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Abstract
Much recent progress in hypergraph Ramsey theory has focused on constructions
that lead to lower bounds for the corresponding Ramsey numbers. In this paper, we
consider applications of these results to Gallai colorings. That is, we focus on the
Ramsey numbers resulting from only considering t-colorings of the hyperedges of
complete r-uniform hypergraphs in which no rainbow K(r)

r+1-subhypergraphs exist.
We also provide new constructions which imply improved lower bounds for many 3
and 4-uniform Ramsey numbers and 3 and 4-uniform Gallai-Ramsey numbers.

1. Introduction

The study of Ramsey numbers for r-uniform hypergraphs has seen many advances
in recent years. Although only one classical hypergraph Ramsey number has been
evaluated at this time (R(K(3)

4 ,K(3)
4 ; 3) = 13, [27]), there has been considerable

progress made in the cases of hypergraph paths, cycles, and trees (e.g., [6], [7],
[19], [21], [22], [23], [24], and [28]) as well as general constructions (e.g., [2], [3],
and [5]). The goal of the present paper is to investigate some of these results
within the framework of Gallai colorings, and to provide constructions which yield
improved lower bounds for many Gallai-Ramsey hypergraph numbers, especially in
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the 3-uniform case.
To be precise, recall that an r-uniform hypergraph H = (V,E) consists of a

nonempty set V of vertices and a set E of hyperedges (unordered r-tuples of distinct
elements in V ). We also assume that the elements in E are distinct. When r =
2, this definition agrees with that of a simple graph. The complete r-uniform
hypergraph of order n, in which every r-tuple of elements in V form a hyperedge,
is denoted by K(r)

n . A t-coloring of an r-uniform hypergraph H is an assignment of
t colors to the hyperedges of H. A t-coloring can be identified with a function

C : E(H) �! {1, 2, . . . , t}.

Letting H1,H2, . . . ,Ht be r-uniform hypergraphs, the hypergraph Ramsey number
R(H1,H2, . . . ,Ht; r) is defined to be the least natural number p such that every
t-coloring of the hyperedges of K(r)

p contains a monochromatic subhypergraph iso-
morphic to Hi for some color i. Whenever H = H1 = H2 = · · · = Ht, we denote
the corresponding Ramsey number by Rt(H; r).

One direction in which the Ramsey theory for graphs was generalized was by re-
stricting the t-colorings one considers. Specifically, we say that a graph G is rainbow
if every edge of G is assigned a unique color. A Gallai t-coloring of the complete
graph K(2)

n is a t-coloring that does not contain any rainbow triangles (i.e., rainbow
K(2)

3 -subgraphs). Gallai colorings were developed based on the partitions introduced
by Gallai [17] in 1967 and were studied within the framework of Ramsey theory in
[1], [9], [14], [15], [16], and [20]. In light of this work, define the Gallai-Ramsey num-
ber gr(H1,H2, . . . ,Ht; r) to be the least natural number p such that every Gallai
t-coloring (lacking rainbow K(r)

r+1-subhypergraphs) contains a monochromatic Hi in
some color i. As with Ramsey numbers, when H = H1 = H2 = · · · = Ht, we write
grt(H; r) for the corresponding Gallai-Ramsey number. Since K(r)

r+1 contains r + 1
hyperedges, we find that

gr(H1,H2, . . . ,Ht; r) = R(H1,H2, . . . ,Ht; r)

whenever t < r + 1. When t � r + 1, we have only the inequality

gr(H1,H2, . . . ,Ht; r)  R(H1,H, . . . ,Ht; r).

While the above references demonstrate that Gallai-Ramsey numbers have been
well-developed when r = 2, to our knowledge, this concept has not been thoroughly
developed when r > 2. One exception is the recent preprint by Magnant [25], where
hypergraph colorings that avoid rainbow Berge triangles are considered.

In Section 2, we review some recent constructions in hypergraph Ramsey theory.
Our goal is to show how these constructions can be applied to Gallai colorings,
resulting in lower bounds for hypergraph Gallai-Ramsey numbers. In Section 3, we
turn our attention to new 3 and 4-uniform constructions that provide lower bounds
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for certain Gallai-Ramsey numbers. We conclude with Section 4, listing some new
explicit lower bounds implied by our work and o↵ering a conjecture concerning
uniformities greater than 4.

2. A Review of Constructions Which Preserve Gallai Colorings

In this section, we focus on recent work in hypergraph Ramsey theory which pre-
serves Gallai colorings. In essence we show that many existing theorems from hyper-
graph Ramsey theory have direct analogues in hypergraph Gallai-Ramsey theory.

2.1. Graph Lifting

In recent work [3], the authors examined conditions under which 2-colorings of
graphs can be “lifted” to 2-colorings of 3-uniform hypergraphs. The lifting described
in [3] preserved complements, allowing Ramsey number results for graphs to imply
lower bounds for Ramsey numbers of certain 3-uniform hypergraphs. Coupling this
lifting with the Stepping-Up Lemma credited to Erdős and Hajnal (see [18]), one
can then obtain lower bounds for hypergraph Ramsey numbers of any uniformity.
Let us now outline the framework necessary to precisely describe these results.

Let G2 denote the set of graphs of order at least 3 and G3 denote the set of
3-uniform hypergraphs of order at least 3. Then the lifting ' : G2 �! G3 is defined
to map a graph G to the 3-unform hypergraph '(G) with vertex set V ('(G)) =
V (G) and hyperedge set consisting of all 3-tuples xyz such that the subgraph of G
induced by {x, y, z} contains exactly one edge or exactly 3 edges. One of the main
consequences of the structure of this lifting is the following theorem.

Theorem 1 (Theorem 9 in [3]). For all s1, s2 � 3,

R(K(3)
2s1�1 � e,K(3)

2s2�1 � e; 3) � R(K(2)
s1

,K(2)
s2

; 2).

Throughout, we use the notation K(r)
n � e to denote a complete r-uniform hyper-

graph of order n with a single hyperedge removed. From Theorem 1, it follows
that

R(K(3)
2s1�1,K

(3)
2s2�1; 3) � R(K(2)

s1
,K(2)

s2
; 2),

and this was used to prove new lower bounds for certain non-diagonal 3-uniform
hypergraph Ramsey numbers (see the consequences at the end of [3] for specifics).

Unfortunately, the lifting does not immediately extend to t-colorings of complete
graphs when t � 3, as the lifting of a rainbow triangle is not well-defined. We
can avoid this issue by lifting only Gallai t-colorings. In the 3-uniform setting,
Gallai t-colorings of K(3)

p are those that lack rainbow K(3)
4 -subhypergraphs. The

following theorem implies that Gallai t-colorings of graphs lift to Gallai t-colorings
of 3-uniform hypergraphs under '.
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Theorem 2 (Erdős, Simonovits, and Sós [11]). Every Gallai coloring of K(2)
p

(p > 2) contains at most p� 1 colors.

In particular, every Gallai coloring of K(2)
4 contains at most 3 colors. It follows

that every K(3)
4 -subhypergraph of a hypergraph in the image of ' is spanned by

hyperedges using at most 3 colors. So, every hypergraph coloring in the image of '
is Gallai.

The following variation of Theorem 9 in [3] follows immediately when we restrict
ourselves to Gallai colorings.

Theorem 3. For all si � 3,

gr(K(3)
2s1�1 � e,K(3)

2s2�1 � e, . . . ,K(3)
2st�1 � e; 3) � gr(K(2)

s1
,K(2)

s2
, . . . ,K(2)

st
; 2).

In particular, it also follows that

gr(K(3)
2s1�1,K

(3)
2s2�1, . . . ,K

(3)
2st�1; 3) � gr(K(2)

s1
,K(2)

s2
, . . .K(2)

st
; 2).

A well-known result of Chung and Graham [9] is equivalent to the following
theorem.

Theorem 4 (Chung and Graham [9]). For all t � 1,

grt(K(2)
3 ; 2) =

⇢
5t/2 + 1 if t is even
2 · 5(t�1)/2 + 1 if t is odd.

Combining this result with Theorem 3, it follows that

grt(K(3)
5 � e; 3) �

⇢
5t/2 + 1 if t is even
2 · 5(t�1)/2 + 1 if t is odd.

This result provides a nice extension of Theorem 4, however, it does not provide a
tight lower bound. In Section 4, we will show that

gr4(K(3)
5 � e; 3) � gr(K(3)

4 ,K(3)
4 ,K(3)

5 � e,K(3)
5 � e; 3) � 170,

which is stronger than the bound implied by our extension of Theorem 4.

2.2. Other Constructive Lower Bounds

In this section, we show how some general constructions can be used to obtain lower
bounds for r-uniform Gallai-Ramsey numbers. Recall that the (weak) chromatic
number �(H) of an r-uniform hypergraph H is the minimum number of colors
needed to color the vertices of H such that no hyperedge is monochromatic. When
r = 2, this definition coincides with that of the usual chromatic number. The
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chromatic index s(H) is the smallest cardinality of a color class among all proper
vertex colorings of H using �(H) colors.

In [7], a general lower bound for Ramsey numbers due to Burr [8] was extended
to the setting of hypergraphs for the purpose of defining an n-good r-uniform hyper-
graph. Using a similar method of proof, we o↵er the following theorem concerning
t-colored r-uniform Gallai-Ramsey numbers.

Theorem 5. Let H1,H2, . . . ,Ht be connected r-uniform hypergraphs such that
gr(H1,H2, . . . ,Ht�1; r) � s(Ht). Then

gr(H1,H2, . . . ,Ht; r) � (�(Ht)� 1)(gr(H1,H2, . . . ,Ht�1; r)� 1) + s(Ht).

Proof. Let p = gr(H1,H2, . . . ,Ht�1; r) and fix a Gallai (t � 1)-coloring of K(r)
p�1

that lacks a monochromatic Hi in color i, for all i 2 {1, 2, . . . , t � 1}. Consider
�(Ht)� 1 copies of this K(r)

p�1, along with a single Gallai (t� 1)-colored K(r)
s(Ht)�1,

formed by removing p � s(Ht) vertices arbitrarily from the K(r)
p�1. The result is a

Gallai (t� 1)-colored
(�(Ht)� 1)K(r)

p�1 [K(r)
s(Ht)�1,

whose vertices we then interconnect with color t. It is clear that no rainbow K(r)
r+1-

subhypergraphs exist entirely within any of the Gallai (t � 1)-colored complete
hypergraphs. Any K(r)

r+1-subhypergraphs that include vertices from two distinct
complete subhypergraphs necessarily contain at least two hyperedges of the same
color. Hence the resulting t-coloring of K(r)

(�(Ht)�1)(p�1)+s(Ht)�1 is a Gallai coloring.
By construction, this coloring does not contain a monochromatic copy of Hi in any
color i 2 {1, 2, . . . , t � 1}. It remains to be argued that we have not produced a
copy of Ht in color t. In the case where s(Ht) = 1, a proper vertex coloring of any
subhypergraph spanned by hyperedges in color t can be achieved by coloring the
vertices according to which copy of K(r)

p�1 they are in. So, any such subhypergraph
is (�(Ht)� 1)-properly colorable and Ht is not such a subhypergraph. In the case
where s(Ht) > 1, coloring the vertices according to which complete subhypergraph
they are in produces a proper vertex coloring of every subhypergraph spanned by
hyperedges using color t. Since such a proper coloring using �(Ht) colors contains a
color class with cardinality s(Ht)� 1, we find that Ht is not such a subhypergraph.
In either case, we find that

gr(H1,H2, . . . ,Ht; r) > (�(Ht)� 1)(p� 1) + s(Ht)� 1,

completing the proof of the theorem.

While the lower bounds implied by Theorem 5 are not exceptionally strong when
considering only complete hypergraphs, they may be useful when considering min-
imally connected hypergraphs (e.g., see [4]). This theorem may also be useful in
extending the notion of n-good hypergraphs (see [7]) to Gallai colorings.
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Another constructive bound for hypergraph Ramsey numbers was given in [2].
In this case, properties of the lexicographic product of hypergraphs were exploited.
If H1 and H2 are r-uniform hypergraphs with r > 2, then the lexicographic product
H1[H2] is the hypergraph defined to have vertex set V (H1)⇥V (H2) and hyperedge
set E(H1[H2]) given by
⇢

(a1, b1)(a2, b2) · · · (ar, br)
���� a1a2 · · · ar 2 E(H1) or

✓
a1 = a2 = · · · ar and
b1b2 · · · br 2 E(H2)

◆�
.

Of course, the lexicographic product of hypergraphs is not commutative. The use-
fulness of this product follows from the following properties of the clique number,
denoted by !, which were proved in Theorems 3 and 4 of [2]:

!(H1[H2]) = max(!(H1),!(H2)) (1)

and
!(H1[H2]) = !(H1)!(H2). (2)

Theorem 6. If r � 3 and pi, qi � r � 1 for all 1  i  t, then

gr(K(r)
max(p1,q1)+1,K

(r)
max(p2,q2)+1, . . . ,K

(r)
max(pt�1,qt�1)+1,K

(r)
ptqt+1; r) �

(gr(K(r)
p1+1,K

(r)
p2+1, . . . ,K

(r)
pt+1; r)�1)(gr(K(r)

q1+1,K
(r)
q2+1, . . . ,K

(r)
qt+1; r)�1)+1.

Proof. The proof of Theorem 6 is structured the same as the analogous result in
[2], but it is also necessary to justify why the construction does not contain any
rainbow K(r)

r+1-subhypergraphs. Let

m := gr(K(r)
p1+1,K

(r)
p2+1, . . . ,K

(r)
pt+1; r) and n := gr(K(r)

q1+1,K
(r)
q2+1, . . . ,K

(r)
qt+1; r).

Then there exists a Gallai t-coloring C1 of K(r)
m�1 that lacks a monochromatic clique

of order pi + 1 in color i for every i 2 {1, 2, . . . , t} and there exists a Gallai t-
coloring C2 of K(r)

n�1 that lacks a monochromatic clique of order qi + 1 in color i for
every i 2 {1, 2, . . . , t}. We now construct a Gallai t-coloring C of K(r)

(m�1)(n�1) by

first identifying the vertices with those in V (K(r)
m�1) ⇥ V (K(r)

n�1). Then assign the
hyperedge

(a1, b1)(a2, b2) · · · (ar, br)

the color j 2 {1, 2, . . . , t} if either a1a2 · · · ar 2 E(K(r)
m�1) has color j in C1 or if a1 =

a2 = · · · ar and b1b2 · · · br 2 E(K(r)
n�1) has color j in C2. All remaining hyperedges

are assigned color t. For each j, define Hj and H 0
j to be the subhypergraphs of

K(r)
m�1 and K(r)

n�1 spanned by the hyperedges of color j, respectively. Whenever
1  j  t � 1, the subhypergraph of K(r)

(m�1)(n�1) spanned by the hyperedges of
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color j is isomorphic to Hj [H 0
j ]. Such a subhypergraph does not contain any cliques

of order max(pj , qj)+1 in color j 2 S := {1, 2, . . . , t�1} by (1). The subhypergraph
spanned by color t in K(r)

(m�1)(n�1) is isomorphic to the complement of

[

j2S

Hj

 [

j2S

H 0
j

�
,

and hence, lacks a clique of order ptqt + 1 in color t by (2). The theorem will now
follow from showing that no rainbow K(r)

r+1 exists in our construction. Consider a
set

W = {(a1, b1), (a2, b2), . . . , (ar+1, br+1)}

of distinct vertices. If these vertices all have distinct ai, then the subhypergraph
induced by W is colored according to C1, and hence, is Gallai colored. If at least two
ai (but not all) are equal, then at least two of the hyperedges in the subhypergraph
induced by W receive color t. Finally, if all ai are equal, then the subhypergraph
induced by W is colored according to C2. From these cases, we find that we have
produced a Gallai t-coloring of K(r)

(m�1)(n�1).

Using the observation that

gr(K(r)
n1

,K(r)
n2

, . . . ,K(r)
ni

; r) = gr(K(r)
n1

,K(r)
n2

, . . . ,K(r)
ni

,K(r)
r ,K(r)

r , . . . ,K(r)
r| {z }

t�i terms

; r)

and

gr(K(r)
ni+1

,K(r)
ni+2

, . . . ,K(r)
nt

; r) = gr(K(r)
r ,K(r)

r , . . . ,K(r)
r| {z }

i terms

,K(r)
ni+1

,K(r)
ni+2

, . . . ,K(r)
nt

; r),

we obtain the following corollary, which gives a Gallai-coloring version of a theorem
of Xu, Xie, Exoo, and Radziszowski [32].

Corollary 1. If r � 3 and each nj � r, then

gr(K(r)
n1

,K(r)
n2

, . . . ,K(r)
nt�1

,K(r)
(nt�1)(r�1)+1; r)

� (gr(K(r)
n1

,K(r)
n2

, . . . ,K(r)
ni

; r)� 1)(gr(K(r)
ni+1

,K(r)
ni+2

, . . . ,K(r)
nt

; r)� 1) + 1.

3. New Constructions for 3-Uniform and 4-Uniform Hypergraph Gallai-
Ramsey Numbers

In this section, we present new constructions which yield improved lower bounds
for several multicolored Gallai-Ramsey numbers.
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Theorem 7. Let H1,H2, . . . ,Ht be 3-uniform hypergraphs with orders greater than
3 such that each Hi is isomorphic to either a complete hypergraph or a complete
hypergraph with a single hyperedge removed. If t � 1, then

gr(H1,H2, . . . ,Ht,K
(3)
4 ,K(3)

4 ; 3) � (gr(H1,H2, . . . ,Ht; 3)� 1)2 + 1.

Proof. Let m = gr(H1,H2, . . . ,Ht; 3), then there exists a Gallai t-coloring of a
K(3)

m�1 that avoids a monochromatic Hi in color i for all i 2 {1, 2, ..., t}. Consider
the union of m � 1 disjoint copies of this K(3)

m�1 and label them A1, A2, ..., Am.
Within each copy of Ai, label the vertices

(1, i), (2, i), ..., (m� 1, i)

so that the color of the hyperedge (j, i)(k, i)(`, i) is independent of the choice of i.
For a hyperedge e = abc, where not all vertices come from the same copy of Ai,
color e according to the following rules.

1. Suppose that no two vertices in e = abc come from the same Ai. Let a 2
V (Aj), b 2 V (Ak), and c 2 V (A`). Then color e according to the color of the
hyperedge (j, i)(k, i)(`, i) in Ai.

2. If a, b 2 V (Aj) and c 2 V (Ak), and j < k, then assign color t + 1 to e.

3. If a, b 2 V (Aj) and c 2 V (Ak), and j > k, then assign color t + 2 to e.

We leave it as an exercise to confirm that these rules produce a Gallai (t+2)-coloring
of K(3)

(m�1)2 . We can also confirm that no monochromatic K(3)
4 is spanned by hy-

peredges in colors t + 1 and t + 2 as any such subhypergraph contains exactly two
vertices in some Ai and two vertices in some Aj , with i 6= j. The subhypergraph
then contains exactly two hyperedges in color t + 1 and two hyperedges in color
t + 2. It remains to be shown that this hypergraph coloring lacks a monochromatic
copy of Hi in color i, for all i 2 {1, 2, . . . , t}. Let S be a subset of vertices with
cardinality n � 4. We must consider several cases.
Case 1: If all vertices in S come from distinct Ai, then the hyperedges in the sub-
hypergraph induced by S are colored according to rule (1) above, preventing a
monochromatic copy of Hi from being produced in color i for all i 2 {1, 2, . . . , t}.
Case 2: If S ✓ V (Ai) for some i, then the subhypergraph induced by S does not
contain a monochromatic Hi in color i, for any i 2 {1, 2, . . . , t}, by the assumption
made when constructing Ai.
Case 3: Suppose that S ✓ V (Ai) [ V (Aj) with i 6= j and S \ V (Ai) 6= ; and
S \ V (Aj) 6= ;. We have assumed that S has cardinality at least 4. In the case
where it is equal to 4 and |S\V (Ai)| = 2 = |S\V (Aj)|, we find that the subhyper-
graph induced by S contains two hyperedges in color t + 1 and two hyperedges in
color t+2. Otherwise, one of S \V (Ai) and S \V (Aj) has order at least 3 and the
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other has order at least 1. The subhypergraph induced by S then contains at least
3 hyperedges in colors t+1 and t+2. In both of these subcases, no monochromatic
copy of Hi is produced in color i, for any i 2 {1, 2, . . . , t}.
Case 4: Suppose that S contains vertices from at least 3 distinct Ai, one of which
contains at least two vertices from S (so that we are not in Case 1). Without loss
of generality, suppose that a, b, c, d 2 S satisfy a, b 2 Ai and c, d 62 Ai for some i.
The hyperedges abc and abd receive colors t + 1 or t + 2, preventing the subhyper-
graph induced by S from containing a monochromatic copy of Hi in color i, for all
i 2 {1, 2, . . . , t}.
This completes the proof.

Theorem 8. Let H1,H2, . . . ,Ht be 4-uniform hypergraphs with orders greater than
4 such that each Hi is isomorphic to either a complete hypergraph or a complete
hypergraph with a single hyperedge removed. If t � 1, then

gr(H1,H2, . . . ,Ht,K
(4)
5 ,K(4)

5 ; 4) � (gr(H1,H2, . . . ,Ht; 4)� 1)2 + 1.

Proof. Let m = gr(H1,H2, . . . ,Ht; 4), then there exists a Gallai t-coloring of a
K(4)

m�1 that avoids a monochromatic Hi in color i for all i 2 {1, 2, ..., t}. Consider
the union of m � 1 disjoint copies of this K(4)

m�1 and label them A1, A2, ..., Am.
Within each copy of Ai, label the vertices

(1, i), (2, i), ..., (m� 1, i)

so that the color of the hyperedge (g, i)(j, i)(k, i)(`, i) is independent of the choice
of i. For a hyperedge e = abcd, where not all vertices come from the same same
copy of Ai, color e according to the following rules.

1. Suppose that no two vertices in e = abcd come from the same Ai. Let a 2
V (Ah), b 2 V (Aj), c 2 V (Ak), and d 2 V (A`). Then color e according to the
color of the hyperedge (h, i)(j, i)(k, i)(`, i) in Ai.

2. If a, b 2 V (Aj) and c, d 2 V (Ak) for j 6= k, then assign color 1 to e.

3. If a, b, c 2 V (Aj) and d 2 V (Ak) for j 6= k, then assign color t + 1 to e.

4. If a, b 2 V (Aj), c 2 V (Ak), and d 2 V (A`) for j 6= k, ` and k 6= `, then assign
color t + 2 to e.

It is easy to confirm that these rules produce a Gallai (t + 2)-coloring of K(4)
(m�1)2 .

We can also confirm that no monochromatic K(4)
5 is spanned by hyperedges in col-

ors t + 1 or t + 2. It remains to be shown that this hypergraph coloring lacks a
monochromatic copy of Hi in color i, for all i 2 {1, 2, . . . , t}. Let S be a subset of
vertices with cardinality n � 5. We consider several cases.
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Case 1: If all vertices in S come from distinct Ai, then the hyperedges in the sub-
hypergraph induced by S are colored according to rule (1) above, preventing a
monochromatic copy of Hi from being produced in color i for all i 2 {1, 2, . . . , t}.
Case 2: If S ✓ V (Ai) for some i, then the subhypergraph induced by S does not
contain a monochromatic Hi in color i, for any i 2 {1, 2, . . . , t}, by the assumption
made when constructing Ai.
Case 3: Suppose that S ✓ V (Ai) [ V (Aj) with i 6= j and S \ V (Ai) 6= ; and
S \ V (Aj) 6= ;. We have assumed that S has cardinality at least 5. In the case
where it is equal to 5 and |S \ V (Ai)| = 2 and |S \ V (Aj)| = 3, we find that the
subhypergraph induced by S contains three hyperedges in color t+1 and two hyper-
edges in color 1, preventing a monochromatic HJi in color i for all i 2 {1, 2, . . . , t}.
In the case where it is equal to 5 and |S \V (Ai)| = 1 and |S \V (Aj)| = 4, four hy-
peredges receive color t+1 and one hyperedge has a color from {1, 2, . . . , t}. Again,
no monochromatic copy of Hi exists in color i for any i 2 {1, 2, . . . , t}.
Case 4: Suppose that S contains vertices from at least 3 distinct Ai, one of which
contains at least two vertices from S (so that we are not in Case 1). In the case
where a, b, c, d, e 2 S satisfy a, b 2 Ai, c, d 2 Aj , and e 2 Ak, where no two of i, j, k
are equal, one hyperedge has color 1 and four hyperedges have color t + 2. There
is no K(4)

5 in color t + 2 or a monochromatic Hi in color i for any i 2 {1, 2, . . . , t}.
In the case where a, b, c, d, e 2 S satisfy a, b, c 2 Ai, d 2 Aj , and e 2 Ak, there are
three hyperedges in color t + 2 and two hyperedges in color t + 1, again, preventing
the appropriate subhypergraphs.
Case 5: Suppose that S contains vertices from at least 4 distinct Ai, but not five.
Without loss of generality, assume that a, b 2 V (Ai), c 2 V (Aj), d 2 V (Ak), and
e 2 V (A`). Then there are two hyperedges in colors {1, 2, . . . , t} and three hyper-
edges in color t + 2, preventing the appropriate subhypergraphs.
This completes the proof.

4. Explicit Lower Bounds and Future Directions

We conclude by explicitly stating the best known 3 and 4-uniform lower bounds
implied by the constructions contained in this paper. While we have focused on
Gallai-Ramsey numbers, it should be pointed out that Theorems 5, 7, and 8 still
hold when the Gallai-Ramsey number is replaced by the corresponding Ramsey
number in the theorems’ statements. The proofs are the same, but do not require
the extra step of showing that Gallai colorings are preserved. This is particularly
useful when we apply the Ramsey number-version of Theorem 7 to the known lower
bound R4(K(3)

5 ; 3) � 131, 073 (see [5]) to obtain

R(K(3)
4 ,K(3)

4 ,K(3)
5 ,K(3)

5 ,K(3)
5 ,K(3)

5 ; 3) � 17, 179, 869, 185.
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Since 2 and 3-color Gallai-Ramsey numbers correspond with Ramsey numbers in
the hypergraph setting, we can build o↵ of known lower bounds for the correspond-
ing Ramsey numbers, which can be found in Section 7.1 of Radziszowski’s dynamic
survey [29]. In Figure 3 of [26], two examples are provided of 2-colorings of K(3)

13

that lack a monochromatic K(3)
5 � e. It follows that

R2(K(3)
5 � e; 3) � 14.

Applying Theorem 7, we find that

gr(K(3)
4 ,K(3)

4 ,K(3)
5 � e,K(3)

5 � e; 3) � 170,

which surpasses the bounds implied by Theorems 3 and 4.
From [29], the following lower bounds for 3-uniform hypergraph Ramsey numbers

are known.

R2(K(3)
4 � e; 3) = 7 [29] (3)

R(K(3)
4 � e,K(3)

4 ; 3) = 8 [30] (4)

R3(K(3)
4 � e; 3) � 13 [12] (5)

R2(K(3)
4 ; 3) = 13 [27] (6)

R(K(3)
4 ,K(3)

5 ; 3) � 35 [10] (7)

R(K(3)
4 ,K(3)

6 ; 3) � 58 [13] (8)

R2(K(3)
5 ; 3) � 82 [13] (9)

R3(K(3)
4 ; 3) � 56 [13] (10)

R3(K(3)
5 ; 3) � 163 [5] (11)

Our results then imply the lower bounds given in Figure 1 below. Of course, one can
obtain other t-color Gallai-Ramsey number lower bounds by successively applying
the above results with Corollary 1 and Theorem 7.

In the 4-uniform case, it is known that

R2(K(4)
5 ; 4) � 34 [13]. (12)

Combining this bound with Theorem 8 implies the following:

gr4(K(4)
5 ; 4) � 1, 090.

In [31], it was shown that

R(K(4)
p ,K(4)

q ; 4) � 2(R(K(4)
p�1,K

(4)
q ; 4))� 1
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Theorem 7 and (3) =) gr(K(3)
4 � e,K(3)

4 � e,K(3)
4 ,K(3)

4 ; 3) � 37

Theorem 7 and (4) =) gr(K(3)
4 � e,K(3)

4 ,K(3)
4 ,K(3)

4 ; 3) � 50

Theorem 7 and (5) =) gr(K(3)
4 � e,K(3)

4 � e,K(3)
4 � e,K(3)

4 ,K(3)
4 ; 3) � 145

Theorem 7 and (6) =) gr4(K(3)
4 ; 3) � 145

Theorem 7 and (7) =) gr(K(3)
4 ,K(3)

4 ,K(3)
4 ,K(3)

5 ; 3) � 1, 157

Corollary 1 and (7) =) gr(K(3)
4 ,K(3)

5 ,K(3)
5 ,K(3)

7 ; 3) � 1, 157

Corollary 1, (7), and (9) =) gr(K(3)
4 ,K(3)

5 ,K(3)
5 ,K(3)

9 ; 3) � 2, 755

Corollary 1, (7), and (9) =) gr(K(3)
5 ,K(3)

5 ,K(3)
5 ,K(3)

7 ; 3) � 2, 755

Theorem 7 and (10) =) gr5(K(3)
4 ; 3) � 3, 026

Corollary 1 and (8) =) gr(K(3)
4 ,K(3)

6 ,K(3)
6 ,K(3)

7 ; 3) � 3, 250

Corollary 1 and (8) =) gr(K(3)
4 ,K(3)

4 ,K(3)
6 ,K(3)

11 ; 3) � 3, 250

Corollary 1, (8), and (9) =) gr(K(3)
4 ,K(3)

5 ,K(3)
5 ,K(3)

11 ; 3) � 4, 618

Corollary 1, (8), and (9) =) gr(K(3)
4 ,K(3)

5 ,K(3)
6 ,K(3)

7 ; 3) � 4, 618

Corollary 1, (8), and (9) =) gr(K(3)
5 ,K(3)

5 ,K(3)
6 ,K(3)

7 ; 3) � 4, 618

Corollary 1 and (9) =) gr(K(3)
5 ,K(3)

5 ,K(3)
5 ,K(3)

9 ; 3) � 6, 565

Theorem 7 and (11) =) gr(K(3)
5 ,K(3)

5 ,K(3)
5 ,K(3)

4 ,K(3)
4 ; 3) � 26, 245

Figure 1: Lower bounds for some 3-uniform hypergraph Gallai-Ramsey numbers.

for p, q � 5. Applying this inequality to (12), it follows that

R(K(4)
5 ,K(4)

6 ; 4) � 67,

which combined with Theorem 8 gives

gr(K(4)
5 ,K(4)

5 ,K(4)
5 ,K(4)

6 ; 4) � 4, 357.

Lastly, Theorems 7 and 8 taken together provide evidence in support of the
following conjecture. The di�culty in proving this conjecture follows from the
number of cases that arise as the uniformity increases.

Conjecture 1. Let H1,H2, . . . ,Ht be r-uniform hypergraphs, r > 2, with orders
greater than r such that each Hi is isomorphic to either a complete hypergraph or
a complete hypergraph with a single hyperedge removed. If t � 1, then

gr(H1,H2, . . . ,Ht,K
(r)
r+1,K

(r)
r+1; r) � (gr(H1,H2, . . . ,Ht; r)� 1)2 + 1.



INTEGERS: 20A (2020) 13

Acknowledgement. The authors would like to thank Prof. Stanislaw Radzis-
zowski of the Rochester Institute of Technology for pointing us to a construction
by Prof. Brendan McKay [26] that implies the lower bound R2(K(3)

5 � e; 3) � 14.

References

[1] G. Beam and M. Budden, Weakened Gallai-Ramsey numbers, Surv. Math. Appl. 13 (2018),
131-145.

[2] M. Bruce, M. Budden, and J. Hiller, Lexicographic products of r-uniform hypergraphs and
applications to hypergraph Ramsey theory, Australas. J. Combin. 70 (2018), 390-410.

[3] M. Budden, J. Hiller, J. Lambert, and C. Sanford, The lifting of graphs to 3-uniform hyper-
graphs and some applications to hypergraph Ramsey theory, Involve 10 (2017), 65-76.

[4] M. Budden, J. Hiller, and A. Penland, Minimally connected hypergraphs, preprint.

[5] M. Budden, J. Hiller, and A. Rapp, Generalized Ramsey theorems for r-uniform hypergraphs,
Australas. J. Combin. 63(1) (2015), 142-152.

[6] M. Budden, J. Hiller, and A. Rapp, Hypergraph Ramsey numbers involving paths, Acta
Univ. Apulensis 48 (2016), 75-87.

[7] M. Budden and A. Penland, Trees and n-good hypergraphs, Australas. J. Combin. 72 (2018),
329-349.

[8] S. Burr, Ramsey numbers involving graphs with long suspended paths, J. London Math.
Soc. (2) 24 (1981), 405-413.

[9] F. Chung and R. Graham, Edge-colored complete graphs with precisely colored subgraphs,
Combinatorica 3 (1983), 315-324.
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