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Abstract
We give relations between the joint distributions of multiple hook lengths and of
frequencies and part sizes in partitions, extending prior work in this area. These
results are discovered by investigating truncations of the Han/Nekrasov-Okounkov
hooklength formula and of (k, j)-colored partitions, a unification of k-colored par-
titions and overpartitions. We establish the observed relations at the constant and
linear terms for all n, and for j = 2 in their quadratic term, with the associated
hook/frequency identities. Further results of this type seem likely.

1. Introduction

Identities relating the number of parts of a given size in a partition to other statistics,
such as the number of repetitions of part sizes or the number of hooks of a given
length, are of classical interest in the theory of partitions. Two known identities
are the following.

Proposition 1 ([9]). The total number of parts of size i appearing in all partitions
of n equals the total number of times among the partitions of n that any part size
is repeated at least i times.

Proposition 2 ([4], [3]). The number of hooks of length i appearing in all par-
titions of n is equal to i times the total number of parts of size i appearing in all
partitions of n.

Indeed, Bessenrodt and Han [5] showed that the joint distribution of hook length
and part size is symmetric.
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Bacher and Manivel [3] give further relations between powers of parts and fre-
quencies of appearance of part sizes. They define vectors �, ⌫, and �, in which
�k is the k-th part of partition �, ⌫k is the multiplicity of part size k, and ��k is
the number of part sizes in � repeated at least k times. Among other results they
give, in their Theorem 1.4, generating functions for

��k
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�
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�⌫k

d

�
. Our Theorem 4

completes this theorem for the third vector �, giving
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We illustrate with the partitions of 9. Among these, there are four in which two
parts are repeated at least twice, and another eighteen in which one part is repeated
at least twice. In the remaining eight the parts are distinct. Hence
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in which the coe�cient of q9 is 4, as expected.
This theorem can be extended to any collection of multiplicities: our Theorem 7

gives a procedure which algorithmically yields
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We execute this for the coe�cient
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Let fk(n, a) be the number of partitions of n with exactly a hooks of size k. In
[8], Han gives the following generating function.

Proposition 3. Fix k and let Fk(q, u) be the two-variable generating function
counting partitions by their number of hooks of size k. Then

Fk(q, u) :=
1X

n=0
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qnuafk(n, a) =
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Let Hi(�) be the number of hooks of size i in the partition �. Di↵erentiation
and specialization of the above identity at u = 1 yields the generating functionsP1

n=0 qn
P
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�Hi(�)
d

�
. By a combinatorial mapping we are able to establish a

family of identities for the joint counts of hooks of size 1 and 2, including Corollary
1 of Theorem 7, the identity
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These results are established in order to prove a conjecture from the earlier paper
[7], which initially motivated these investigations. Although less than a complete
generating function, we think that this result is suggestive of further utility in this
line of investigation, and the combinatorial observations involved are interesting in
their own right. In particular, the result above is necessary to establish the following
relation, which is the heart of Theorem 6:
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This in turn is a statement which relates the 2-hook truncation of the Han/Nekrasov-
Okounkov hooklength formula to a 2-finitized version of the generating function for
the (k, j)-colored partitions, which we define more completely in the next section.
Every such truncation should yield a similar identity.

In the next section of the paper we give all necessary definitions and notations.
In Section 3 we prove an infinite family of relations on the linear truncations of
the series involved. In Section 4 we prove Theorems 4 through 6, establishing
relations at the q2 terms of the underlying series. In the final section we conclude
with comments and consideration of what open questions seem to hold the most
potential from here.

2. Definitions

This section will formalize the notation used in the Introduction and throughout
the rest of the paper. Most formal definitions here will be the same as those in [7],
for reference. The standard reference for partition theory is [2].

A partition of n is a weakly decreasing sequence of positive integers �i which sums
to n, given by � = (�1, . . . ,�j). We also use the frequency notation � = 1⌫12⌫2 . . .
to indicate a partition in which there are ⌫1 parts of size 1, ⌫2 parts of size 2, etc.
Let � ` n denote that � partitions n. The number of partitions of n, p(n), has the
generating function

P (q) =
1X

n=0

p(n)qn =
1Y

n=1

1
1� qn

.

When relevant, we will use the standard notation for the q-Pochhammer symbol,
also known as the q-shifted factorial:
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(a; q)n = (1� aq0)(1� aq1) . . . (1� aqn�1),
(a; q)1 = lim

n!1
(a; q)n,

(q)1 := (q; q)1 =
1Y

k=1

(1� qk).

Then (q)�1
1 = P (q).

The set of k-colored whole numbers is Nk = {ab|a, b 2 N, 1  b  k}, with
magnitude |ab| = a and order ab < cd if a < c or ((a = c) and (b < d)). A k-colored
partition of an integer n is a weakly decreasing sequence � = (�1, . . . ,�l) with all
�i 2 Nk such that the sum of the �i is n.

The k-colored partitions are partitions in which each part may be assigned one
of k available colors, with the order of said colors not mattering. By convention, we
denote the colors of a partition as subscripts, listed in weakly decreasing order for
parts of the same size. The 2-colored partitions of 3 are

32, 31,

22 + 12, 22 + 11, 21 + 12, 21 + 11,

12 + 12 + 12, 12 + 12 + 11, 12 + 11 + 11, 11 + 11 + 11.

The generating function for the number of k-colored partitions of n, ck(n), is
formed by raising the generating function for a basic partition to the kth power:

Ck(q) :=
1X

n=1

ck(n)qn =
1Y

n=1

1
(1� qn)k

.

Overpartitions are partitions in which the last part of a given size is either
marked, or not. The overpartitions of 3 are

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

The generating function for p(n), the number of overpartitions of n, is:

P (q) :=
1X
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.

Overpartitions are an active area of research, with authors including Corteel &
Lovejoy, Andrews, and others ([6], [1], etc.).

In the language of k-colored partitions, overpartitions can be considered 2-colored
partitions in which only one color is allowed per size of part. From this viewpoint,
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in [7], the second author defined the (k, j)-colored partitions: partitions in which at
most j of k available colors can appear for a given size of part. That paper gave
the following generating function for ck,j(n), the number of such partitions:

Ck,j(q) :=
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Overpartitions are then the (2, 1)-colored partitions.
If in Ck,j(q) we let k = 1 � b and let j increase without bound, we obtain the

following for C1�b,1(q):

C1�b,1(q) :=
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If we expand this expression with indefinite j we obtain a formula dependent on
the multiplicities of parts in partitions �. As we shall see later, a natural truncation
is to treat any multiplicity greater than j as simply j.

The emphFerrers diagram of a partition (�1, . . . ,�r) is a stack of unit-size squares
justified to the origin in the fourth quadrant. For example, the Ferrers diagram of
a partition of 20, � = (5, 4, 3, 3, 2, 2, 1), is
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If we expand this expression with indefinite j we obtain a formula dependent on
the multiplicities of parts in partitions �. As we shall see later, a natural truncation
is to treat any multiplicity greater than j as simply j.

The emphFerrers diagram of a partition (�1, . . . ,�r) is a stack of unit-size squares
justified to the origin in the fourth quadrant. For example, the Ferrers diagram of
a partition of 20, � = (5, 4, 3, 3, 2, 2, 1), is

The hook length hij of the square with lower right corner at (�i,�j) in the plane
is the count of the number of squares both to its right and directly below it in the
Ferrers diagram, including itself. So, the hook length of the (�2,�2) square in the
Ferrers diagram above is 7. This has been illustrated below, filling in the other
hook lengths for reference.

The hook length hij of the square with lower right corner at (�i,�j) in the plane
is the count of the number of squares both to its right and directly below it in the
Ferrers diagram, including itself. So, the hook length of the (�2,�2) square in the
Ferrers diagram above is 7. This has been illustrated below, filling in the other
hook lengths for reference.
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The formula for C1�b,1 given above is precisely the formula considered by Guo-
Niu Han [8], and Nekrasov and Okounkov [10] in their famous hooklength formula
giving the coe�cients on q

n as polynomials in the complex indeterminate b:

HNO(q) :=
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where the hij are the hooklengths that appear in the Ferrers diagram of a partition
� of n.

Since the two series are equal in the infinite limit of the first, it is natural to ask
about intermediate finite cases. Two natural truncations of each function are to set
j to be a finite value in C1�b,j and to restrict the Han-Nekrasov/Okounkov fomula,
hereinafter HNO, to consider hooks of size at most j.

We denote the truncated hooklength formula by HNOj(q):

HNOj(q) :=
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This paper will explore the combinatorial and algebraic relationship of the two
formulae under truncation by j, expanding upon previous conjectures.

We define Hj(�) as the number of hooks hi,k = j in a partition �. If � is clear
from context, we shorten this to Hj . Also,

P
�`n Hj(�) = Hj(n), the total number

of hooks of size j in all partitions of n.

The conjugate of a partition �, denoted by �
0, is the partition of � reflected across

the diagonal (in the plane description, across the line y = �x). A partition fixed un-
der conjugation is a self-conjugate partition. The conjugate of � = (5, 4, 3, 3, 2, 2, 1)
is �0 = (7, 6, 4, 2, 1), illustrated below. The hooklengths have again been filled in to
demonstrate how the number of hooks of size k in � is the same as in its conjugate.
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We define the following vectors: � = (�1, . . . ,�t) itself, the n-dimensional vector
representing our partition and as previously defined; ⌫ as in Bacher and Manivel
[3], where ⌫i counts the multiplicity of parts of size i in the partition � = 1⌫12⌫2 . . . ;
and the vector �, where �j counts |{⌫i = j}| in ⌫. This can be thought of as a
vector counting the ”multiplicity of multiplicities”:

⌫ = (⌫1, ⌫2, . . . , ⌫n), ⌫i = |{�j = i}|

⌫(n) = (⌫1(n), ⌫2(n), . . . , ⌫n(n)) =
X
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⌫(�)
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�(n) = (�1(n), �2(n), . . . , �n(n)) =
X

�`n

�(�).

We also define ��k = �k + �k+1 + . . . .

Bacher and Manivel prove a multitude of theorems regarding these vectors. Im-
portant for us in this paper will be:

⌫k(n) =
nX

i=k

�i(n) = ��k.

They prove several theorems regarding d-th moments of �k and ⌫k, particularly
generating functions. We extend this list by providing the generating function for
the d-th moment of ��k.

3. Constant and Linear Equivalence

We begin with a useful expression for the truncation of C1�b,j(q).

We define the following vectors: � = (�1, . . . ,�t) itself, the n-dimensional vector
representing our partition and as previously defined; ⌫ as in Bacher and Manivel
[3], where ⌫i counts the multiplicity of parts of size i in the partition � = 1⌫12⌫2 . . . ;
and the vector �, where �j counts |{⌫i = j}| in ⌫. This can be thought of as a
vector counting the ”multiplicity of multiplicities”:

⌫ = (⌫1, ⌫2, . . . , ⌫n), ⌫i = |{�j = i}|

⌫(n) = (⌫1(n), ⌫2(n), . . . , ⌫n(n)) =
X

�`n

⌫(�)

� = (�1, �2, . . . , �n), �i = |{⌫j = i}|

�(n) = (�1(n), �2(n), . . . , �n(n)) =
X

�`n

�(�).

We also define ��k = �k + �k+1 + . . . .
Bacher and Manivel prove a multitude of theorems regarding these vectors. Im-

portant for us in this paper will be:

⌫k(n) =
nX

i=k

�i(n) = ��k.

They prove several theorems regarding d-th moments of �k and ⌫k, particularly
generating functions. We extend this list by providing the generating function for
the d-th moment of ��k.

3. Constant and Linear Equivalence

We begin with a useful expression for the truncation of C1�b,j(q).



INTEGERS: 20A (2020) 8

Theorem 1. Construct C01�b,j by expanding C1�b,j over all partitions and truncate
by considering any multiplicity greater than j to be j. The resulting truncation has
the formula

C01�b,j(q) :=
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Proof. Begin with the following form of C1�b,j(q) from [7]:
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Now take the product of these series over all n and consider the expression’s
contribution to � ` N = 1⌫12⌫23⌫3 . . . in the claimed equality. We have that
(p + k)n = ⌫nn and so we have contribution
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Standard identities and a little algebra now give
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The inner sum does not thus simplify, so we invoke the truncation referenced in
the theorem. The final products now all become

�j�b
j

�
. We obtain

1X
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Remark. We note that this is in fact a truncation, since as j !1, entries in the
sequence C01�b,j become equal to C1�b,1 in all coe�cients of qn for increasing n.

With this simplified generating function, we can more easily extract the coe�-
cient on each bc term in the polynomial coe�cient on qn.

Theorem 2. The coe�cient on the bc term in the polynomial coe�cient of qn of
C01�b,j(q) and HNOj(q) are as follows:
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✓
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◆
.

Proof. The bc coe�cients in HNOj(q) are given by the binomial theorem. For
C01�b,j(q) we consider its expansion and manipulate it into a similar form.
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[qn]C1�b,j(q, b) =
X

�`n

✓
1� b

1

◆�1✓2� b

2

◆�2

. . .

✓
j � b

j

◆��j

=
X

�`n

(1� b)�1(
1
2!

(1� b)(2� b))�2 . . . (
1
j!

(1� b)(2� b) . . . (j � b))��j

=
X

�`n

(
1
1
(1� b))��1(

1
2
(2� b))��2 . . . (

1
j
(j � b))��j .

From here, we again apply the binomial theorem.

We now consider relationships between these two expressions, which will natu-
rally give rise to observations on relations between part sizes, multiplicities, and
hooklengths which further those of Han, and Bacher and Manivel.

For the truncation at j = 1, it was shown in [7] that the two truncations are in
fact equal, i.e.,

C01�b,1(q) = HNO1(q).

This is immediate from the combinatorial statement that nonzero multiplicities, and
hooks of size exactly 1, are both equal in number in any partition to the number of
distinct part sizes that appear.

At j = 2, both C01�b,2(q) and HNO2(q) have the same constant and linear term
in b, by Theorem 8 of [7] via a direct combinatorial mapping. It was conjectured in
that paper that the two formulae match at the constant and linear terms for all j.
We here show this.

Theorem 3 (Constant and Linear Term Equivalence). For all j and all i,
the polynomial coe↵ficient of qi in HNOj(q) and C01�b,j(q) have the same constant
and linear term in b.

Proof. The proof is straightforward using Theorem 2. The constant term c = 0 is
simply p(n), as we get a sum of 1 over the partitions of n for both. For the linear
term, expand both expressions at c = 1:

⇥
b1

⇤
[qn]C01�b,j(q, b) =

X

�`n

X

a1+···+aj=1

(
1
1
)a1

✓
��1

a1

◆
⇤ · · · ⇤ (

1
j
)aj

✓
��j

aj

◆

=
X

�`n

1
1
��1 + · · · + 1

j
��j ,
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and

⇥
b1

⇤
[qn] HNOj(q, b) =

X

�`n

X

a1+···+aj=1

(
1
12

)a1

✓
H1

a1

◆
⇤ · · · ⇤ (

1
j2

)aj

✓
Hj

aj

◆

=
X

�`n

1
12

H1 + · · · + 1
j2

Hj .

The claimed identity now follows if the termwise equality

X

�`n

1
i2
Hi =

X

�`n

1
i
��i

holds for 0  i  j. In fact, from the definitions, this is equivalent to

Hi(n) =
X

�`n

Hi = i
X

�`n

��i = i ⇤ ⌫i.

The identities ��i(n) = ⌫i(n) and Hi(n) = i ⇤ ⌫i are well-known, as mentioned in
the Introduction, and we are done.

4. Quadratic Equivalence

The next natural step is to consider what the di↵erence is in the quadratic terms of
HNOj(q) and C01�b,j(q), given that they are not equal. We will begin with j = 2.
Using Theorem 2, we can determine the quadratic coe�cient on the qn term of both
H2(q) and C01�b,2(q):

⇥
b2

⇤
[qn]C01�b,2(q) =

X

�`n

✓
��1

2

◆
+

1
2

✓
��1

1

◆✓
��2

1

◆
+

1
4

✓
��2

2

◆�

⇥
b2

⇤
[qn] HNO2(q) =

X

�`n

✓
H1

2

◆
+

1
4

✓
H1

1

◆✓
H2

1

◆
+

1
16

✓
H2

2

◆�
.

The second author conjectured in [7] that the exact term one needs to add to
the b2 coe�cient on each qn of C01�b,2(q) to obtain that of H2(q) is 1

16��4(n). We
will prove this.

We first give the bivariate generating function Gk(q, u) defined by Bacher and
Manivel in [3]. Let gk(n, t) be the number of partitions of n with exactly t part
sizes having multiplicity at least k. We have
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Gk(q, u) :=
1X

n=0

1X

t=0

gk(n, t)qnut

=
1Y

i=1

(1 + qi + q2i + · · · + q(k�1)i + u(qki + q(k+1)i + . . . ))

=
1Y

i=1

✓
1� qki

1� qi
+ u

qki

1� qi

◆
=

1
(q)1

1Y

i=1

(1� qki + uqki)

=
1

(q)1

1Y

i=1

(1 + (u� 1)qki).

We can now obtain the generating function for
P

�`n

���k(�)
d

�
.

Theorem 4. With Gk(q, u) as above,

1X

n=0

qn
X

�`n

✓
��k(�)

d

◆
=

1
(q)1

dY

i=1

qik

1� qik
.

Proof. Recall that given a partition �, we denote by ��k the number of part sizes
with multiplicity at least k in �. Taking the derivative of Gk(q, u) with respect to
u and setting u equal to 1 yields ��k(�) summed over all � of n as the coe�cient
on qn:

@

@u
Gk(q, u)

����
u=1

=
1

(q)1

1X

n=0

qn
X

�`n

��k(�).

Then (q)1 @d

@ud Gk(q, u)
��
u=1

yields ��k(�)(��k(�)� 1) . . . (��k(�)� d) summed over
the partitions of n as the coe�cient on qn, so we have the following:

@d

@ud
Gk(q, u)

����
u=1

=
1

(q)1

1X

n=0

qn
X

�`n

��k(�)(��k(�)� 1) . . . (��k(�)� d)

=
1

(q)1
d!

1X

n=0

qn
X

�`n

✓
��k(�)

d

◆
.

Now consider repeated derivatives of
Q1

i=1(1 + (u � 1)qki) with respect to u.
Using the product rule, we get a sum over all i of qik times the original product,
with the ith term removed. Doing this for each derivative, we gain a new qik term
each time, removing these from the infinite product. Thus, we have:
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@d

@ud

 1Y

i=1

(1 + (u� 1)qik)
�����

u=1

=
X

(x1,...,xd)2Nd

xi 6=xj

qk
P

xi

Q1
j=1(1 + (u� 1)qkj)

Q
xi

(1 + (u� 1)qki)

����
u=1

=
X

(x1,...,xd)2Nd

xi 6=xj

qk
P

xi .

This is the generating function for the number of compositions into exactly d
distinct parts, magnified by a factor of k. Every composition into d distinct parts can
be reordered into a partition into distinct parts, with d! compositions corresponding
to a single partition. This gives the following.

X

(x1,...,xd)2Nd

xi 6=xj

qk
P

xi = d!
X

partitions (y1,...,yd)
into d distinct parts

qk
P

yi

= d!
qk(d+1

2 )
Qd

i=1(1� qki)
= d!

dY

i=1

qki

1� qki
.

Dividing through by d! gives us our generating function for
P1

n=0 qn
P

�`n

���k

d

�
.

From Han’s generating function Proposition 3 for hooks of a given length we can
obtain the generating functions for

�Hk

d

�
for any given k and d. In particular, we

need the following lemma.

Lemma 1. The generating functions for
�Hk

2

�
are

1X

n=0

qn
X

�`n

✓
Hk

2

◆
=

1
2

1
(q)1

✓
kqk

(1� qk)

◆2

� kq2k

1� q2k

�

and specifically
1X

n=0

qn
X

�`n

✓
H2

2

◆
=

1
(q)1

q4(1 + 3q2)
(1� q2)(1� q4)

.

Proof. Employ the procedure above on Han’s series.

For the mixed term, we have a curious result. In this case, we will construct a
2:1 map from

P
�`n

�H1
k

��H2
1

�
to

P
�`n

���1
k

����2
1

�
.

Theorem 5. For k > 1,
X

�`n

✓
H1

k

◆✓
H2

1

◆
= 2

X

�`n

✓
��1

k

◆✓
��2

1

◆
.
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Proof. Consider a k-tuple of the part sizes of �, which is a k-tuple of “part sizes
repeated at least once.” Along with these, choose one part size repeated at least
twice. Denote this part size by marking the hook of size 2 that must exist at the
far right end of the next-to-last instance of this part size. (In the figure in the
examples, the shaded square at (�1,�6) has such a hook.)

This selection of k +1 boxes in the Ferrers diagram is also perforce a selection of
a k-tuple of hooks of size 1, along with a hook of size 2. Pair the original selection
of k + 1 repetitions with this selection of k + 1 hooks.

Next, take the conjugate �0 of the original partition, and mark the boxes in con-
jugate position. This is a valid choice of hooks but not a valid choice of repetitions,
as the hooks of size 2 will no longer be on the ends of their rows but rather on the
bottoms of columns, and only outer corners are both. Hence it is distinct from the
previous selection of hooks. Pair this conjugate choice of hooks with the original
selection as well. The result is a 2:1 matching, and the theorem holds.

We now have the necessary toolkit to prove the final conjecture in [7].

Theorem 6. [Quadratic Equivalence] For all n, the coe�cient of b2 in each poly-
nomial coe�cient of qn in H2 exceeds that of C01�b,2 by 1

16��4(n). That is,

⇥
b2

⇤
[qn]H2(q) =

⇥
b2

⇤
[qn]C01�b,2(q) +

1
16

��4(n).

Proof. To begin, we restate the claim with our expansions so far. We wish to show:

X

�`n

✓
H1

2

◆
+

1
4

✓
H1

1

◆✓
H2

1

◆
+

1
16

✓
H2

2

◆�

=
X

�`n

✓
��1

2

◆
+

1
2

✓
��1

1

◆✓
��2

1

◆
+

1
4

✓
��2

2

◆�
+

1
16

��4(n).

The first terms of the left-hand and right-hand sides,
P

�`n

�H1
2

�
and

P
�`n

���1
2

�
,

are equal, as H1 and ��1 both count the number of part sizes within a partition.
The second terms are equivalent by our previous bijection. Lastly, we consider the
generating functions of each remaining term and check that they are indeed equal:

1X

n=0

qn
X

�`n

✓
H2

2

◆
=

1
(q)1

q4(1 + 3q2)
(1� q2)(1� q4)

1X

n=0

qn(
X

�`n

4
✓

��2

2

◆
) +

1X

n=0

qn��4(n) =
1

(q)1

✓
4q6

(1� q2)(1� q4)
+

q4

1� q4

◆

=
1

(q)1
q4(1 + 3q2)

(1� q2)(1� q4)
.
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At this point we observe that the procedure outlined for Theorem 4 is easily
extendable to any desired collection of multiplicities. Given k1 < k2 < · · · <
kr, let gk1,k2,...,kr(n, t1, t2, . . . , tr) be the number of partitions of n with t1 mul-
tiplicities of at least k1, along with t2 multiplicities of at least k2, etc., and set
Gk1,k2,...,kr(q, u1, . . . , ur) :=

P1
n=0 gk1,k2,...,kr(n, t1, t2, . . . , tr)qnut1

1 . . . utr
r . Then we

can follow a procedure completely analogous to that of Theorem 4.

Theorem 7. The generating function for any desired moments of the joint distri-
bution of any desired collection of ��ki(�) is given by

1X

n=0

qn
X

�`n

✓
��k1(�)

d1

◆
. . .

✓
��kr(�)

dr

◆

=
1

d1! . . . dr!
@dr

@udr
r

. . .
@d1

@ud1
1

Gk1,...,kr(q, u1, . . . , ur)
����
u1=···=ur=1

.

This, combined with our 2:1 mapping, allows us to give the generating function
for any

P1
n=0 qn

P
�`n

�H1
k

��H2
1

�
. For instance, we have, as claimed,

Corollary 1. The joint generating function for the simultaneous counts H1(�) and
H2(�) is

1X

n=0

qn
X

�`n

✓
H1(�)

1

◆✓
H2(�)

1

◆
= 2

1
(q)1

q2 + q4 + q5

(1� q2)(1� q3)
.

5. Open Questions

The following questions immediately suggest themselves.

1. Theorem 4 gives us a closed form for the count of
���k

d

�
for any k and d.

Although any single generating function for
�Hk

d

�
is constructible from Han’s

generating function, it would be satisfying to have a similar closed form forP1
n=0 qn

P
�`n

�Hk(�)
d

�
.

2. Likewise, Theorem 7 gives the joint counts of any desired set of multiplicity
thresholds. On the hook side, Han has a two-variable generating function for
one hook length at a time; is there an analogous simple multivariable form
for the distribution of multiple hooklengths? The similarity between Bacher
and Manivel’s Gk(q, u) and Han’s Fk(q, u) is tantalizing, but extending Fk

to more variables does not appear to be so easy. Experimental computation
seems to suggest that a simple product form is not likely.
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3. Further exploration of the truncations HNOj and C01�b,j for higher j will
require mappings, or at least identities, involving hooks of size 3 and more.

4. Further exploration of the truncations HNOj and C01�b,j for higher degrees
on b will involve the joint generating functions of multiple

�Hk

d

�
for d � 1,

among other terms.

The whole array of these truncations should prove to be a field to mine for
relationships like those investigated in this paper. It is also possible that our C01�b,j

is not the combinatorially most interesting possible truncation, although it did
arise in a natural way. Whatever truncation method is chosen, a unified theorem
giving the associated identities should be a fascinating statement about the interplay
between hooks, part sizes, and frequencies in partitions.
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