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Abstract
For a real number x and set of natural numbers A, define x ⇤A := {xa mod 1 : a 2
A} ✓ [0, 1). We consider relationships between x, A, and the order-type of x ⇤ A.
For example, for every irrational x and countable order-type ↵, there is an A with
x ⇤ A ' ↵, but if ↵ is a well order, then A must be a thin set. If, however, A is
restricted to be a subset of the powers of 2, then not every order type is possible,
although arbitrarily large countable well orders arise.

1. Introduction

For any real number x and A ✓ N, the set

x ⇤A := {xa mod 1 : a 2 A} ✓ [0, 1)

has long held interest for number theorists. Principally, the distribution of the
sequence (xai mod 1)i2N in the interval [0, 1) has impacted areas as diverse as the
study of exponential sums and numerical integration.

1Support for this project was provided by a PSC-CUNY Award, jointly funded by The Profes-
sional Sta↵ Congress and The City University of New York.
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In the present work, we consider the order type of the set x ⇤ A. Technically, a
well order is an ordered set in which every nonempty set has a least element, and an
ordinal is the order type of a well-order. In this work, we use the terms interchange-
ably. We will make free use Cantor’s notation for ordinals. The reader may enjoy
John Baez’s lighthearted online introduction [1, 2, 3], or the more traditional [4].

First, we address a few trivialities. If x is rational with denominator q, then
x ⇤A ✓

n
0, 1

q , 2
q , . . . , q�1

q

o
, and so x ⇤A � q (when comparing ordinals, we use the

customary �,⌫,�,�,'). Also, if A is finite, then x ⇤ A � |A|. Conversely, if x is
irrational and A is infinite, then x ⇤A is infinite and countable.

The general problem we consider is which irrationals x, infinite sets A ✓ N, and
countable order-types ↵ have the relation

x ⇤A ' ↵.

The easiest examples, as often happens, arise from Fibonacci numbers. Let � be
the golden ratio and

F := {F2, F3, F4, . . .} = {1, 2, 3, 5, 8, 13, . . .}.

It is well-known that |�Fn�Fn+1|! 0 monotonically, with �Fn�Fn+1 alternating
signs. Therefore, �⇤F has two limit points, 0 and 1, and consequently has the same
order type as Z. Taking the positive even indexed Fibonacci numbers

Feven = {F2i : i 2 N, i � 1}

and shifting by 1 yields some other small ordinals: for k � 0

�2k+2 ⇤ (Feven + 1) ' !, �2k+1 ⇤ (Feven + 1) ' ! + 2 · k

The observation that inspired us to undertake this study is that the ordinal property
is preserved by taking sumsets, and in particular

x ⇤ hFeven ' !h.

Following each theorem statement, we indicate a related question we haven’t
been able to answer. Our first general result is that we can always “solve” for A,
in a very strong sense.

Theorem 1. Let ↵0,↵1, . . . ,↵k�1 be any countable order types, and let x0, . . . , xk�1

be any irrational numbers with 1, x0, x1, . . . , xk�1 linearly independent over Q. There
is a set A ✓ N such that for i 2 {0, 1, . . . , k � 1},

xi ⇤A ' ↵i.

The set A can be taken arbitrarily thin, in the sense that for any  : N ! N tending
to 1, we can take A to have |A \ [0, n)|   (n) for all n 2 N.

If every ↵ is an ordinal, then A must have density 0, but for any ⇥ : N ! N with
⇥(n)/n ! 0, we can take A to have infinitely many n 2 N with |A\ [0, n)| > ⇥(n).
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Question 1. Is there a stronger way to say “A cannot be arbitrarily thick”? For
example, it seems plausible that it is always possible to choose A so that there is a
positive constant C with |A \ [0, n)| � C log n for all n, while it seems implausible
that we can always take A so that |A \ [0, n)| � C n

log n .
The condition that every ↵ is an ordinal, in the last paragraph of Theorem 1, is

strictly stronger than is needed. Unfortunately, we have not found a nice way to
express the actual requirement.

Theorem 2. Let x be an irrational number, and let 0  a0 < a1 < · · · be a sequence
of integers with aix mod 1 increasing to 1 monotonically. Let A = {a0, a1, . . .}, and
for any positive integer h let hA be the h-fold sumset of A. Then

x ⇤ hA ' !h.

Question 2. If x ⇤ A is an ordinal, then x ⇤ hA must be an ordinal, too. Can one
give bounds on that ordinal?

Theorem 3. Fix b � 2, and set B = {bi : i 2 N}. For any countable ordinal ↵,
there is an x with x⇤B ⌫ ↵. There is no x with x⇤B an ordinal and ! � x⇤B � !2.

Question 3. Are there other voids, or can every countable ordinal at least as large
as !2 be represented? For example, can !2 + 1 be represented with powers of 2?

2. Proofs

Proof of Theorem 1. We use a theorem of Weyl [5].
Theorem (Weyl’s Equidistribution Theorem). If 1, x0, x1, . . . , xk�1 are linearly in-
dependent over Q, then for any intervals I(i), (0  i < k) with lengths �(I(i)),

lim
N!1

��{n : 0  n < N,nxi 2 I(i), 0  i < k}
��

N
=

Y

0i<k

�(I(i)).

Suppose that I0, I1, . . . is a sequence of disjoint nonempty intervals. Then this
sequence has an order type, where we say that interval Ii is less than interval Ij

if every element of Ii is less than every element of Ij .2 Since the rational line is
universal for countable orders, we can realize each of the countable order types ↵i

as the order type of a sequence I(i)
0 , I(i)

1 , . . . of disjoint nonempty open intervals.
2Suppose that a0, a1, . . . are comparable objects. Define f(ai) by f(a0) = (1/3, 2/3), and f(ai)

to be any interval in (0, 1) that has a positive distance from each of f(a0), f(a1), . . . , f(ai�1) and
is in the correct gap that so that ai, aj have the same order as f(ai), f(aj), for all 0  j < i. Then
the intervals {f(ai) : i 2 N} have the same order type as the a0, a1, . . ..
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By Weyl’s theorem, which requires our irrationality condition on the xi, for each
k-tuple of natural numbers ~m = hm0,m1, . . . ,mk�1i, the set

n
n 2 N : nxi mod 1 2 I(i)

mi
, 0  i < k

o
(1)

is infinite, and we set n~m to be any element of it. In particular, for each i, each of
the intervals I(i)

0 , I(i)
1 , . . . contains exactly one point of the form n~mxi (as ~m varies).

This means that the set
A :=

�
n~m : ~m 2 Nk

 

has the needed property: xi ⇤ A ' ↵i. Since the sets in (1) are infinite, we can
choose n~m so as to make |A \ [0, n)|   (n).

Now, assume that x ⇤A is an ordinal (it is enough to show for k = 1). We need
to show that the density of A is 0. Since x ⇤ A is an ordinal, for each z the set
{y 2 x ⇤ A : z < y} is either empty or has a least element. That is, each z 2 x ⇤ A
is either the maximal element of x ⇤ A or else has a successor. Let z0, z1, . . . be an
enumeration of x⇤A. If zi has a predecessor and a successor, then set Ji = (zi, z

+
i ),

where z+
i is the successor of zi. If zi has a predecessor but no successor, then set

Ji = (zi, 1). If zi does not have a predecessor but does have a successor, then set

Ji =
✓

lim sup
�
x ⇤A \ [0, zi)

�
, zi

◆
[ (zi, z

+
i ).

If zi has neither a predecessor nor a successor, then set Ji = (0, zi) [ (zi, 1).
We have partitioned (0, 1) into (x ⇤ A) \ {0} and J0, J1, . . .. The disjoint open

intervals making up J0, J1, . . . cover almost all of [0,1), i.e.,
P1

i=0 �(Ji) = 1. The
sets

Ai := {k 2 N : xk mod 1 2 Ji}

are pairwise disjoint because the Ji are, and d(Ai) = �(Ji) by Weyl’s Theorem, and
Ai \ A = ; by construction. Thus, the complement of A is [iAi, and d([iAi) =P

i �(Ji) = 1. The set A must have density 0.
Assuming now that all of the ↵i are ordinals, we show how to augment A so as

to have |A\ [0, n)| > ⇥(n) for infinitely many n without changing the ordinals. Let
zi be the smallest limit point of xi ⇤ A, which must exist as xi ⇤ A is infinite, and
must be strictly positive as xi ⇤A does not have an infinite decreasing subsequence.
Let J(i)

0 := (0, zi). By Weyl’s Theorem, the set

A0 := {n 2 N : 0  n, nxi mod 1 2 J(i)
0 , 0  i < k}

has density z := z0 · · · zk�1, which is positive, and so |A0 \ [0, n)| > (z/2)n for all
su�ciently large n. Choose n0 so that ⇥(n0) < (z/2)n0 < |A0 \ [0, n0)|, which is
possible by the hypothesis that ⇥(n)/n ! 0. Let

A00 = A0 \ [0, n0],
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so that |A00| > (z/2)n0 and xi ⇤A00 ✓ J(i)
0 . Now for m � 1 set J(i)

m = (zi�zi/2m, zi),
and

Am := {n 2 N : nm�1  n, nxi mod 1 2 J(i)
m , 0  i < k},

a set with density z/2mk. Choose nm > nm�1 so that

⇥(nm) <
z

2 · 2mk
nm < |Am \ [0, nm)|.

Set A0m = Am \ [nm�1, nm) Then the set xi ⇤ [mA0m has order type ! for each i,
and counting function that exceeds ⇥(n) at each of n0, n1, . . .. We can replace A
with A[

S
m A0m, and A has the same order type as before, and now has a counting

function guaranteed to beat ⇥.

Sketch of Proof of Theorem 2. For X a set of real numbers, let Lim(X) be the
derived set of X, i.e., the set of limit points of X. If X is an ordinal, then so is
Lim(X). If X is also infinite and bounded, then

X � ! · Lim(X) � X + !.

If X ✓ [0, 1) and 1 2 Lim(X), then X ' ! · Lim(X).
Theorem 2 is clearly true for h = 1; assume henceforth that h � 2. We first

prove that x ⇤ hA is contained in [0, 1), is an infinite ordinal, has 1 as a limit point,
and that Lim(x ⇤ hA) = {1} [

Sh�1
r=1 x ⇤ rA. From this we conclude by induction

that x ⇤ hA ' ! ·
⇣Sh�1

r=1 x ⇤ rA
⌘
' !h.

By definition of “⇤”, clearly x ⇤ hA ✓ [0, 1). That x ⇤ hA is an infinite ordinal
is a combination of the following observations: x ⇤ hA = h(x ⇤ A) mod 1; if Xi are
ordinals, then so is

P
Xi; if X ✓ R is bounded and an ordinal, then so is X mod 1.

The elements of hA have the form ai(0)+ai(1)+· · ·+ai(h�1) with i(0)  i(1)  · · · 
i(h�1). Suppose that we have a sequence (indexed by j) in x ⇤hA that converges to
L:

zj := x
�
a

i(0)j
+ a

i(1)j
+ · · · + a

i(h�1)
j

�
mod 1 ! L 2 [0, 1].

If i(0)j !1 for this sequence, then each a
i(k)
j

goes to infinity for k 2 {0, . . . , h� 1}.
As x ⇤ aix mod 1 goes to 1 from below, we know that L = 1. Otherwise, we an
pass to a subsequence on which i(0)j = i(0) is constant. Either i(1)J is unbounded, in
which case L = ai(1)x mod 1, or we can pass to a subsequence on which i(1)j = i(1)

is constant. Repeat for i(2), and so on, to get that the limit points are 1 and

h�1[

r=1

x ⇤ rA.
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3. When the Multiplying Set Consists of Powers of b

Multiplying a real x by a power of b and reducing modulo 1 is just a shift of the
base b expansion of x. Consequently, in this section, we obtain some economy of
thought and exposition if we consider the following equivalent3 formulation of the
problem.

For (possibly infinite) words W = w0w1w2 · · · and V = v0v1v2 · · · with wk, vk 2
N, we define W < V if i = inf{k 2 N : wk 6= vk} is defined and wi < vi. Moreover,
we call 1/2i the distance between W and V . Note that W = 01 and V = 011,
for example, are incomparable in this ordering, as w2 is not defined, much less
satisfying w2 < v2. We define the shift map � by �(w0w1w2 · · · ) = w1w2w3 · · · . If
for all k 2 N one has 0  wk < b, we say that W is a base-b word. We define ot(W )
to be the order type of the set of shifts of W ,

ot(W ) ' {�k(W ) : k 2 N},

which are linearly ordered. We say that a word W is irrational if it is infinite and
there are no two distinct shifts �1,�2 with �1(W ) = �2(W ). We use exponents as
shorthand for repeated subwords, as in (3501)2 = 33333013333301. An exponent of
! indicates an infinite repetition.

An enlightening example shows that the next lemma is best possible. Let wi = 0
if i is a triangular number4, and wi = 1 otherwise. That is

W := 0010110111011110 · · · = 010011012013014 · · · =
1Y

k=0

01k.

The limit points of shifts of W are

01!, 101!, . . . , 1k01!, . . . . (2)

As the words in (2) have only one limit point, 1!, which is not a shift of W , and
the limit points themselves have order type !, we find that ot(W ) = !2.

Lemma 1. Suppose that X is an irrational word base-b word, with 2  b < 1.
Then ot(X) has infinitely many limit points. In particular, if ot(X) is an ordinal,
then ot(X) ⌫ !2.

This is striking, as Theorem 1 states that every order-type can be represented as
x ⇤A for any irrational x and some A. This is a peculiar facet of the “powers of b”
sets.

3Not quite equivalent. The reals 0.01, 0.10 (in base 2) are the same, while the words 01! =
0111 · · · , 10! = 1000 · · · are not equal. However, since we only consider irrational reals (a property
preserved by shifting), the non-uniqueness of b-ary expansions never arises.

4Triangular numbers (A000217) have the form k(k + 1)/2. The first several are 0, 1, 3, 6, 10, 15.
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Proof. This is consequence of the proof that nonperiodic words have unbounded
complexity. We include the proof here as it is a beautiful argument.

Let S(n) be the set of those finite subwords of length n that appear in X infinitely
many times, and let C(n) := |S(n)|. Clearly C is nondecreasing and, as X is
irrational, C(1) � 2.

Suppose, by way of contradiction, that C is bounded, i.e., that there is an n1 with
C(n)  n1 (for all n). As C(1), C(2), C(3), . . . is a bounded nondecreasing sequence
of natural numbers, there is some m such that C(m) = C(m+1). If u 2 S(m), then
at least one of u0, u1, . . . , u(b� 1) is in S(m + 1). As C(m) = C(m + 1), however,
we know that exactly one of u0, u1, . . . , u(b� 1) is in S(m + 1). Therefore, exactly
one of �(u0),�(u1), . . . ,�(u(b � 1)) is in S(m). The graph with vertex set S(m)
and a directed edge from each u to whichever of �(u0),�(u1), . . . ,�(u(b� 1)) is in
S(m) is finite, connected, and each vertex has out-degree 1. Therefore the graph is
a cycle. Consequently, the word X is eventually periodic. This is contradicts the
assumption that X is irrational, and so we conclude that C is unbounded.

For each u 2 S(n), there are infinitely many shifts of X in the interval (u0!, u1!)
and so by Bolzano-Weierstrauss those shifts have a limit point in the interval
[u0!, u1!]. Therefore ot(X) has an unbounded number of limit points, which im-
plies that ot(X) ⌫ !2.

Lemma 2. Let b, c be integers with b � c � 2.

( i) If W is a base-b word and ot(W ) is an ordinal, then there is a base-c word V
with ot(W ) � ot(V ), and ot(V ) is an ordinal.

( ii) If V is a base-c word, then there is a base-b word W with ot(W ) ' ot(V ).

Proof. Part (ii) is obvious, as a base-c word is a base-b word.
Let W be a base-b word with ot(W ) an ordinal. Let D be a word morphism5

defined by D(d) = 01d+1. For example,

D(0130) = D(0)D(1)D(3)D(0) = (01)(011)(01111)(01) = 010110111101.

We note that D(W ) is a base-2 word.
First, we argue that V := D(W ) is an ordinal. By way of contradiction, suppose

that v0, v1, . . . is an infinite decreasing subsequence of shifts of V . In V , there are
never consecutive 0’s, and never b + 1 consecutive 1’s. Therefore, we can pass to
an infinite subsequence of (vi) all of which start with 1k0 for some fixed k with
0  k  b. If every word of the sequence starts with the same letter, we can shift
that starting letter into oblivion without altering the decreasing property of the
sequence. Therefore, without loss of generality, every one of the vi begins with a 0.

5Word morphisms are defined on letters, but apply to words letter-by-letter.
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But then, each vi is exactly the image (under D) of a shift of W , and as ot(W ) is
an ordinal, there is no infinite such sequence.

But clearly x < y if and only if D(v) < D(y), so that ot(W ) � ot(D(V )).

Lemma 3. Suppose that w0, w1, . . . is a sequence of words with ot(wi) an ordinal
for every i 2 N. There is a base-2 word W such that for every i, we have ot(wi) �
ot(W ).

Proof. By Lemma 2, we can assume that the wi are base-2 words. Let Bi(w) be
the morphism (mapping base-2 words into base-3 words) that maps 0 7! 12i+1 and
1 7! 22i+1. In other words, B sticks i+1 letter 1’s between each pair of letters, and
then replaces 0, 1 with 1, 2. Each Bi(wi) is an ordinal, and ot(wi) � ot(Bi(wi)).

Let x0 = 1, x1 = 2, x2, . . . be the set of all finite subwords of all of the Bi(wi),
organized first by length, and second by the order < defined at the beginning of
this section. Set

V :=
1Y

k=0

3kxk0 = (x00)(3x10)(33x20) · · · .

We claim that V is an ordinal, and that for each i, ot(Bi(wi)) � ot(V ).
Suppose, by way of contradiction, that v0, v1, v2, . . . is an infinite decreasing

sequence of shifts of V . By passing to a subsequence, we may assume that each of
v0, v1, v2, . . . begins with the same letter.

If they all begin with 3, the length of the initial string 3’s must be nonincreasing
(as v0, . . . is a decreasing sequence), and so by passing to a subsequence we may
assume that each vi begins with a string of 3’s of the same length. If every one of
a list of words begins with the same letter, applying the shift map does not change
the ordering. In particular, we can apply the shift map to all of v0, v1, v2, . . ., and
so we may assume that none of the vi begin with 3.

The shifts of V that begin with 0 begin with 03kx for some k and some x 2 {1, 2},
and each k only happens once. Therefore, there are no infinite decreasing sequences
that all start with 0. By passing to a subsequence, we may assume that either all
of v0, v1, . . . begin with 1, or all begin with a 2.

Assume, for the moment, that all begin with 2. In V , each string of 2’s can be
followed by either a 0 or a 1, and so the length of the initial string of 2’s is nonin-
creasing. By passing to a subsequence, we can assume that the initial strings of 2’s
all have the same length. By shifting, we come to an infinite decreasing subsequence
of shifts of V , all of which begin with 0 or 1. By passing to a subsequence again,
they all begin with 1.

That is, without loss of generality, all of v0, v1, v2, . . . begin with 1. The 1’s all
come from xi’s, which come from some Bj(wj)’s, but in Bj(wj) each 1 is followed
by 2j+1. As the v0, v1, v2, . . . sequence is decreasing, the length of the string of
2’s following the initial 1 is nonincreasing. By passing to a subsequence, we may
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assume that all of v0, v1, v2, . . . begin with 12k+1x for some nonnegative k and some
x 2 {0, 1}. But this means that each vi starts in a subword of Bk(wk). As Bk(wk)
is an ordinal, the position of the first 0 is bounded. By passing to a subsequence,
that position is the same in every v0, v1, v2, . . ., and by shifting, each of v0, v1, . . .
begins with 0. But as noted above, there aren’t infinite descending sequences in
which every vi begins with 0.

Thus, ot(V ) is an ordinal. By Lemma 2, there is a base-2 word W with ot(V ) �
ot(W ). That is, for each i

ot(wi) � ot(Bi(wi)) � ot(V ) � ot(W ).

Theorem 3 follows immediately from Lemma 3 and Lemma 1.
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