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Abstract
In 2002, Andrews, Lewis and Lovejoy introduced and studied the partition function
PD(n), the number of partitions of n with designated summands. Recently, con-
gruences involving the number of `-regular partitions with designated summands,
denoted by PD`(n), have been explored for ` = 2 and ` = 3. In this paper, we
present new arithmetic properties of PD3(n), including a complete characterization
of this function modulo 3.

1. Introduction

A partition of an integer n � 0 is a non-increasing sequence of positive integers,
�1 � · · · � �s, such that n = �1 + · · · + �s. The �is are called the parts of the
partition.

Andrews, Lewis, and Lovejoy [1] introduced and studied many properties of a
new class of objects called partitions with designated summands. These partitions
are constructed by taking ordinary partitions and tagging exactly one of each part
size. For instance, the ten partitions of 4 with designated summands are:

40, 30 + 10, 20 + 2, 2 + 20, 20 + 10 + 1, 20 + 1 + 10,

10 + 1 + 1 + 1, 1 + 10 + 1 + 1, 1 + 1 + 10 + 1, 1 + 1 + 1 + 10.

The arithmetic aspects of the number of partitions with designated summands,
denoted by PD(n), have been studied in [1, 3, 6, 8, 14]. For instance, in [1] the
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authors proved that for all n � 0

PD(3n + 2) ⌘ 0 (mod 3).

In [1], the authors also presented some arithmetic properties of PD2(n), the num-
ber of 2-regular partitions of n with designated summands (a partition of n is called
`-regular if there is no part divisible by the positive integer `). Subsequently, in [3],
additional congruences satisfied by PD2(n) were found. In [12], the authors consid-
ered PD3(n), the number of 3-regular partitions of n with designated summands.
They proved that the generating function for PD3(n) is given by

1X

n=0

PD3(n)qn =
(q6; q6)21(q9; q9)1

(q; q)1(q2; q2)1(q18; q18)1
, (1)

where
(a; q)0 = 1,
(a; q)n = (1� a)(1� aq) · · · (1� aqn�1), for all n � 1,
(a; q)1 = limn!1(a; q)n, |q| < 1.

The authors then proved the following:

Theorem 1 ([12], Theorem 2). For each n � 0,

PD3(6n + 3) ⌘ 0 (mod 4),
PD3(6n + 5) ⌘ 0 (mod 12),

PD3(12n + 8) ⌘ 0 (mod 48),
PD3(24n + 4) ⌘ 0 (mod 9),

PD3(24n + 20) ⌘ 0 (mod 144),
PD3(24n + 22) ⌘ 0 (mod 36),
PD3(48n + 38) ⌘ 0 (mod 12).

In this paper, using elementary generating function manipulations, we provide
new congruences satisfied by PD3(n), including a complete characterization of this
function modulo 3. Namely, we prove the following:

Theorem 2. For all n � 0,

PD3(n) ⌘
⇢

r(n) (mod 3), if n = k(k + 1) + 3m(m + 1) + 1,
0 (mod 3), otherwise, (2)

where r(n) is the number of representations of n as k(k + 1) + 3m(m + 1) + 1,

which provides a complete characterization of PD3(n) modulo 3, and
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Theorem 3. For all n � 0,

PD3(24n + 16) ⌘ 0 (mod 2), (3)
PD3(9n + 6) ⌘ 0 (mod 3), (4)

PD3(32n + 8) ⌘ 0 (mod 4), (5)
PD3(36n) ⌘ 0 (mod 4), (6)

PD3(12n + 9) ⌘ 0 (mod 8), (7)
PD3(18n + 9) ⌘ 0 (mod 8), (8)

PD3(18n + 15) ⌘ 0 (mod 8), (9)
PD3(24n + 17) ⌘ 0 (mod 8), (10)
PD3(24n + 23) ⌘ 0 (mod 8), (11)

PD3(6n + 4) ⌘ 0 (mod 9). (12)

This paper is organized as follows. In Section 2, we recall some basic properties
of Ramanujan’s theta functions �(q) and  (q) and we also present some useful
identities. Section 3 is devoted to proving Theorem 2 and the new congruences (3)–
(12) satisfied by PD3(n). All of the proofs presented involve elementary generating
function dissections and manipulations.

2. Preliminaries

We recall Ramanujan’s theta functions

�(q) =
1X

n=�1
qn2

=
(q2; q2)51

(q; q)21(q4; q4)21
, (13)

 (q) =
1X

n=0

qn(n+1)/2 =
(q2; q2)21
(q; q)1

. (14)

By Entry 25 (i), (ii), (v), and (vi) in [4, p. 40], we have

�(q) = �(q4) + 2q (q8), (15)

and
�(q)2 = �(q2)2 + 4q (q4)2. (16)

Throughout this paper, we define

fk := (qk; qk)1
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in order to shorten the notation. Thus, we can rewrite (1) in the form
1X

n=0

PD3(n)qn =
f2
6 f9

f1f2f18
. (17)

In the next lemmas, we recall some identities that will be useful in the proof of
Theorem 3. The first lemma presents the 2-dissections of f2

1 , certain quotients of
powers of f1 and f3, and 1

ft
1

for t 2 {2, 4, 8}.

Lemma 1. The following identities hold:

f2
1 =

f2f5
8

f2
4 f2

16

� 2q
f2f2

16

f8
, (18)

1
f2
1

=
f5
8

f5
2 f2

16

+ 2q
f2
4 f2

16

f5
2 f8

, (19)

1
f4
1

=
f14
4

f14
2 f4

8

+ 4q
f2
4 f4

8

f10
2

, (20)

1
f8
1

=
f28
4

f28
2 f8

8

+ 8q
f16
4

f24
2

+ 16q2 f4
4 f8

8

f20
2

, (21)

f3

f3
1

=
f6
4 f3

6

f9
2 f2

12

+ 3q
f2
4 f6f2

12

f7
2

, (22)

f3
1

f3
=

f3
4

f12
� 3q

f2
2 f3

12

f4f2
6

, (23)

f3

f1
=

f4f6f16f2
24

f2
2 f8f12f48

+ q
f6f2

8 f48

f2
2 f16f24

. (24)

Proof. Identity (18) follows from (16) after replacing q by �q. By (13) and (14) we
can rewrite (15) in the form

f5
2

f2
1 f2

4

=
f5
8

f2
4 f2

16

+ 2q
f2
16

f8
,

from which we obtain (19) after multiplying both sides by f2
4

f5
2
.

By (13) and (14) we can rewrite (16) in the form

f10
2

f4
1 f4

4

=
f10
4

f4
2 f4

8

+ 4q
f4
8

f2
4

,

from which (20) follows. The identity in (21) is just (20) squared.
Equation (22) appears in [2] as Theorem 4.17. Replacing q by �q in (22) and

using the fact that

(�q;�q)1 =
f3
2

f1f4
,

we obtain (23). Identity (24) is Eq. (30.10.3) in [9].
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In the next lemma, we recall the 3-dissections of f1f2, f2/f2
1 , 1

f3
1
, and  (q).

Lemma 2. The following identities hold:

f1f2 =
f6f4

9

f3f2
18

� qf9f18 � 2q2 f3f4
18

f6f2
9

, (25)

f2

f2
1

=
f4
6 f6

9

f8
3 f3

18

+ 2q
f3
6 f3

9

f7
3

+ 4q2 f2
6 f3

18

f6
3

, (26)

1
f3
1

=
f3
9

f12
3

⇢
f2
3
�(�q9)6

�(�q3)2
+ 8q3f2

3
�(�q9)3 (q9)3

�(�q3) (q3)
+ 16q6f2

3
 (q9)6

 (q3)2

+3qf3f
3
9
�(�q9)3

�(�q3)
+ 12q4f3f

3
9
 (q9)3

 (q3)
+ 9q2f6

9

�
, (27)

 (q) =
f6f2

9

f3f18
+ q

f2
18

f9
. (28)

Proof. Identity (25) was proven in [11]. A proof of (26) can be seen in [10]. Identity
(27) is Equation (14) in [7]. Identity (28) follows from the first equality in Corollary
(ii) [4, p. 49].

The next lemma appears in [13, Eq. 5.1].

Lemma 3. The following identity holds:

f4
2 f8

3

f8
1 f4

6

= 1 + 8q
f2f5

6

f5
1 f3

. (29)

The next result is a consequence of Jacobi’s triple product identity.

Lemma 4. The following identity holds:

f3
1 =

1X

n=0

(�1)n(2n + 1)qn(n+1)/2. (30)

Proof. See Section 1.3 in [5].

In order to prove some of the congruences, we make use of the following well-
known results in the next lemma, which can be proven using the binomial theorem.

Lemma 5. Given a prime p and positive integers k and m, we have

f4m
k ⌘ f2m

2k (mod 4),
f9m

k ⌘ f3m
3k (mod 9),

fpm
k ⌘ fm

pk (mod p).
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3. Proofs of the New Congruences

This section is devoted to proving Theorem 2 and Theorem 3. In order to do so, we
prove some additional identities involving

P1
n=0 PD3(n)qn. We begin by recalling

Equations (4), (5), (6), (9), and (12) in [12]:

1X

n=0

PD3(2n)qn =
f3f3

6

f3
1 f18

, (31)

1X

n=0

PD3(2n + 1)qn =
f2
2 f3

3 f18

f4
1 f6f9

, (32)

1X

n=0

PD3(3n)qn =
f4
3 f2

6

f4
1 f2

2

✓
f2
2 f6

3

f2
1 f6

6

� 2q
f1f3

6

f2f3
3

◆
, (33)

1X

n=0

PD3(4n)qn =
f6
2 f6

3

f9
1 f2

6 f9
, (34)

1X

n=0

PD3(6n + 5)qn = 12
f5
2 f5

3 f6

f11
1

. (35)

3.1. Proof of Theorem 2

Firstly we consider the case when n is even. We shall show that PD3(2n) ⌘ 0
(mod 3). This is a straightforward consequence of using Lemma 5 in (31). Indeed,

1X

n=0

PD3(2n)qn ⌘ f3f18

f3f18
⌘ 1 (mod 3).

Thus, for all n � 1, PD3(2n) ⌘ 0 (mod 3).
Now we consider the case when n is odd. The generating function for PD3(2n+1)

is (32) above. From (14), using Lemma 5, we obtain

1X

n=0

PD3(2n + 1)qn ⌘ f2
2 f2

6

f4
1

⌘  (q) (q3)

⌘
1X

k,m=0

q
k(k+1)

2 +3 m(m+1)
2 (mod 3),

from which it follows that

PD3(2n + 1) ⌘
⇢

r(2n + 1) (mod 3), if 2n + 1 = k(k + 1) + 3m(m + 1) + 1,
0 (mod 3), otherwise,

where r(n) is the number of representations of n as k(k + 1)+3m(m + 1)+1. This
completes the proof of (2) in the case when n is odd.
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3.2. Proof of Theorem 3

By (27) and (31), we have

1X

n=0

PD3(2n)qn =
f3
6 f3

9

f11
3 f18

⇢
f2
3
�(�q9)6

�(�q3)2
+ 8q3f2

3
�(�q9)3 (q9)3

�(�q3) (q3)
+ 9q2f6

9

+16q6f2
3
 (q9)6

 (q3)2
+ 3qf3f

3
9
�(�q9)3

�(�q3)
+ 12q4f3f

3
9
 (q9)3

 (q3)

�
.

By taking the terms involving q3n+2, we obtain

1X

n=0

PD3(6n + 4)qn = 9
f3
2 f9

3

f11
1 f6

, (36)

from which (12) follows directly.
From (36) and using (29), we obtain

1X

n=0

PD3(6n + 4)qn = 9
f3f3

6

f3
1 f2

✓
1 + 8q

f2f5
6

f5
1 f3

◆

= 9
f3f3

6

f3
1 f2

+ 72q
f8
6

f8
1

.

Now, using (21) and (22), it follows that

1X

n=0

PD3(6n + 4)qn = 9
f6
4 f6

6

f10
2 f2

12

+ 27q
f2
4 f4

6 f2
12

f8
2

+ 72q
f28
4 f8

6

f28
2 f8

8

+ 576q2 f16
4 f8

6

f24
2

+ 1152q3 f4
4 f8

6 f8
8

f20
2

.

Hence,

1X

n=0

PD3(12n + 4)qn = 9
f6
2 f6

3

f10
1 f2

6

+ 576q
f16
2 f8

3

f24
1

⌘ f2f6 (mod 2),

from which we obtain (3).
The congruence in (4) follows directly from (33). Indeed,

1X

n=0

PD3(3n)qn =
f10
3

f6
1 f4

6

� 2q
f3f5

6

f3
1 f3

2

⌘ f8
3

f4
6

� 2qf4
6 (mod 3),
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from which we see that the coe�cients of q3n+2 in
P1

n=0 PD3(3n)qn are congruent
to 0 modulo 3, completing the proof of (4).

From (34), using (23), we have

1X

n=0

PD3(4n)qn ⌘ f3
1 f2

3

f9
⌘ f3

1

f3

f3
3

f9
(mod 4)

⌘
✓

f3
4

f12
� 3q

f2
2 f3

12

f4f2
6

◆✓
f3
12

f36
� 3q3 f2

6 f3
36

f12f2
18

◆
(mod 4)

⌘ f3
4 f2

12

f36
� 3q

f2
2 f6

12

f4f2
6 f36

� 3q3 f3
4 f2

6 f3
36

f2
12f

2
18

+ 9q4 f2
2 f2

12f
3
36

f4f2
18

(mod 4).

Thus
1X

n=0

PD3(8n)qn ⌘ f3
2 f2

6

f18
+ q2 f2

1 f2
6 f3

18

f2f2
9

(mod 4),

from which, using (18) and (19), we deduce

1X

n=0

PD3(8n)qn ⌘ f3
2 f2

6

f18
+ q2 f2

6 f3
18

f2

✓
f2f5

8

f2
4 f2

16

� 2q
f2f2

16

f8

◆

⇥
✓

f5
72

f5
18f

2
144

+ 2q9 f2
36f

2
144

f5
18f72

◆
(mod 4).

By expanding this product and taking the odd part we are left with

1X

n=0

PD3(16n + 8)qn ⌘
✓

2q5 f5
4 f2

18f
2
72

f2
2 f2

8 f36
� 2q

f2
8 f5

36

f4f2
72

◆
f2
3

f2
9

(mod 4).

Using (18) and (19) once again, we obtain

1X

n=0

PD3(16n + 8)qn ⌘
✓

2q5 f5
4 f2

18f
2
72

f2
2 f2

8 f36
� 2q

f2
8 f5

36

f4f2
72

◆✓
f6f5

24

f2
12f

2
48

� 2q3 f6f2
48

f24

◆

⇥
✓

f5
72

f5
18f

2
144

+ 2q9 f2
36f

2
144

f5
18f72

◆
(mod 4),

from which we see that the even part of
P1

n=0 PD3(16n + 8)qn is congruent to 0
modulo 4, completing the proof of (5).

In order to prove (6), we use Lemma 5 to rewrite (34) modulo 4:

1X

n=0

PD3(4n)qn ⌘ f6
2 f6

3

f1f4
2 f2

6 f9
⌘ f2

2

f1

f6
3

f2
6 f9

⌘  (q)
f6
3

f2
6 f9

(mod 4).
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Now, by (28), it follows that
1X

n=0

PD3(4n)qn ⌘ f6
3

f2
6 f9

✓
f6f2

9

f3f18
+ q

f2
18

f9

◆
(mod 4),

from which we obtain
1X

n=0

PD3(12n)qn ⌘ f5
1 f3

f2f6
⌘ f1f2

f3

f6
(mod 4).

Finally, using (25), we extract the terms involving q3n. This yields
1X

n=0

PD3(36n)qn ⌘ f4
3

f2
6

⌘ 1 (mod 4),

which implies (6).
From (32) and using (26) we obtain

1X

n=0

PD3(2n + 1)qn =
f3
3 f18

f6f9

✓
f4
6 f6

9

f8
3 f3

18

+ 2q
f3
6 f3

9

f7
3

+ 4q2 f2
6 f3

18

f6
3

◆2

.

Extracting the terms of the form q3n+1 on both sides of this identity, we are left
with

1X

n=0

PD3(6n + 3)q3n+1 =
f3
3 f18

f6f9

✓
2q

f7
6 f9

9

f15
3 f3

18

+ 16q4 f4
6 f6

18

f12
3

◆
,

from which it follows that
1X

n=0

PD3(6n + 3)qn ⌘ 2
f6
2 f8

3

f12
1 f2

6

⌘ 2
f2
2 f2

6

f4
1

(mod 8). (37)

Now, using (20) we extract the even parts on both sides of this congruence to obtain
1X

n=0

PD3(12n + 9)qn ⌘ 8
f2
2 f2

3 f4
4

f8
1

(mod 8),

which implies (7).
From Lemma 5 we see that

f2
2 f2

6

f4
1

⌘ f4
3 (mod 4).

Then, by (37), we deduce
1X

n=0

PD3(6n + 3)qn ⌘ 2f4
3 (mod 8),
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from which (8) and (9) follow.
We close this section by proving (10) and (11). By Lemma 5,

f5
2 f5

3 f6

f11
1

⌘ f3f3
6

f1
(mod 2).

From (35), it follows that

1X

n=0

PD3(6n + 5)qn ⌘ 4f3
6

f3

f1
(mod 8).

Now, using (24), we 2-dissect
P1

n=0 PD3(6n + 5)qn modulo 8 to obtain

1X

n=0

PD3(12n + 5)qn ⌘ 4
f2f4

3 f8f2
12

f2
1 f4f6f24

⌘ 4
f6f8

f4
(mod 8),

and
1X

n=0

PD3(12n + 11)qn ⌘ 4
f4
3 f2

4 f24

f2
1 f8f12

⌘ 4
f3
2 f2

6 f24

f8f12
(mod 8),

from which we obtain (8) and (9), respectively.
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