim quotient is given by the commutative monoid with pre-

sentation (Q, ·) ∼=
〈
a, b, c | a3 = 1, b3 = b2c = c2 = c3 = ac2

〉
(which has order 16)

and the values of Π given in Table 6.

x 1 a a2 b ab a2b c ac a2c b2 ab2 a2b2 bc abc a2bc c2

Π(x) OP PN NO N NO PN N NO N O N NO ∅ N NO ∅

Table 6: Outcomes of the three-player Nim quotient

To prove Theorem 2.46, we verify various facts individually as a series of lemmas.

Lemma 2.47. The outcomes in Table 6 are accurate.

Proof. All of the outcomes follow directly from Lemma 2.33, with the exception of

Π(c2), which follows from Lemma 2.34.
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Lemma 2.48. a3 = 1, that is, ∗+ ∗+ ∗ ≡ 0.

Proof. In Theorem 2.40, the outcomes only depend on the number of heaps of size

1, modulo 3.

Lemma 2.49. The 16 equivalence classes listed in Table 6 are distinct.

Proof. Note that Π is well defined on equivalence classes, so the only pairs of classes

that might be identical are those with the same outcome. We apply Lemma 2.48

repeatedly below:

• a 6= a2b because Π
(
a2
)

= NO and Π
(
a3b
)

= Π (1b) = Π (b) = N ;

• a2, ab, ac, a2b2, a2bc are all distinct because the outcomes after multiplying by

a are OP,PN ,N ,O, ∅, respectively;

• b, c, a2c, ab2, abc are all distinct because the outcomes after multiplying by a2

are PN ,N ,NO,O, ∅, respectively;

• bc 6= c2 because Π(abc) = N and Π(ac2) = ∅ by Lemma 2.34.

It remains to prove enough other relations to conclude that Table 6 is complete.

Lemma 2.50. For each n ≥ 3, c = Φ(∗n), that is, ∗3 ≡ ∗n.

Proof. In Theorem 2.40, none of the outcome determinations depend on the exact

size of a heap that has size at least 3.

Lemma 2.51. For any x ∈ Q, xb3 = xb2c = xc2.

Proof. If X is a Nim position, then o(3·∗2+X) = o(2·∗2+∗3+X) = o(2·∗3+X) = ∅
by theorem 2.40. Thus, all representatives have outcome ∅.

By Lemma 2.39, ∗2+∗2+∗2+∗2 and ∗3+∗3+∗3 are absorbing games. But note

that Lemma 2.51 tells us that in the context of Nim positions only, ∗2 + ∗2 + ∗2
and ∗3 + ∗3 have a similar absorbing property.

Corollary 2.52. b3 = b2c = c2 = c3 = ac2.

Lemma 2.53. There are only 16 elements of Q as listed in Table 6, and the pre-

sentation in the statement of Theorem 2.46 is accurate.

Proof. By a3 = 1 (from Lemma 2.48) and b4 = b(b3) = b(b2c) = (b3)c = (c2)c = b3

and c2 = c3 (from Corollary 2.52) and the commutativity of disjunctive sum, the

only possible elements of Q are of the form axbycz for x, z < 3, y < 4. However, if

z = 2 or y + z ≥ 3 then the element is equal to c2 by Corollary 2.52. This leaves 15

other possibilities with y + z < 3 and z < 2, for a total of 16.
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With this, we have proven Theorem 2.46. For comparison, in Section 5 of [6], Nim

is analyzed under Propp’s play convention in which Previous is the unique winner

of 0. Rephrasing his results in our terminology, the three-player Nim quotient for

that play convention has size 9, though he shows that there are infinitely many

equality classes of Nim positions.

Note that in the case of Nim positions alone, we recover something like a more

faithful version of Theorem 2.8 (Next Generation).

Corollary 2.54. If G is a Nim position satisfying o(G) = OP = o(0), then

o (G + H) = o(H) for all Nim positions H.

Proof. By Theorem 2.46, Φ(G) = 1. Thus, o(G + H) = Π (1Φ(H)) = o(H).

3. N-Player Impartial Games

Many results from Section 2 can be generalized to N players. Throughout this

entire section, N refers to the number of players (N ≥ 2). We explicitly mention

when assuming N > 2 is necessary.

Some results and proofs are nearly identical to those in the three-player case,

but others become more complex, such as the construction of absorbing games for

N players.

A game is still a finite set of options, and we continue to use ∼= to indicate that

two games are isomorphic (i.e. the game trees are isomorphic).

3.1. Preliminaries

In the impartial setting, we denote the various players as N,O1, . . . ,ON−2,P. N is

the “Next” player, P is the “Previous” player, and the rest are the “Other” players.

At times, it is convenient to use O0 for N and ON−1 for P.

Definition 3.1. The N -player (normal-play) outcome o(G) of a game G is a subset

of {N, . . . ,P} whose members are determined recursively as follows.

• N ∈ o(G) exactly when there exists an option G∗ with P ∈ o(G∗).

• For 1 ≤ i ≤ N−1, Oi ∈ o(G) exactly when every option G′ has Oi−1 ∈ o(G′).

Proposition 3.2. The following analogues of the propositions in 2.1.2 all hold.

1. o(G) is always a proper subset of {N,O1, . . . ,ON−2,P}.

2. For 0 ≤ i ≤ N − 2, Oi ∈ o(G) exactly when Oi+1 ∈ o ({G}). And P ∈ o(G)

exactly when N ∈ o ({G}).
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3. If G has an option G∗ with o(G∗) = ∅ and has no option G′ with P ∈ o(G′),

then o(G) = ∅.

4. If N > 2, then all 2N − 1 proper subsets are possible outcomes.

Proof. The proofs of claims 1, 2, and 3 are exactly analogous to the proofs in the

three-player case in 2.1.2. For claim 4, we need a more general idea.

For any non-empty outcome set that includes N, we can use a game with various

options of the form m · ∗. For example, if there are at least 6 players (if N ≥ 6),

then {∗, 3 · ∗, 4 · ∗} is a game in which Next chooses whether O2, O4, or O5 will

lose; all other players are guaranteed to win.

For a non-empty outcome set that does not include N, we can apply claim 2 to

cycle the outcome set of a game whose outcome includes N. For example, if N = 6,

then {{∗, 3 · ∗, 4 · ∗}} has outcome {O1,O2,O4}.
Finally, if N > 2, we construct a game G with o(G) = ∅. We can take G ∼=

{H, {H}} where H ∼= {0, . . . , (N − 2) · ∗}. In G, Next chooses whether O1 or O2

selects any player (other than themselves) to lose the game.

3.2. Outcomes of Sums

Theorem 3.3 (N -Player Next Generation). If N /∈ o(H) then o(G + H) ⊆ o(G).

Note that N /∈ o(H) is still equivalent to o(H) ⊆ o(0) in the N -player setting.

In fact, the proof for N players is nearly identical to the one for three players.

Proof. Let G,H be games, and suppose N /∈ o(H).

If Oi /∈ o(G) for some i with 1 ≤ i ≤ N − 1, then we can choose an option G∗

with Oi−1 /∈ o (G∗). But then Oi−1 /∈ o (G∗ + H) by inductive hypothesis, so that

Oi /∈ o(G + H).

If N /∈ o(G), then P /∈ o (G′) for all options G′. Similarly, P /∈ o (H ′) for

all options H ′. Therefore, by induction, we have both P /∈ o (G′ + H) and P /∈
o (G + H ′) for arbitrary options. As such, N /∈ o(G + H) by definition.

We generalize Theorem 2.10 (Other Procreation) in two respects—more sum-

mands, and different players.

Theorem 3.4. For k ≥ 1 and m ≥ 0, if N > km and Om /∈ o(G1), . . . o(Gk), then

Okm /∈ o(G1 + · · ·+ Gk).

Proof. Note that the case of k = 1 is trivial, so we assume k ≥ 2.

First, we consider the case m = 0, so that Om = N. By repeatedly applying

Theorem 3.3 (Next Generation), N /∈ o (G1 + · · ·+ Gk).

For m > 0, we induct on m. Since Om /∈ o(G1), . . . o(Gk), we can choose

options G∗i such that Om−1 /∈ o (G∗i ) for all i. Then by induction, Okm−k /∈
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o (G∗1 + · · ·+ G∗k), so that Okm−(k−1) /∈ o (G1 + G∗2 + · · ·+ G∗k) and similarly for

each successive term until we reach Okm /∈ o (G1 + · · ·+ Gk).

Proposition 2.15 about the outcome of G + G + G generalizes straightforwardly.

Proposition 3.5. For all games G, N /∈ o(N ·G).

Proof. All players can mirror the moves made by Next in the N components.

In the N -player setting, we can still examine reversible moves.

Definition 3.6. We say that H is revertible to G if both of the following hold.

• For every option G′ of G, H has a corresponding option Ĝ′ equal to G′.

• For every option H ′ of H not equal to some G′, H ′ has an (N − 1)st option

H ′
∗···∗

equal to G.

Theorem 3.7. If H is revertible to G then o(H + X) ⊆ o(G + X) for all X.

The proof is nearly identical to the argument for three players (see Theorem 2.19),

but is written here in full, for convenience.

Proof. Suppose N ∈ o(H + X). If the winning move has the form H + X∗, then

P ∈ o(H + X∗) so that P ∈ o(G + X∗) by induction. Hence, the same move would

win in G + X, and N ∈ o(G + X). Now suppose the winning move in H + X

is to something of the form Ĝ∗ + X with Ĝ∗ equal to an option G∗ of G. Then

P ∈ o(Ĝ∗ + X) = o(G∗ + X), so that N ∈ o(G + X). Finally, if the winning move

is to an option H∗ not equal to an option of G, then the other N − 1 players can

move to yield some H∗···∗ + X where H∗···∗ = G. Note that N ∈ o(H∗···∗ + X)

as we started with a winning move in H + X. From H∗···∗ = G it follows that

N ∈ o(G + X), as desired.

Suppose Oi ∈ o(H +X) for some i with 1 ≤ i ≤ N − 1. Then Oi−1 ∈ o(H +X ′)

for all options X ′. By induction, Oi−1 ∈ o(G + X ′) for all X ′ as well. Since

Oi ∈ o(H + X), we also have Oi−1 ∈ o(Ĝ′ + X) = o(G′ + X) for all options G′ as

well. We have shown Oi−1 ∈ o ((G + X)′) for all options, so Oi ∈ o(G + X).

As with three players, replacing options with equal games yields an equal game.

Corollary 3.8. Suppose that G ∼= {G′i : i ∈ I} and H ∼= {H ′i : i ∈ I} and that

G′i = H ′i for all i. Then G = H.

The proof is identical to that of the three-player case (see Corollary 2.20).

Proof. By symmetry, it suffices to show that o(H + X) ⊆ o(G + X) for all X. But

that follows immediately from Theorem 3.7 since H is revertible to G.



INTEGERS: 20A (2020) 19

Proposition 2.21 about 3 · ∗ generalizes to the N -player setting.

Proposition 3.9. If N > 2, then N · ∗ 6= 0.

Proof. In G ∼= {{(N − 1) · ∗, 0}}, all players except O2 have winning strategies.

There is only one decision; O1 can win by moving to 0, in which case O2 loses. O1

loses if they move to (N − 1) · ∗ instead.

However, in G+N · ∗, players N, O2 and (if N > 3) O3 can cooperate to ensure

that O1 loses. Next can move to G+(N −1) · ∗. Then, for either of O1’s moves, O2

can move to G′+(N−2) · ∗. Then O3 (or N if N = 3) can move in G′ to (N−1) · ∗,
for a total position of (2N − 3) · ∗. At this point, O4 is to move unless N < 5, in

which case it is O4−N . In any case, after 2N − 3 more moves, O1 loses.

3.3. Undetermined and Absorbing Games

Recall (see Definition 2.6) that a game G is said to be undetermined if o(G) = ∅.

Proposition 3.10. A sum of undetermined games is undetermined.

Proof. As with Corollary 2.9, this follows from Theorem 3.3 (Next Generation)

(Theorem 3.3).

We can make this result more precise.

Definition 3.11. An undetermined game G is said to be 1-undetermined. And,

for k > 1, G is said to be k-undetermined if G is undetermined and has an option

G∗ that is (k − 1)-undetermined.

In other words, G is k-undetermined if there is a directed path of length k − 1

starting at G through undetermined subpositions. Note that if G is k-undetermined,

then it is also, a fortiori, j-undetermined for 1 ≤ j < k.

Proposition 3.12. If G is k-undetermined and H is m-undetermined, then G+H

is (k + m)-undetermined.

Proof. Let G be k-undetermined and H be m-undetermined. By Proposition 3.10,

G + H is undetermined. It remains to show that G + H has an option that is

(k + m− 1)-undetermined.

First, suppose that k = m = 1. Note that since O1 /∈ o(H), we can choose

an option H∗ with N /∈ o(H∗). By Theorem 3.3 (Next Generation), we have

o(G + H∗) ⊆ o(G) = ∅.
If k > 1, we can choose an undetermined option G∗ of G. Then G∗ + H is

(k + m− 1)-undetermined by induction. Similarly if m > 1.

The concept of k-undetermined games allows us to generalize Corollary 2.12.
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Lemma 3.13. If N > 2 and G is (N − 2)-undetermined, then P /∈ o(G + H) for

all H.

Proof. Since G is (N − 2)-undetermined, we can choose a sequence of N − 2 subpo-

sitions J0, J1, . . . , JN−3 where J0 ∼= G, each Ji+1 is an option of Ji, and each Ji is

undetermined. Note that Ji + H is a subposition of G + H reached after i moves.

Suppose, for the sake of contradiction, that P ∈ o(G + H) for some particular

game H. Then P ∈ o(J0 + H), and since J0 is undetermined, Theorem 3.3 (Next

Generation) tells us that N ∈ o(H) (as otherwise o(J0 + H) ⊆ o(J0) = ∅) and

P ∈ o(H).

Since P = ON−1, we have ON−2 ∈ o(J1 + H) (if N > 3). In general, ON−1−j ∈
o(Jj + H) for 0 ≤ j ≤ N − 3.

Since each Jj is undetermined, ON−1−j ∈ o(H) for 0 ≤ j ≤ N − 3 as well, in

addition to the N ∈ o(H) observed initially.

Finally, since JN−3 is undetermined, O1 /∈ o(JN−3). Thus, we can choose an

option J∗N−3 such that N /∈ o
(
J∗N−3

)
. But since O2 ∈ o(JN−3 + H), we have

O1 ∈ o
(
J∗N−3 + H

)
. This forces O1 ∈ o(H).

Putting all of these conclusions about H together, we have shown that all players

have winning strategies in H, which is impossible by claim 1 of Proposition 3.2.

Recall (see Definition 2.22) that a game G is said to be absorbing if G + H is

undetermined for all H.

We can use Lemma 3.13 to obtain an N -player analogue of Theorem 2.25 (Ab-

sorbing Game Construction).

Theorem 3.14 (N -Player Absorbing Game Construction). Suppose that N > 2,

G has at least one option, and all options G′ are (N − 2)-undetermined. Then for

all games H, G + H is undetermined.

Proof. Note that G is undetermined from the outcomes of its options (cf. Corol-

lary 2.11). We show by a finite induction on k that Ok /∈ o(G + H) for any H.

First, we handle the base case k = 0. Suppose, for the sake of contradiction,

that N ∈ o(G + H) for some game H. Then either P ∈ o(G∗ + H) for some G∗ or

P ∈ o(G+H∗) for some H∗. Both cases are impossible by Lemma 3.13; the former

is impossible since each G∗ is (N − 2)-undetermined, and the latter is impossible

since G is (N − 1)-undetermined and hence (N − 2)-undetermined.

Now suppose Ok ∈ o(G + H) for some k with 1 ≤ k ≤ N − 1. Then since G is

undetermined, N ∈ o(H) by Theorem 3.3 (Next Generation). In particular, H has

an option H∗ and thus Ok−1 ∈ o(G + H∗), which is impossible by induction.

Note that Propositions 2.24 and 2.23 hold with the same proofs, so there is

a unique equality class of absorbing games which absorbs summands to produce

undetermined games.
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We use Lemma 3.13 to generalize Proposition 2.27.

Proposition 3.15. If N > 2 and G is (N − 2)-undetermined, then all (N − 2)nd

options of N ·G are undetermined.

Proof. Let G be (N − 2)-undetermined, and let H be an (N − 2)nd option of N ·G.

We aim to show that H is undetermined.

Note that H is a sum of games with at least two terms of G. First, we will

construct J , an (N − 2)nd option of H with two terms of G.

If H only has two terms of G, then H must have the form G1 + · · ·+GN−2 +2 ·G
for some (first) options G1, . . . , GN−2 of G. Since G is undetermined, N /∈ o(G), so

that each option of G must have an option of its own. Therefore, we can take J to

be something of the form G∗1 + · · ·+ G∗N−2 + 2 ·G.

Otherwise, H has at least three terms of G. Write it in the form H̃+3·G for some

game H̃. Note that since G is (N − 2)-undetermined, G has an (N − 2)nd option

K (which need not be undetermined). Thus, we can take J to be H̃ + K + 2 ·G.

With J in hand, we can show that H is undetermined. Since G is (N − 2)-

undetermined, Lemma 3.13 yields P /∈ o(H). And since any option of H would still

have at least one term of G, we have P /∈ o(H ′) for all H ′. Thus, N /∈ o(H) as well.

To handle the other players, let j ∈ {1, . . . , N − 2} and choose J̃ , a jth option

of H with J as a subposition. Since J has at least two terms of G, J̃ does as

well, so that any option J̃ ′ has one term of G. Since G is (N − 2)-undetermined,

Lemma 3.13 yields P /∈ o
(
J̃ ′
)

. Thus, we have N /∈ o
(
J̃
)

and Oj /∈ o(H).

Since we have eliminated all possible elements of o(H), H is undetermined. Since

H was arbitrary, all (N − 2)nd options of N ·G are undetermined.

We will not use this fact, but the above proof of Proposition 3.15 would have

worked the same way for any sum of N games, each of which is (N−2)-undetermined.

Corollary 3.16. If N > 2 and G is (N − 2)-undetermined, then N · G is an

absorbing game.

Proof. By Proposition 3.15, all (N −2)nd options of N ·G are undetermined. Then,

a fortiori, all options of N ·G are (N−2)-undetermined. Thus, N ·G is an absorbing

game by Theorem 3.14 (Absorbing Game Construction).

Corollary 3.17. If N > 2 and G is undetermined, then (N2 − 2N) · G is an

absorbing game.

Proof. Note that G is at least 1-undetermined, so that (N − 2) · G is (N − 2)-

undetermined by Proposition 3.12. Then apply Corollary 3.16.
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3.4. N-player Nim

In this subsection, we apply generalizations of Lemmas 2.31 (periodicity) and 2.32

(stability) lemmas to obtain some results about Nim that hold for general N .

In this subsection only, it is particularly helpful at times to write complements

of outcomes. For example, if N = 5, then {O2,O3} = {N,O1,P}.

3.4.1. Periodicity

Definition 3.18. A game G is said to be N -periodic if the infinite sequence of

outcomes (o(G), o(∗+ G), o(2 · ∗+ G), . . . ) has period N .

Proposition 3.19 (N -Player Nim Periodicity). Let G be a game. Suppose that all

options G′ are N -periodic, and that o (G) = o (N · ∗+ G). Then G is N -periodic.

The proof is almost identical to that of three-player Lemma 2.31 (Nim Periodic-

ity).

Proof. Let k ≥ N+1. Then the options of k ·∗+G are (k − 1)·∗+G and those of the

form k · ∗+G′ for options G′. These have the same outcomes as (k −N − 1) · ∗+G

(by induction on k) and (k −N) · ∗+G′ (since G′ is N -periodic), respectively. But

those are exactly all of the options of (k −N) · ∗+ G. Since k · ∗+ G has the same

outcomes of options, o (k · ∗+ G) = o ((k −N) · ∗+ G), as desired.

Proposition 3.20. ∗2 is N -periodic.

Proof. First, note that 0 is N -periodic since o(N · ∗) = o(0) = {N} as there is only

one line of play (or see claim 2 of Proposition 3.2). In general, o(i · ∗) = {Oi} for

i < N .

Since 0 is N -periodic, ∗ is N -periodic as well, so that all options of ∗2 are N -

periodic. Therefore, by Lemma 2.31 (Nim Periodicity), it suffices to show that

o(∗2 + N · ∗) = o(∗2).

We show by induction on i that for 0 ≤ i ≤ N − 3, o(∗2 + i · ∗) = {Oi+1,Oi+2}.
Note that if N = 2, then this is vacuously true. If i = 0, then Next can choose

which of O1 and O2 will lose; o(∗2) = {O1,O2}.
For i > 0, note that Next can move to ∗2 + (i − 1) · ∗, which has outcome

{Oi,Oi+1}, by induction. Since i ≤ N − 3, we have i + 2 ≤ N − 1, so that

Oi+1,Oi+2 /∈ o(∗2+ i · ∗). The other options of ∗2+ i · ∗ are i · ∗ and (i+1) · ∗, which

have outcomes {Oi} and {Oi+1}, respectively. Aside from the three players Next,

Oi+1, and Oi+2, all other players have winning strategies. And since i 6= N − 1,

the move to i · ∗ is a winning move (i.e. P ∈ o(i · ∗)), and so N ∈ o(∗2 + i · ∗). Thus,

o(∗2 + i · ∗) = {Oi+1,Oi+2}, as desired.

Similarly, o(∗2 + (N − 2) · ∗) = {P} since the options have outcomes {ON−2}
(which includes P), {P}, and (if N > 2) {ON−2,P}, respectively.
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Then o(∗2 + (N − 1) · ∗) = {O1} since the options have outcomes {P}, {N}
(which includes P), and {P}, respectively.

Finally, we consider o(∗2 + N · ∗). The options have outcomes {N}, {O1}, and

{O1}, respectively. Thus, if N > 2, o(∗2 + N · ∗) = {O1,O2} = o(∗2). (If N = 2,

o(∗2 + N · ∗) = {O1} = {N} = o(∗2).)

Corollary 3.21. The periodic sequence of outcomes o(∗2 + i · ∗) is(
{O1,O2}, {O2,O3}, . . . , {ON−2,P}, {P}, {O1}, . . .

)
.

Proof. This follows from the proof of Proposition 3.20 above.

3.4.2. Stability

Proposition 3.22 (N -player Nim Stability). Let G be a game. Suppose that for

all subpositions H of G (including G itself) o (H + ∗(N + 1)) = o (H + ∗N). Then

o (G + ∗m) = o (G + ∗N) for all m ≥ N .

Proof. The proof is identical to that of Lemma 2.32 (Three-Player Nim Stability),

except that 4 should be replaced with k + 1.

In fact, the proof would work with ∗N replaced with any ∗k. However, when G

is a “small” Nim position, it seems that we first observe stability at ∗N .

We can use Lemma 3.22 (Nim Stability) to calculate the outcomes of all Nim

positions with at most two heaps, assuming N > 2. The results are collected in

Theorem 3.27 and can be summarized as follows: Players other than Next and O1

do not have a winning strategy unless the game is guaranteed to end before their

turn. Ignoring the case of the empty game 0, Next fails to have a winning strategy

exactly when there are two heaps of size at least N − 1, and O1 fails to have a

winning strategy when there is only one heap or if the sizes of the two heaps are at

least N − 1 and N , respectively.

Proposition 3.23. For i ≥ 1, o(∗i) = {O1, . . . ,Omin{i,N−1}}.

Proof. We use induction on i for 1 ≤ i < N .

If i = 1, then there is only one line of play, and the outcome is certainly {O1}. For

1 < i < N , the options are 0 and all ∗j with 1 ≤ j ≤ i−1. The former has outcome

{N}, and the latter have outcomes of the form {O1, . . . ,Oj}. Since P ∈ o(0),

N ∈ o(∗i). Since N /∈ o(0), O1 /∈ o(∗i). And since O1, . . . ,Oi−1 /∈ o(∗(i − 1)),

O2, . . . ,Oi /∈ o(∗i). Thus, o(∗i) = {O1, . . . ,Omin{i,N−1}}.
Similarly, o(∗N) = {O1, . . . ,ON−1} = {N} by the same argument as for ∗(N−1)

except that it doesn’t matter that P /∈ o (∗(N − 1)). By the same argument, or by

the argument in the proof of Lemma 3.22 (Nim Stability), this extends to all larger

heaps as well.
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Lemma 3.24. If 1 ≤ i ≤ min{j,N−2} then o(∗i+∗j) = {O2, . . . ,Omin{i+j,N−1}}.

Proof. Note that the hypothesis forces N > 2. First, o (∗+ ∗) = {O2} since there

is only one line of play.

Now suppose i + j > 2. Then the options of ∗i + ∗j are ∗i, ∗j, and all smaller

sums of two nonempty heaps of the forms (∗i)′ + ∗j and ∗i + (∗j)′.
Note that O1 /∈ o(∗i) by Proposition 3.23, so that O2 /∈ o(∗i + ∗j).
Since i + j > 2, either 1 ≤ i ≤ j − 1 or 1 ≤ j − 1 ≤ i. Thus, by induction,

o (∗i + ∗(j − 1)) = {O2, . . . ,Omin{i+j−1,N−1}}. Hence, O3, . . . ,Omin{i+j,N−1} /∈
o(∗i + ∗j).

Therefore, o(∗i + ∗j) ⊆ {O2, . . . ,Omin{i+j,N−1}}.
Since i ≤ N − 2, P = ON−1 ∈ o(∗i) by Proposition 3.23, so that N ∈ o(∗i+ ∗j).
Finally, note that N and (if i+j ≤ N−1) Omin{i+j,N−1}, . . . ,ON−1 are included

in the outcome of each option (either by Proposition 3.23 or induction, as applica-

ble). Thus, O1 and (if i + j < N − 1) Omin{i+j+1,N−1}, . . . ,ON−1 are elements of

o(∗i + ∗j). In other words, {O2, . . . ,Omin{i+j,N−1}} ⊆ o(∗i + ∗j).
Since we have shown both inclusions, o(∗i+ ∗j) = {O2, . . . ,Omin{i+j,N−1}}.

Lemma 3.25. o (2 · ∗(N − 1)) = {O1}.

Proof. If N = 2, then o(2 · ∗) = {P} = {O1} since there is only one line of play.

Now assume N > 2. Then the options of 2 ·∗ (N − 1) are ∗(N−1) (with outcome

{N} by Proposition 3.23), and those with two heaps (all of which have outcome

{O2 · · ·ON−1} = {N,O1} by Lemma 3.24). Since no option’s outcome includes

P (as N > 2) and the only element of an outcome shared by all options is N,

o (2 · ∗(N − 1)) = {O1}.

Recall (see Definition 2.6) that a game G is said to be undetermined if o(G) = ∅.

Lemma 3.26. If N > 2, then for N − 1 ≤ i ≤ N + 1 and N ≤ j ≤ N + 1, ∗i + ∗j
is undetermined.

Proof. Firstly, we consider ∗(N − 1) + ∗N . It has two single-heap options each

with outcome {N} by Proposition 3.23, the option 2 · ∗(N − 1) with outcome {O1}
by Lemma 3.25, and various options (since N > 2) covered by Lemma 3.24 with

outcome {N,O1}. Since N > 2, O1 6= P, so that o (∗(N − 1) + ∗N) = ∅.
Similarly, ∗N + ∗N and ∗(N − 1) + ∗(N + 1) have all the same sorts of op-

tions except that ∗N + ∗N lacks “2 · ∗(N − 1)” and both have a new move to the

undetermined ∗(N − 1) + ∗N . Thus, o(∗N + ∗N) = o (∗(N − 1) + ∗(N + 1)) = ∅.
∗N+∗(N+1) is similar to ∗N+∗N , but adds the undetermined options ∗N+∗N

and ∗(N − 1) + ∗(N + 1). And ∗(N + 1) + ∗(N + 1) is similar to ∗N + ∗(N + 1),

but adds the undetermined option ∗N + ∗(N + 1).
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Theorem 3.27. If N > 2, then for i ≤ j,

o(∗i + ∗j) =



{N} if i = j = 0{
O1, . . . ,Omin{j,N−1}

}
if i = 0 < j{

O2, . . . ,Omin{i+j,N−1}
}

if 1 ≤ i ≤ N − 2

{O1} if i = j = N − 1

∅ otherwise

.

Proof. The first four cases follow immediately from Definition 3.1, Proposition 3.23,

Lemma 3.24, and Lemma 3.25, respectively.

The final claim uses Lemma 3.22 (Nim Stability) repeatedly.

First, note that o(0 + ∗N) = o (0 + ∗(N + 1)) by Proposition 3.23. Similarly,

by Lemma 3.24, o(∗i + ∗N) = o (∗i + ∗(N + 1)) for 1 ≤ i ≤ N − 2. Also, by

Lemma 3.26, o (∗(N − 1) + ∗N) = ∅ = o (∗(N − 1) + ∗(N + 1)). With all of these

results together, we apply Lemma 3.22 (Nim Stability) to G = ∗(N − 1) to find

that o (∗(N − 1) + ∗m) = ∅ for all m ≥ N . It remains to check that any sum of two

heaps of size at least N is undetermined.

Since o(∗N + ∗N) = ∅ = o (∗N + ∗(N + 1)) by Lemma 3.26, another application

of Lemma 3.22 (Nim Stability) with G = ∗N yields o (∗N + ∗m) = ∅ for all m ≥ N .

And since o (∗N + ∗(N + 1)) = ∅ = o (∗(N + 1) + ∗(N + 1)), another application

with G = ∗(N + 1) yields o (∗(N + 1) + ∗m) = ∅ for all m ≥ N .

For j ≥ 1, ∗(N + j) + ∗N and ∗(N + j) + ∗(N + 1) are both undetermined.

Therefore, for j ≥ 1, we can recursively apply Lemma 3.22 (Nim Stability) to show

that ∗(N + j) + ∗m is undetermined for m ≥ N .

Recall (see Definition 2.22) that a game G is said to be absorbing if G + H is

undetermined for all H. We can use the results of Subsection 3.3 to build absorbing

games from undetermined Nim positions.

Corollary 3.28. If N > 2, then some Nim positions are absorbing games.

Proof. By Theorem 3.27, ∗(N − 1) + ∗(2N − 3) is (N − 2)-undetermined. Thus,

by Corollary 3.16, N · (∗(N − 1) + ∗(2N − 3)) is an absorbing game. Alternatively,

by Lemma 3.26 (or Theorem 3.27), ∗(N − 1) + ∗N is undetermined. Thus, by

Corollary 3.17, (N2 − 2N) · (∗(N − 1) + ∗N) is absorbing. Alternatively, let k be

the least integer greater than or equal to N/2−1. By Lemma 3.26 (or Theorem 3.27),

2 · ∗N is 2-undetermined. By Proposition 3.12, 2k · ∗N is (N−2)-undetermined. By

Corollary 3.16, 2kN · ∗N is an absorbing game. Thus, (N2 −N) · ∗N is absorbing,

too.
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4. Partizan Games

In this section, we discuss the extension of normal play to the N -player partizan

setting. As in Section 3, throughout this entire section, N refers to the number of

players (N ≥ 2). And we explicitly mention when assuming N > 2 is necessary.

We begin by setting up notation and machinery to discuss and compare partizan

games. In the following subsection, we prove some general results about comparing

games. Finally, we consider some specific games generalizing integers in the two-

player case.

4.1. Preliminaries

Throughout this section, a (partizan) game is now an ordered N -tuple of finite sets

of partizan games. They are still “short” in that they are finite and nonloopy, so

that there is a bound on the length of a run. We continue to use ∼= to indicate

that two games are isomorphic (i.e. their game trees with labeled edges are isomor-

phic). In general, our definitions and notation parallel the two-player standard as

in Section II.1 of [8]. Similar decisions were made in [1], [2], and [3].

The N players are named “Left”, “Center1”, “Center2”, . . . , “CenterN−2”, and

“Right”. They each make moves in a cyclic fashion, with “Left” moving after

“Right” and before “Center1”, etc.

We write some games with an extension of the bar notation commonly used for

two players. For example, G ∼=
{
GL | GC1 | GC2 | · · · | GCN−2 | GR

}
or

G ∼=
{
GL

1 , . . . , G
L
m0
| GC1

1 , . . . , GC1
m1
| · · · | GR

1 , . . . , G
R
mN−1

}
.

When convenient, we use “C0” in place of L and “CN−1” in place of R. In [1]

and [3], which only consider three-player games, our Center1 is called “Center” and

our C1 is “C”.

If it is Left’s turn to move in G, then they choose one of the Left options in GL
to move to. Analogously for the other players.

If there is no option available to a player on their turn, we declare them the

unique loser, and the other N − 1 players all win equally. As in the impartial case,

we call this convention normal play.

As it should not cause undue confusion, we use 0 in partizan contexts to denote

a game with no options 0 ∼= { | · · · | }. In general, we interpret impartial games as

partizan ones in the natural way; ∗ ∼= {0 | 0 | · · · | 0}, etc. Following [1], we define

1L ∼= {0 | · · · | }, and analogously 1Ci
and 1R. Note that we never use ‖ or similar

to denote “options of options”, as it could be confused with notation like {0 | | 0},
which denotes a particular three-player game with no Center1 options.



INTEGERS: 20A (2020) 27

4.1.1. Outcomes, Sums, and Conjugates

In order to speak of the outcome of a partizan game, it is helpful to examine the

impartial games that result when we select a player to make the first move.

Definition 4.1. Given a partizan game G, we recursively define N impartial games,

the restrictions of G, as follows. For 0 ≤ i ≤ N − 2, the Centeri restriction is

[G]Ci

∼=
{[

GCi
j

]
Ci+1

}
, where GCi

j ranges over the options of G for Centeri. The

Right restriction is [G]R
∼=
{[

GR
j

]
L

}
, where GR

j ranges over the options of G for

Right.

Recall that if i = 0 then Centeri is Left. For examples, [1L]L = ∗, and [1L]C1
= 0.

The outcome of a two-player game is determined by the pair of impartial out-

comes when Left or Right make the first move. We define the outcome in the

N -player case analogously.

Definition 4.2. The outcome o(G) of a partizan game G is the ordered N -tuple

of the impartial outcomes of the restrictions.

o(G) =
(
o ([G]L) , o

(
[G]C1

)
, . . . , o

(
[G]CN−2

)
, o ([G]R)

)
.

For example, (N ,P,O) is the three-player outcome of games where Left and

only Left can secure the win, no matter which player moves first. And the outcome

({N,P}, {N,P}, {N,P}, {N,P}) is the four-player outcome of games where the

next player and the previous player can each guarantee that they win (and if they

play well, they will certainly win together with some other player), no matter which

player moves first.

Proposition 4.3. If N > 2, all
(
2N − 1

)N
potential outcomes are possible.

For instance, there are 343 possible outcomes of a three-player partizan game,

and 50625 possible outcomes of a four-player partizan game.

Proof. Recall that by claim 4 of Proposition 3.2, there are 2N −1 possible impartial

outcomes. Given impartial outcomes o1, . . . , oN , choose corresponding impartial

games with those outcomes G1, . . . , GN . Then, using N − 1 pairs of braces in

each component, define G ∼= { {· · · {G1} · · · } | · · · | {· · · {GN} · · · } }. Then o(G) =

(o1, . . . , oN ) by construction.

Very analogously to the two-player case, we define the three-player analogue of

the disjunctive sum.

Definition 4.4. Let G and H be games. The (disjunctive) sum G + H is defined

recursively by

G + H ∼=
{
GL + H,G + HL | GC1 + H,G + HC1 | · · · | GR + H,G + HR

}
.



INTEGERS: 20A (2020) 28

The conjugates of a game G serve as N -player analogues of the two-player neg-

ative −G, in the sense that the players’ roles are interchanged. As these do not

serve the role of an additive inverse, they are reminiscent of the general two-player

conjugate in [4], of which the misère adjoint defined in V.6.3 of [8] is a special case.

Definition 4.5. The first conjugate of G, denoted by G†, is defined by

G† ∼=
{(

GR
)† | (GL

)† | (GC1
)† | · · · | (GCN−2

)†}
.

In general, the kth conjugate of G is obtained by taking the first conjugate k times,

as in G†···†. We denote the sum of the first N − 1 conjugates G†+G††+ · · ·+G†···†

by G−.

Note that the N th conjugate of G is G itself. For example, 1C1
∼= 1†L and 1R is

the (N − 1)st conjugate of 1L. If N = 4, then 1−C2
= 1R + 1L + 1C1

.

Proposition 4.6. For all games G, N /∈ o ([G + G−]x) for x = C0, . . . CN−1.

Proof. Analogously to Proposition 3.5, the players who do not move next can mirror

all moves in the other N − 1 terms of the sum.

Note that there is nothing like an absorbing game in the partizan context.

Proposition 4.7. There is no game G with o(G + H) = (∅, . . . , ∅) for all H.

Proof. Let G be a game, and define H ∼= k · 1L, where k is greater than the depth

of the game tree of G. Then Left can win G + H, no matter which player moves

first, by simply making all of their moves in H.

4.1.2. Inequalities

In the two-player setting, we define a preorder by (misère or normal play) favor-

ability to Left. With N players, we similarly define preorders by favorability to

an individual player. Our definition is reminiscent of, but incompatible with (see

Corollary 4.50), the definitions in [1]. The definition parallels the characterization

for two-player inequality in Proposition V.6.1 of [8]. It was independently defined,

in essentially this form, in [3].

Definition 4.8. We write G ≤L H if, for 1 ≤ i ≤ N , Left has a winning strategy in

H + X moving ith whenever Left has a winning strategy in G + X moving ith. We

also write G �L H for the negation of G ≤L H. We define ≤Ci and ≤R analogously.

For example, if N = 3, G ≤L H, and O ∈ o ([G + X]R), then O ∈ o ([H + X]R).

Many results below are phrased only in terms of ≤L, but they apply equally well,

mutatis mutandis, to the other relations.



INTEGERS: 20A (2020) 29

Proposition 4.9. ≤L is transitive and reflexive.

Proof. Both properties follow immediately from the corresponding properties of

implication.

Proposition 4.10. If G ≤L H then G + J ≤L H + J for any J .

Proof. Suppose that Left can win (G + J) + X ∼= G + (J + X) moving ith. Then

since G ≤L H, Left can win H + (J + X) ∼= (H + J) + X moving ith.

Corollary 4.11. If G ≤L H and J ≤L K then G + J ≤L H + K.

We define other related notation as well.

Definition 4.12. We write G <L H if G ≤L H but H �L G. We define the strict

inequalities for the other players analogously.

Proposition 4.13. If G <L H and H ≤L J , then G <L J . Similarly, if G ≤L H

and H <L J , then G <L J .

Proof. We prove only the first claim, as the second claim is similar. By Proposi-

tion 4.9, G ≤L J , so it suffices to show that J �L G. Since G <L H, choose X and

a play order so that Left can win H + X moving ith but does not have a strategy

to win G + X moving ith. Then, since H ≤L J , Left can win J + X moving ith as

well. This witnesses that J �L G.

Definition 4.14. We write G =L H and say that G and H are equal for Left if

G ≤L H and H ≤L G. We define =Ci
and =R analogously.

Proposition 4.15. Note that if this definition is applied to the two-player case

(N = 2), then G =L H implies G =R H.

Proof. If Left does not have a winning strategy for G + X under some play order,

then Right does under the same play order. Similarly, if Left does have a winning

strategy, then Right does not.

As is standard, we define = by the fundamental equivalence (see [8]).

Definition 4.16 (Partizan Equality). G = H if o(G + X) = o(H + X) for all X.

Proposition 4.17 (Components of Equality). G = H exactly when G =Ci
H for

0 ≤ i ≤ N − 1.

Proof. Let X be a game. If G =L H, both o(G + X) and o(H + X) have the

same membership (or lack thereof) of N in the first component, P in the second

component, and an appropriate Oi in each other component. Each other =Ci covers

another potential element in each component, and =R covers the last potential
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element in each component. Thus, o(G + X) = o(H + X). Since X was arbitrary,

G = H.

The proof of the other direction is immediate.

Corollary 4.18. If G = H and J = K then G + J = H + K.

Proof. This follows from Proposition 4.17 (Components of Equality) and 2N appli-

cations of Corollary 4.11.

4.2. Inequality Results

As in the impartial case, the lack of provisos in the definition of a partizan outcome

allows us to generalize some two-player normal-play results to the N -player setting.

Since the player who cannot move is the unique loser, more moves available for Left

can never hurt them due to timing issues.

We first characterize comparisons with the game 0 and apply this to a study of

G−, and then consider more general inequalities.

Many results below are stated only for Left, using ≤L and =L. But, by symmetry,

there are corresponding results for each other player.

4.2.1. Comparisons with Zero

We begin by confirming some general properties of preordered monoids.

Lemma 4.19. Suppose H + J ≤L 0. If 0 ≤L H, then J ≤L 0.

Proof. If 0 ≤L H, then by Proposition 4.10 we may add J to both sides to obtain

J ≤L H + J ≤L 0.

Proposition 4.20. Suppose H + J ≤L 0. If 0 <L H then J <L 0.

Proof. If 0 <L H then 0 ≤L H so that J ≤L 0 by Lemma 4.19. But if J =L 0, then

0 ≤L J , so that Lemma 4.19 yields H ≤L 0, which would contradict 0 <L H.

Proposition 4.21. Suppose H + J <L 0. If 0 ≤L H then J <L 0.

Proof. By Lemma 4.19, J ≤L 0. Since 0 �L H + J and 0 ≤L H, the contrapositive

of Corollary 4.11 yields 0 �L J . Thus, J <L 0.

Next, we examine which games G satisfy 0 ≤L G. In the proofs of Lemmas 4.22

and 4.23 to follow, we take inspiration from Theorem 7 of [5].

Lemma 4.22. If N > 2 and a player other than Left or Right has an option in G,

then 0 �L G.
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Proof. Suppose that Centeri has an option in G for some i with 1 ≤ i ≤ N − 2.

Choose m greater than the depth of the game tree of G, and define the games

Y ∼= m · (1L)
−

(see Definition 4.5) and X to be the game with the two options

XCi ∼= 0 and XCi+1 ∼= Y .

Example game trees for the case of N = 3 are shown below.

Y•

• •

• • • •
...

X

•

• Y

Since N > 2, Centeri+1 is not Left. Note that Left can win X with Centeri
moving first, since Centeri+1 loses in the only line of play. But in G + X, Left

cannot guarantee a win with Centeri moving first.

If Centeri moves to some GCi +X, then Centeri+1 can move to GCi +Y , and then

the players other than Left can outlast all of Left’s available moves in subpositions

of G.

Since Left has a winning strategy in 0 + X but not G + X when Centeri moves

first, 0 �L G.

Lemma 4.23. If N > 2 and Right has an option in G, then 0 �L G.

Proof. Suppose Right has an option in G. Define Y as in the proof of Lemma 4.22

above, and define the game X to have the two options XC1 ∼= Y and XR ∼= 1L.

The case of N = 3 is illustrated below.

X

•

Y •

•

Note that Left can win X moving second, since Center1 loses in the only line of

play. But in G + X, Left cannot guarantee a win moving second.

Right can move to some GR + X. If GR has no Left option, then Left loses

immediately. Otherwise, Left moves to some GRL + X, in which case Center1 can

move to GRL + Y , and Left will run out of moves first.

Since Left has a winning strategy in 0 +X but not G+X when moving second,

0 �L G.
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Proposition 4.24. If G ∼= 0 or G only has Left options, then 0 ≤L G.

Proof. Suppose Left can win X moving ith. Then Left can win G + X moving ith

by making all moves in X, since the other players have no moves available in G.

Theorem 4.25 (Nonnegativity Rule). If N > 2, then 0 ≤L G if and only if G ∼= 0

or G only has Left options.

Proof. This is a combination of Lemmas 4.22 and 4.23, and Proposition 4.24.

Corollary 4.26. Suppose that N > 2, G � 0, 0 ≤Ci
G, and 0 ≤Cj

G. Then i = j.

Proof. By Theorem 4.25 (Nonnegativity Rule), G only has Centeri options and also

only has Centerj options. Since G � 0, we must have i = j.

Corollary 4.27. If N > 2 and G = 0, then G ∼= 0.

Proof. By Proposition 4.17 (Components of Equality) and Definition 4.14, both

0 ≤L G and 0 ≤R G. A contrapositive of Corollary 4.26 yields G ∼= 0.

Note that this dashes any hopes for a good analogue of the two-player result that

1 + (−1) = 0. For example, 1L + (1L)
− 6= 0. However, we confirm in Theorem 4.45

that non-isomorphic partizan games can be equal.

Theorem 4.28 (Nonpositivity Rule). G ≤L 0 if and only if N /∈ o([G]L).

In other words, if Left doesn’t have a winning strategy in G moving first, then G

is no better for Left than 0, in any context. In the two-player case, this corresponds

to the well-known fact that G ≤ 0 exactly when Right can win G playing second.

Proof. For one direction, assume G ≤L 0. Then since Left does not have a winning

strategy in 0+0 moving first, Left does not have a winning strategy in G+0 moving

first.

For the other direction, assume N /∈ o([G]L) and that Left has a winning strategy

in G + X moving ith for some i.

If 2 ≤ i ≤ N , then Left can win all relevant G + X ′ moving (i − 1)st. So, by

induction on X, Left can win all X ′ moving (i−1)st, and so Left can win X moving

ith. Now suppose Left can win G + X moving first.

If a winning move is to some GL + X, then since N /∈ o([G]L), the players

other than Left could play in the GL component to reach some subposition H with

N /∈ o ([H]L) and Left having a winning strategy in H + X moving first. H ≤L 0

by induction on G, so that Left can win X moving first.

In the other case, a winning move is instead to some G+XL. Then Left can win

G + XL moving N th. By induction on X, Left can win XL moving N th as well, so

that XL would be a winning move in X, too.
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Corollary 4.29. If G ∼= {(1L)− | · · · | } then G =L 0.

Proof. Note that 0 ≤L G by Proposition 4.24 (or Theorem 4.25 (Nonnegativity

Rule) if N > 2). But since Left does not win G moving first, G ≤L 0 by Theorem

4.2.1 (Nonpositivity Rule).

Proposition 4.30. If G is comparable to 0 under each ≤Ci
, then one of the fol-

lowing conditions holds, and all cases are possible.

1. G = 0.

2. G <Ci
0 for all i.

3. G =Cj
0 for some j and G <Ci

0 for i 6= j.

4. G >Cj
0 for some j and G <Ci

0 for i 6= j.

Under Cincotti’s convention for ≤Ci
, an additional type of case is possible with

precisely two equalities (see Section 4 of [1] and [2]).

Proof. The above cases are all possible with the following examples. Condition 1

is satisfied by 0. Condition 2 is satisfied by 1L + (1L)−. Condition 3 is satisfied by

a game with only one option in which Centerj can move to (1Cj
)−. Condition 4 is

satisfied by 1Cj
.

If none of the four conditions were satisfied, then G � 0 and G ≥Ci
0 for at least

two distinct values of i. But this would contradict Corollary 4.26.

We also use the two rules for comparisons with 0 to examine the extent to which

G− is similar to a negative for G.

Proposition 4.31. For any game G, G + G− ≤L 0.

Proof. By Proposition 4.6, N /∈ o([G + G−]L). By Theorem 4.2.1 (Nonpositivity

Rule), G + G− ≤L 0.

To emphasize, G + G− ≤Ci
0 for any i by symmetry, not just i = 0.

Corollary 4.32. If N > 2 and G � 0, then G + G− <L 0.

Proof. By Proposition 4.31, G + G− ≤L 0. Since G � 0, G + G− must have

a Right option, so that 0 �L G + G− byTheorem 4.25 (Nonnegativity Rule) (or

Lemma 4.23).

Corollary 4.33. Suppose that N > 2, G � 0, and 0 ≤L G. Then G− <L 0.

Proof. This follows from Corollary 4.32 and Proposition 4.21.
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Intuitively, if G never hurts Left, then Left would prefer no change to giving that

same benefit to each of the other players.

Note that we cannot turn this around.

Proposition 4.34. If N > 2 and G � 0, then 0 �L G−.

Proof. This is immediate from Theorem 4.25 (Nonnegativity Rule).

4.2.2. General Inequalities

In the two-player case, there is a recursive characterization of ≤ (see Thm. II.1.20

in [8]). There is a similar partial characterization of ≤L in the N -player setting.

Theorem 4.35 (Inequality Test). Let G ∼=
{
GL | GC1 | · · · | GCN−1

}
and H ∼={

HL | HC1 | · · · | HCN−1
}

. Suppose that for any option GL there is a corresponding

HL such that GL ≤L HL. Further suppose that for 1 ≤ i ≤ N − 1 and for all HCi

there is a corresponding GCi such that GCi ≤L HCi . Then G ≤L H.

Proof. Let X be a game. First, suppose that Left can win G + X moving first. If

Left can win by moving to some GL + X, then they can win GL + X moving last.

Using the assumption, choose an HL so that Left can win HL + X moving last.

Then Left can win H + X moving first by moving to HL + X. If Left cannot win

G+X by moving in G, then Left can win some G+XL moving last. By induction

on X, Left can win H +XL moving last, and Left can still win H +X moving first.

Now suppose that Left can win G + X moving jth for some j with 2 ≤ j ≤ N .

Set i = N−j+1. So, with Left moving (j−1)st, Left can win any G+XCi and any

GCi +X. Then, with Left moving (j−1)st, Left can win any H+XCi (by induction

on X) or HCi + X (since every HCi has a corresponding GCi with GCi ≤L HCi).

But those are all of the Centeri options of H + X, so Left can win H + X moving

jth.

For all starting players, we have shown that Left having a winning strategy in

G + X implies they have one in H + X, so G ≤L H by Definition 4.8.

Proposition 4.36. Suppose that H is obtained from G by replacing various options

with options for the same player that are equal to the original ones. More precisely,

suppose that each of the following holds:

• G ∼=
{
GC0 | GC1 | GC2 | · · · | GCN−2 | GCN−1

}
• H ∼=

{
HC0 | HC1 | HC2 | · · · | HCN−2 | HCN−1

}
• For 0 ≤ i ≤ N − 1,

– for all G′ ∈ GCi , there exists H ′ ∈ HCi satisfying G′ = H ′;

– for all H ′ ∈ HCi , there exists G′ ∈ GCi satisfying G′ = H ′.
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Then G = H.

Proof. By Proposition 4.17 (Components of Equality), all of the options of G obey

all inequalities with the corresponding options of H. For example, if N > 2, then

H ′ ≤C1
G′ for all G′ ∈ GC2 and H ′ ∈ HC2 . Applying Theorem 4.35 (Inequality

Test) 2N times and using Proposition 4.17 (Components of Equality) again, results

in G = H.

Theorem 4.37 (Deleting Dominated Options). Let G be a game with at least two

Left options GL1 and GL2 , which satisfy GL1 ≤L GL2 . Suppose that H is obtained

from G by removing the Left option GL1 . Then H =L G.

Proof. Since all the options of H are options of G, the Theorem 4.35 (Inequality

Test) yields H ≤L G. Since all the options of G are options of H except for GL1 ,

and GL1 ≤L GL2 , the Theorem 4.35 (Inequality Test) yields G ≤L H. The claim

follows from Definition 4.14 for =L.

Note that by Proposition 4.15, this reduces to the standard theorem in the two-

player case (see Thm. II.2.4 in [8]).

Unfortunately, with more than two players, we only obtain equality for a particu-

lar player. In fact, deleting a dominated option need not even preserve the outcome

of the game.

Proposition 4.38. If N > 2, there exist games G and H satisfying G =L H by

Theorem 4.37 (Deleting Dominated Options), but o(G) 6= o(H).

Proof. There exist games JL1 and JL2 such that for the games with no options

for players other than Left, G ∼=
{
JL1 , JL2 | · · · |

}
and H ∼=

{
JL2 | · · · |

}
, we have

G =L H, but o (G) 6= o (H).

Take JL1 to be a game which allows each player to move once in turn, starting

with Center1 and ending with Left, and then Center1 may move once more (so that

Center2 loses). Take JL2 to be the same, except the last option is another move for

Left (so that Center1 loses) instead of a move for Center1.

The game trees for the case of N = 3 are illustrated below.
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JL1

•

•

•

•

•

JL2

•

•

•

•

•
By Theorem 4.35 (Inequality Test), 1C1

≤L 1L. With this as a starting point,

we work our way up the game trees to see that multiple applications of Theorem

4.35 (Inequality Test) yield JL1 ≤L JL2 . Thus, by Theorem 4.37 (Deleting Domi-

nated Options), we can delete the dominated option to find
{
JL1 , JL2 | · · · |

}
=L{

JL2 | · · · |
}

.

To distinguish the outcomes of the two games, we examine the restrictions[{
JL1 , JL2 | · · · |

}]
L

and
[{
JL2 | · · · |

}]
L

to see if Center2 has a winning strategy.

In
[{
JL2 | · · · |

}]
L

, the only line of play leads to [1L]C1
. In this case, Center1

loses, and so Center2 wins. Thus, o
([{

JL2 | · · · |
}]

L

)
= {N,O2, . . . ,ON−1}.

But in
[{
JL1 , JL2 | · · · |

}]
L

, Left may choose to move to JL1 for a line of play

ending with [1C1 ]C1
followed by [0]C2

. In this case, Center2 loses. Thus,

o
([{

JL1 , JL2 | · · · |
}]

L

)
= {N,O3, . . . ,ON−1} = o

([{
JL2 | · · · |

}]
L

)
− {O2}.

Since the outcomes of the Left restrictions are not equal, o(G) 6= o(H).

Theorem 4.39 (Bypassing Reversible Options). Let G be a game, and suppose

that some N th option satisfies GL̂Ĉ1···R̂ ≤L G. Put

G′ ∼=
{
GL̂Ĉ1···R̂L, GL′ | GC1 | · · · | GCN−2 | GR

}
,

where GL̂Ĉ1···R̂L ranges over all Left options of GL̂Ĉ1···R̂, and GL′ ranges over all

Left options of G except for GL̂. Then G′ =L G.

Proof. Suppose Left can win G + X moving first. If they can win by moving to

some G + XL, then by induction they could win G′ + XL moving last, so they can

win G′+X moving first. And if Left can win by moving to some GL′ +X (not GL̂)

then they can do the same in G′ + X.

Define H ∼= GL̂Ĉ1···R̂ + X. The interesting case is if Left can win G + X by

moving to GL̂ + X. Then the other players can respond by moving to H, so Left

can win H moving first.
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If Left can win H by moving to some GL̂Ĉ1···R̂ +XL, then Left can win G+XL

moving last (since GL̂Ĉ1···R̂ ≤L G). But then Left could win G + X by moving to

G + XL, so we’re in the former case again. And if Left can win H by moving to

some GL̂Ĉ1···R̂L + X, they could do the same in G′ + X.

Now suppose Left has a winning strategy in G + X moving ith for some i with

2 ≤ i ≤ N − 1. Then they can win all GCN−i+1 + X and G + XCN−i+1 moving

(i− 1)st. But GCN−i+1 + X are some of the CenterN−i+1 options of G′ + X. And,

by induction, Left can win the other CenterN−i+1 options which have the form

G′ + XCN−i+1 .

Therefore, G ≤L G′. It remains to show that G′ ≤L G.

Suppose Left can win G′ + X moving first. Then there are three cases.

If they win by moving to some GL′ +X, they can do the same in G+X. If they

win by moving to G′+XL, then by induction they can win by moving to G+XL. If

they win by moving to GL̂Ĉ1···R̂L +X, this means they could also win GL̂Ĉ1···R̂ +X

by moving to GL̂Ĉ1···R̂L + X. Since GL̂Ĉ1···R̂ ≤L G, Left can win G + X moving

first.

The other cases where Left can win G′ + X moving ith for some i with 2 ≤ i ≤
N − 1 are routine.

Since we proved both inequalities, G′ =L G.

Unfortunately, as with Theorem 4.37 (Deleting Dominated Options), Theorem

4.39 (Bypassing Reversible Options) need not preserve outcomes (cf. Proposi-

tion 4.38).

Proposition 4.40. If N > 2, then there exists a game G such that G =L 0 by

Theorem 4.39 (Bypassing Reversible Options) , but o(G) 6= o(0).

Proof. Take G ∼= {H | · · · | } where H only has two options, both for Center1; the

options are 0 (to make Center2 lose) and 1C2
+ · · · + 1CN−1

. The case of N = 3 is

illustrated below.

G

H

• •

•

Note that 0 ≤L G by Proposition 4.24 (or Theorem 4.25 (Nonnegativity Rule)).

Thus, by Theorem 4.39 (Bypassing Reversible Options), we can bypass the Left
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option through 0 to find G =L 0. (This could also be verified with Theorem 4.2.1

(Nonpositivity Rule) as in the proof of Corollary 4.29.)

To distinguish the outcomes of the two games, we examine [G]L and [0]L to see

whether the previous player (Right) has a winning strategy.

In [0]L, Left loses immediately, so o ([0]L) = {O1, . . . ,ON−1}. But in [G]L, Left

must move to [H]C . Then Center1 may choose to move to 0 so that Center2 loses.

Thus,

o ([G]L) = {O1,O3, . . . ,ON−1} = o ([0]L)− {O2}.

Since the outcomes of the Left restrictions are not equal, o(G) 6= o(0).

4.3. Integers

Earlier, we defined games with a single move for various players. For example,

1C1
∼= { | 0 | · · · | }. Following [1], we can extend these definitions to define various

“integers”. We can similarly define 2L ∼= {1L, 0 | · · · | }, 3L ∼= {2L, 1L, 0 | · · · | } etc.

And analogously for the other players.

In this subsection, as a sort of case study and application of the earlier results,

we examine these integers and some related games in detail.

4.3.1. Comparing Integers

Proposition 4.41. If 0 ≤ k < m, then k · 1L <L m · 1L.

Proof. By Proposition 4.24 (or Theorem 4.25 (Nonnegativity Rule) if N > 2),

0 ≤L 1L. Then by Proposition 4.10, we can add j · 1L to both sides, to obtain

j · 1L ≤L (j + 1) · 1L for all j. By Proposition 4.13, a strict inequality propagates,

so it remains to show that (j + 1) · 1L �L j · 1L for all j.

Note that by Proposition 4.6, Left loses j · 1L + (j · 1L)
−

moving first. But by

counting moves, we see that Left wins (j + 1) · 1L + (j · 1L)
−

moving first.

Proposition 4.42. If 1 ≤ k and 1 ≤ i < N , then k · 1Ci
<L 0.

Proof. Since 1Ci
has no Left options, Left loses immediately when moving first, and

so k · 1Ci
≤L 0 by Theorem 4.2.1 (Nonpositivity Rule).

If N = 2, k · (−1) � 0 is well-known. For N > 2, since 1Ci
has an option for

a player other than Left, Theorem 4.25 (Nonnegativity Rule) yields k · 1Ci
�L 0.

Putting both inequalities together, k · 1Ci
<L 0.

Proposition 4.43. If N > 2, 1 ≤ i, j ≤ N−1, i 6= j, and 1 ≤ k, `, then kCi
�L `Cj

.

By symmetry, this means that integers for distinct non-Left players are incom-

parable for Left.
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Proof. Note that Left wins kCi
+ (1Cj

)− moving first since Centerj has no move

available. But Left loses `Cj
+ (1Cj

)− moving first since Left has no move available

after each player has moved once (regardless of which move Centerj makes).

Lemma 4.44. If k < m, then m · 1Ci
<L k · 1Ci

for 1 ≤ i ≤ N − 1.

Proof. First, we prove ≤L. If k = 0, then this follows immediately from Theorem

4.35 (Inequality Test) since m · 1Ci
has no Left options and 0 · 1Ci

has no non-Left

options. If k > 0, then we can add k · 1Ci
to both sides of (m − k) · 1Ci

≤L 0 by

Proposition 4.10.

To show that the inequality is strict, note that Left wins k · 1Ci
+ (m · 1Ci

)
−

moving first (since Centeri runs out of moves), but not m · 1Ci
+ (m · 1Ci

)
−

.

Theorem 4.45. For k ≥ 0, kL = k · 1L.

Proof. k = 0 and k = 1 are trivial, so we assume k ≥ 2. By definition, kL ∼=
{0, 1L, 2L, . . . , (k − 1)L | · · · | }. By induction and Proposition 4.36 allowing the

replacement of options with equals, we may assume kL = {0, 1L, 2·1L, . . . , (k−1)·1L |
· · · | }.

By Proposition 4.41, we see that (k− 1) · 1L is the best of these options for Left.

Thus, we can repeatedly Theorem 4.37 (Delete Dominated Options) in kL to find

kL =L k · 1L. By Proposition 4.17 (Components of Equality), it remains to show

that kL =Ci
k · 1L for 1 ≤ i ≤ N − 1.

First, we show that kL ≤Ci k · 1L. Theorem 4.35 (Inequality Test) adapted

for ≤Ci
says that for any GCi we need a corresponding HCi , but neither game

has a Centeri option. And neither game has options for players other than Left

and Centeri, either. So we just need to verify that for all (k · 1L)L, there is a

corresponding kLL with kLL ≤Ci
(k ·1L)L. But the only option (k ·1L)L is (k−1) ·1L,

which is also a Left option of kL (up to equality), so that (k−1) ·1L ≤Ci
(k−1) ·1L

suffices.

Next, we show that k · 1L ≤Ci
kL. Similarly to the other direction, we need only

handle each Left option of kL. It remains to check that (k − 1) · 1L ≤Ci
j · 1L for

j ≤ k − 1. This follows immediately from Lemma 4.44 with players switched.

Since k · 1L ≤Ci kL and kL ≤Ci k · 1L, we have kL =Ci k · 1L for 1 ≤ i ≤ N − 1.

Since we also verified that kL =L k ·1L, Proposition 4.17 (Components of Equality)

yields kL = k · 1L, as desired.

4.3.2. Sums of Integers

Proposition 4.46. Evaluating the outcome of a sum of integers (such as 3C2)

reduces to the case of evaluating the outcome of a game of the form k0 · 1C0 + · · ·+
kN−1 · 1CN−1

for nonnegative integers k0, . . . , kN−1.
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Proof. Note that by Theorem 4.45, a sum of multiple integers for the same player

can be reduced to a sum of ones; for example, kL + jL = (k+ j) · 1L. Corollary 4.18

tells us that we can make such replacements throughout a sum of integers for various

players. By Definition 4.16 (Partizan Equality), the outcome doesn’t change when

a game is replaced by an equal one.

Proposition 4.47. Let k0, . . . , kN−1 be nonnegative integers with minimum kmin,

and i be an integer with 0 ≤ i ≤ N − 1. If j is the least nonnegative integer with

ki+j = kmin or ki+j−N = kmin, then

o
([

k0 · 1C0
+ · · ·+ kN−1 · 1CN−1

]
Ci

)
= {O0, . . . ,ON−1} − {Oj}.

Proof. Suppose that Centeri moves first in k0 · 1C0
+ · · · + kN−1 · 1CN−1

. There is

only one line of play. After Nkmin moves, all coefficients that were equal to kmin

have been reduced to 0, so that the next player to move (starting with Centeri)

with a corresponding 0 coefficient will lose, and all other players will win.

Corollary 4.48. In a sum of the form kCi
+K · (1Ci

)
−

with K > k, Centeri loses

regardless of how they play or which player moves first.

Proof. By Propositions 4.46 and 4.47, all players other than Centeri have winning

strategies, regardless of which player moves first. But the players other than Centeri
have no choice in their moves, so there is no other way they could play to allow

Centeri to win.

4.3.3. Games Less than One

In the two-player context, there are results such as {−1 | } = 0, since a move that

benefits Right can’t help Left. But with three or more players, things are more

subtle.

Theorem 4.49. If N > 2, then for 1 ≤ i ≤ N − 1,

0 <L · · · <L {3Ci
| · · · | } <L {2Ci

| · · · | } <L {1Ci
| · · · | } <L 1L.

Proof. There are four claims that must be verified.

1. 0 ≤L {kCi
| · · · | } for all k.

2. {kCi
| · · · | } �L 0 for all k.

3. {mCi
| · · · | } ≤L {kCi

| · · · | } for k < m.

4. {kCi
| · · · | } �L {mCi

| · · · | } for k < m.
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Claim 1 follows from Theorem 4.25 (Nonnegativity Rule) (Theorem 4.25).

Claim 2 follows from the fact that Left wins each {kCi
| · · · | } moving first (here

we use N > 2), but does not win 0 moving first.

Claim 3 follows from Theorem 4.45 to convert the integers into equal sums of

1Ci
, Proposition 4.36 to replace them in the options, Lemma 4.44 to compare those

sums of 1Ci
, and one application of Theorem 4.35 (Inequality Test) to obtain the

desired inequality.

Claim 4 requires more care. To witness the inequality, we define a game G

differently in the cases i = 1 and i > 1.

If i = 1, then define G to be the game with only one option in which Center2
can move to (m − 1) · 1L + (m − 1) · 1C2 +

∑
3≤j≤N−1

m · 1Cj . If 2 ≤ i ≤ N − 1,

then define G to be the game with only one option in which Center1 can move to

(m− 1) · 1L + (m− 1) · 1C1
+

∑
2≤j≤N−1, j 6=i

m · 1Cj
.

Either way, Left has a winning strategy in {kCi | · · · | }+G moving first. The only

lines of play lead to a position of the form k̂Ci
+ (m−1) · (1Ci

)
−

for some k̂ ≤ k−1,

with Left to move. From here, by Corollary 4.48, Centeri will lose even if they play

well. However, Left does not have a winning strategy in {mCi
| · · · | } + G moving

first. Assuming Centeri plays well, play leads to a position equal to ((m− 1) · 1L)+

((m− 1) · 1L)
−

with Left to move, so that Left does not have a winning strategy

by Proposition 4.6.

Corollary 4.50. If N = 3, our ≤L is incompatible with the one defined by Cincotti

in Subsection 2.3 of [1].

Proof. Note that 0 <L {1C1
| | } by Theorem 4.49. But under Cincotti’s recursive

definition, we would have 0 ≥L {1Ci
| | } since 1Ci

�L 0.

5. Conclusions

Throughout this paper, we have seen a variety of generalizations of two-player

theorems, and regularity in results that apply for N > 2. It appears that the

normal play convention considered in this paper may be the easiest to investigate

for N players, without discarding parts of the game tree (as in [1]) or making any

assumptions on how players play (as in [3] and other papers mentioned in I.4 of [8]).

That said, when considering combinatorial games with more than two players,

there is a world of gaps and fundamental questions that remain unsettled.

For just the case of impartial three-player games, there are other similar play

conventions worth considering, each depending on the winner(s) and loser(s) of 0,

analogous to misère play. In [6], Propp analyzed the convention in which Previous is
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the unique winner of 0. But that still leaves four other non-trivial play conventions

that do not seem to have been investigated in the literature. For example, consider

the similar convention in which Other is the unique winner of 0. The two conventions

other than normal play with a unique loser for 0 may be particularly difficult to

analyze.

Question 1. For each of the remaining four non-trivial play conventions, investigate

the sum table analogous to Table 1.

Even when restricting ourselves to normal play, much is still unknown. As noted

at the end of Subsection 2.2.2, we can build many equal impartial games by replacing

one absorbing subposition with another. Are there other equal games? For instance,

perhaps 3 · ∗ = 6 · ∗ in the three-player case.

We might hope to find a recursive test for equality similar to the two-player

misère Theorem V.3.6 from [8]. However, no simple translation of that result can

handle the three-player case under normal play. A key part of that argument is

Lemma V.3.3, which uses T ∼=
{
G−1 , G

−
2 , . . . , G

−
k , U

}
and then considers G+T and

H +T . In that case, options such as Gi +T and G+G−i have an option of the form

Gi + G−i with N /∈ o
(
Gi + G−i

)
. We can therefore conclude that O /∈ o(Gi + T ).

But without a property such as “O ∈ o
(
Gi + G−i

)
for all Gi” or “P ∈ o

(
Gi + G−i

)
for some Gi”, we can’t conclude anything further about options of G + T such as

Gi + T , no matter what we know about G + U .

Question 2. For N > 2, is there a non-isomorphic pair of equal impartial games

that do not have an absorbing subposition?

Even without more ability to test for equality, it would be nice to complete

Proposition 2.16 about the outcomes of 3 ·G. While there were no surprises under

normal play for doubling, Claim 9 from Section 4 of [6] suggests that there could be

another obstruction to the outcome of 3 ·G aside from the obstructions that apply

to all sums and Proposition 2.15 about move mirroring.

Question 3. Under normal play, is there a game G with three-player outcome N
such that P ∈ o(3 ·G)?

Restricting ourselves to the particular game of N -player Nim for N > 2, it is not

certain how similar things must be to the three-player case.

Question 4. Are all Nim positions N -periodic?

This need not hold outside of normal play, even for N = 3. For example, in the

three-player convention in which Other is the unique winner of 0, o(2 · ∗3) = O, but

o(3 · ∗+ 2 · ∗3) = ∅.
In the proof of Corollary 3.28, we show that certain very large Nim positions are

absorbing in the context of all impartial games. The author suspects this can be

improved considerably.
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Question 5. If N > 2, do N · ∗2 and 2 · ∗N have the absorbing property in the

Nim Quotient?

If so, then 2(N − 1) · ∗2 and N · ∗N are absorbing (for all impartial games) by

Theorem 3.14 (Absorbing Game Construction) (Theorem 3.14).

The above is far from an exhaustive list of avenues for future research. Loopy

games, nondisjunctive compounds, other case studies such as Rhombination from

[3], etc. are all wide open.
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Appendix

In this appendix, we follow the compact notation for impartial games used in V.2

of [8] for analyzing two-player misère play.

Specifically:

• ∗GHJ denotes the game {∗G, ∗H, ∗J}; for example, note that ∗21 denotes

{∗2, ∗}, rather than a nim-heap of size twenty-one;

• ∗G# denotes the game {∗G};

• ∗GH denotes ∗G + ∗H.

Some examples of this notation from [8] are as follows.

• ∗2#320 ∼= {{∗2} , ∗3, ∗2, 0}

• ∗2##2
∼= {{∗2}}+ ∗2

• ∗22##
∼= {{∗2 + ∗2}}

The following tables are all for impartial games with three players.

∅ N O P NO OP PN
∅ ∗2#2 × × × × × ×
N ∗3 ∗(1#1)20 ∗2 × ∗(1#1)(20)0 × ×
O ∗22 × ∗2# × × × ×
P ∗221# × × × × × ×
NO ∗2121 ∗21 ∗211 ∗(210)# ∗21 ∗(1#1)1 ∗1#
OP ∗(21)# × ∗(211)# ∗211# × 0 ×
PN ∗(21)## ∗210 ∗(1#21)# × ∗ × ×

Table 7: Doubling examples — The row is o(G) and the column is o(G + G).

∅ O P OP
∅ ∗223 × × ×
N ∗2 ∗((1#1)1)20 ? ?
O ∗2# ∗1#2 × ×
P ∗2#1# × × ×
NO ∗21 ∗(210)# ∗(21)### ∗1#
OP ∗211# ∗(210)## ∗(21)# 0
PN ∗2#1#0 ∗210 ∗1#0 ∗

Table 8: Trebling Examples — The row is o(G) and the column is o(3 ·G).
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∅+ ∅ = ∅ ∗2#2 ∗2#2 O + PN = N ∗22 ∗
∅+N = ∅ ∗2#2 ∗2 O + PN = P ∗2# ∗
∅+N = N ∗2###21# ∗2 O + PN = PN ∗1#2 ∗
∅+O = ∅ ∗2#2 ∗2# P + P = ∅ ∗2## ∗2##

∅+ P = ∅ ∗2#2 ∗2## P +NO = ∅ ∗2## ∗1#1
∅+NO = ∅ ∗222 ∗1#1 P +NO = N ∗221# ∗(1#0)#
∅+NO = N ∗222 ∗1# P +NO = O ∗2## ∗1#
∅+NO = O ∗2#2 ∗1#1 P +NO = NO ∗221# ∗1#
∅+NO = NO ∗2#2 ∗1# P +OP = ∅ ∗2## ∗21#
∅+OP = ∅ ∗2#2 0 P +OP = P ∗2## 0
∅+ PN = ∅ ∗222 ∗ P + PN = ∅ ∗22# ∗21##

∅+ PN = N ∗2#2 ∗ P + PN = N ∗2## ∗
N +N = ∅ ∗2 ∗20 NO +NO = ∅ ∗31 ∗(1#0)#
N +N = N ∗2 ∗1#20 NO +NO = N ∗1# ∗1#1
N +N = O ∗2 ∗2 NO +NO = O ∗211 ∗211
N +N = NO ∗2 ∗1#10 NO +NO = P ∗1# ∗(1#0)#
N +O = ∅ ∗2 ∗22 NO +NO = NO ∗1#1 ∗1#1
N +O = N ∗2 ∗2# NO +NO = OP ∗(1#1)1 ∗(1#1)1
N + P = ∅ ∗2### ∗2## NO +NO = PN ∗1# ∗1#
N + P = N ∗2 ∗2## NO +OP = ∅ ∗1#1 ∗21#
N +NO = ∅ ∗2#2 ∗1# NO +OP = N ∗1# ∗(1#0)##

N +NO = N ∗1#10 ∗1# NO +OP = O ∗1# ∗21#
N +NO = O ∗2 ∗211 NO +OP = NO ∗1# 0
N +NO = P ∗2### ∗1# NO + PN = ∅ ∗211 ∗1#0
N +NO = NO ∗20 ∗1# NO + PN = N ∗(1#0)# ∗1#0
N +NO = OP ∗2 ∗(1#1)1 NO + PN = O ∗(1#0)# ∗
N +NO = PN ∗2 ∗1# NO + PN = P ∗1# ∗21##

N +OP = ∅ ∗2### ∗21# NO + PN = NO ∗211 ∗
N +OP = N ∗2 0 NO + PN = OP ∗1# ∗
N + PN = ∅ ∗2##2 ∗ NO + PN = PN ∗1#1 ∗
N + PN = N ∗1#10 ∗ OP +OP = ∅ ∗21# ∗21#
N + PN = O ∗2### ∗ OP +OP = O ∗1## ∗(1#0)##

N + PN = NO ∗2 ∗ OP +OP = P ∗1## ∗21#
O +O = ∅ ∗2# ∗22 OP +OP = OP 0 0
O +O = O ∗2# ∗2# OP + PN = ∅ ∗21# ∗21##

O + P = ∅ ∗2# ∗2## OP + PN = N ∗21# ∗
O +NO = ∅ ∗22 ∗21 OP + PN = P ∗(1#0)## ∗1###

O +NO = N ∗2# ∗1# OP + PN = PN 0 ∗
O +NO = O ∗22 ∗1#1 PN + PN = ∅ ∗21## ∗21##

O +NO = NO ∗1#2 ∗1# PN + PN = N ∗ ∗1#0
O +OP = ∅ ∗1#2 ∗21# PN + PN = O ∗1### ∗21##

O +OP = O ∗2# 0 PN + PN = NO ∗ ∗
O + PN = ∅ ∗2# ∗1#0

Table 9: Examples of pairs of impartial games witnessing all outcomes of sums


