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Abstract
In 2002, Andrews, Lewis and Lovejoy introduced and studied the partition function
PD(n), the number of partitions of n with designated summands. Recently, con-
gruences involving the number of f-regular partitions with designated summands,
denoted by PDy(n), have been explored for £ = 2 and ¢ = 3. In this paper, we
present new arithmetic properties of PD3(n), including a complete characterization
of this function modulo 3.

1. Introduction

A partition of an integer n > 0 is a non-increasing sequence of positive integers,
A1 > .-+ > Ag, such that n = Ay + --- + As. The \;s are called the parts of the
partition.

Andrews, Lewis, and Lovejoy [1] introduced and studied many properties of a
new class of objects called partitions with designated summands. These partitions
are constructed by taking ordinary partitions and tagging exactly one of each part
size. For instance, the ten partitions of 4 with designated summands are:

4 3 +1, 22+2 242, 2+1+1, 2 +14+1,
"+14+141, 1+1"+14+1, 1+1+1"+1, 1+14+1+1".

The arithmetic aspects of the number of partitions with designated summands,
denoted by PD(n), have been studied in [1, 3, 6, 8, 14]. For instance, in [1] the
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authors proved that for all n > 0
PD(Bn+2)=0 (mod 3).

In [1], the authors also presented some arithmetic properties of PDy(n), the num-
ber of 2-regular partitions of n with designated summands (a partition of n is called
l-regular if there is no part divisible by the positive integer ¢). Subsequently, in [3],
additional congruences satisfied by PDs(n) were found. In [12], the authors consid-
ered PDs(n), the number of 3-regular partitions of n with designated summands.
They proved that the generating function for PD3(n) is given by

(4% 4°)2%. (0% ) o
(45 @)oo (0% 4%) oo (4185 ¢18) 0o

ZPDg,(n)q" = ) (1)
n=0

where
(a;q)o =1,
(a;q)n = (1 —a)(1 —aq)--- (1 —ag" 1), for all n > 1,
(a3 @)oo = limp—oo(a; )n, g < 1.

The authors then proved the following:

Theorem 1 ([12], Theorem 2). For each n >0,

PD3(6n+3)=0 (mod 4),
PD3(6n+5)=0 (mod 12),
PD3(12n+8) =0 (mod 48),
PD3(24n+4) =0 (mod 9),
PD3(24n+20) =0 (mod 144),
PD3(24n+22) =0 (mod 36),
PD5(48n+38) =0 (mod 12)

In this paper, using elementary generating function manipulations, we provide
new congruences satisfied by PDs(n), including a complete characterization of this
function modulo 3. Namely, we prove the following;:

Theorem 2. For alln > 0,

R R e e

where r(n) is the number of representations of n as k(k+ 1) +3m(m + 1) + 1,

which provides a complete characterization of PD3(n) modulo 3, and
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Theorem 3. For alln > 0,

PD3(24n +16) =0 (mod 2), (3)
PD3(9n+6) =0 (mod 3), (4)
PD3(32n+8) =0 (mod 4), (5)
PDs3(36n) =0 (mod 4), (6)
PD3(12n4+9) =0 (mod 8), (7
PD3(18n4+9) =0 (mod 8), (8)
PD3(18n+15) =0 (mod 8), 9)
PD3(24n +17) =0 (mod 8), (10)
PD3(24n +23) =0 (mod 8), (11)
PD3(6n+4) =0 (mod9). (12)

This paper is organized as follows. In Section 2, we recall some basic properties
of Ramanujan’s theta functions ¢(q) and (¢q) and we also present some useful
identities. Section 3 is devoted to proving Theorem 2 and the new congruences (3)—
(12) satisfied by PD3(n). All of the proofs presented involve elementary generating
function dissections and manipulations.

2. Preliminaries

We recall Ramanujan’s theta functions

> 5 2; 2 io
)= ) "= <q;q(>qzo<24);q4>go’ (13)
_ N etz _ (2%
¥(q) ;}q G (14)

By Entry 25 (i), (ii), (v), and (vi) in [4, p. 40], we have

o(q) = o(q") + 2q9(¢%), (15)

and
$(a)* = ¢(q*)” + 4qv(¢")*. (16)
Throughout this paper, we define

fr = (0"1¢")
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in order to shorten the notation. Thus, we can rewrite (1) in the form

fifaf1s

In the next lemmas, we recall some identities that will be useful in the proof of
Theorem 3. The first lemma presents the 2-dissections of fZ, certain quotients of
powers of f; and f3, and + for t e {2,4,8}.

iPD;;(n)q": fify . (17)
n=0

Lemma 1. The followmg Zdentitz'es hold:

5
R g <18>
i_ 13 [l
7R T s 1

14
1 fi 4_~_4qf41{)87 (20)
fl 2 J8 2
1 28
g5 = grigs + 00+ 100 Y 1)
fs B8 fffaffz

+ 3¢q , (22)

S 13
f_1 _ f_4_ 131
B fe Vg2 )
f3 _ fafsfiefu +q fof§ fas (24)

fl - f22f8f12f48 f2f16f24

Proof. Identity (18) follows from (16) after replacing ¢ by —¢. By (13) and (14) we
can rewrite (15) in the form

5
J;z _ f82 +2g fl67
i fs
from which we obtain (19) after multiplying both sides by ;;“j
2
By (13) and (14) we can rewrite (16) in the form
10
2 fg 8
= +4q5
fifd f2 H i
from which (20) follows. The identity in (21) is just (20) squared.
Equation (22) appears in [2] as Theorem 4.17. Replacing ¢ by —¢q in (22) and
using the fact that

f3
fifa
we obtain (23). Identity (24) is Eq. (30.10.3) in [9]. O

(—¢ @)oo =
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In the next lemma, we recall the 3-dissections of fi fa, fo/ fZ, f—lg,, and ¥(q).
1

Lemma 2. The following identities hold:

4 4
fife= J}fﬁj‘% —qfofis — 2q2??28,
f2 f6f9 f6f9 2f6f18
W T T
g { | o bl Ul
7 A v
IR L AP PR XA CN
o) )
BB R
w@%—ﬁh8+qb-

+92f9}

(27)

(28)

Proof. Identity (25) was proven in [11]. A proof of (26) can be seen in [10]. Identity
(27) is Equation (14) in [7]. Identity (28) follows from the first equality in Corollary

(ii) [4, p. 49].
The next lemma appears in [13, Eq. 5.1].

Lemma 3. The following identity holds:

B g
ffd T S

The next result is a consequence of Jacobi’s triple product identity.

Lemma 4. The following identity holds:

oo

fi’) — Z(—l)"(Qn + 1)qn(n+1)/2.

n=0

Proof. See Section 1.3 in [5].

O

(29)

In order to prove some of the congruences, we make use of the following well-
known results in the next lemma, which can be proven using the binomial theorem.

Lemma 5. Given a prime p and positive integers k and m, we have

2= fa (mod 4),
gm = g’gl (mod 9),

pm _ rm

L= fon (mod p).
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3. Proofs of the New Congruences

This section is devoted to proving Theorem 2 and Theorem 3. In order to do so, we
prove some additional identities involving ZZO:O PD3(n)q"™. We begin by recalling
Equations (4), (5), (6), (9), and (12) in [12]:

TiPDB(Qn)Q" = ﬁ}i’ (31)
gppg(zn +1)¢" = J;i’;iis (32)

S oo S5 (G5 -ubB). o

gPDs(ﬁln)q” = fggi (34)
i PD3(6n +5)q" = 12f5§1f6. (35)
n=0

3.1. Proof of Theorem 2

Firstly we consider the case when n is even. We shall show that PD3(2n) = 0
(mod 3). This is a straightforward consequence of using Lemma 5 in (31). Indeed,

= n_ f3/18
;PDS(%)(] ~ fshs

Thus, for all n > 1, PD3(2n) =0 (mod 3).
Now we consider the case when n is odd. The generating function for PD3(2n+1)
is (32) above. From (14), using Lemma 5, we obtain

=1 (mod 3).

> PDs(2n+1)q" = 25% = 9(q)e(q”)
n=0 fl
= Y Y (mod 3),
k,m=0

from which it follows that

r(2n+1) (mod3), if2n+1=k(k+1)+3m(m+1)+1,

PDs(2n+1) = { 0 (mod 3), otherwise,

where 7(n) is the number of representations of n as k(k + 1) +3m(m + 1)+ 1. This
completes the proof of (2) in the case when n is odd.
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3.2. Proof of Theorem 3

By (27) and (31), we have

- n_ Jo1S
S PDsen" = Ji {#

°)°

+ 8¢ f3

o(=¢")* |

—i—16q6 alt °)°
o(—®)

P (g3)?

3n+2

+3qf3f§

By taking the terms involving ¢ , we obtain

= 0 o f513
> PDy(6n+4)q" = 931,
= fi'fe

from which (12) follows directly.
From (36) and using (29), we obtain

;Pm((ﬁn +4)g" = f3f

f3f6 o

f if2 i
Now, using (21) and (22), it follows that

2 9(—¢q 2 P(—q
o(—q*)? o(—q*)¥(q?)
¥(q?)

+ 72975

o)’

4f f3

f3f6 f2f6>
(1 sl

(]
¥(q

f°18

0 6 £6 2 £4 2
2 5 s

fina

2

+ 576¢> +115

Hence,

> PD3(12n +4)¢" = ffof?’ + 576¢
= VFiog

= fofs (mod 2),

from which we obtain (3).

+ 72955
2

o LSS

f216f3

1

The congruence in (4) follows directly from (33). Indeed,

rRERE

_ 5
s

iPDg(Sn)q": f50 —2q N
n=0

—2qfs (mod 3),

8
8

+9¢° 8

)
%)

b
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from which we see that the coefficients of ¢*"*2 in >°°° / PD3(3n)q"™ are congruent

to 0 modulo 3, completing the proof of (4).
From (34), using (23), we have

3 n_ A5 _R8
;PD?,(M) ==27 (mod 4)

' f%f%)(sz_ 3f6f36) -
<f12 395,72 )\ Gy 30 gypz, ) (modd)
_ R, B 5 J118 I36 2 F3 s 156 m

o Uiz S0 g, T e (medd)

Thus

3 wo B GRS
;PD?)(STL)Q = +4q 2 (mod 4),

from which, using (18) and (19), we deduce

c- n_ [318 | oS3 fis <f2fs5 B f2f126>
2 Phslsma” = 7% + 2R e — 2

f’?Q 9f36f144)
(ffsf%44+2 Pt ) 000D

By expanding this product and taking the odd part we are left with

s fifisf? f8f36> 13
(2 Rt n) @ ety

prg 16n + 8)¢" =
n=0

Using (18) and (19) once again, we obtain

_ <2 SIS f8f36> ( fol3s _2q3f6f428)

f2f8f36 a f4f72 f122f428 f24

f72 9 f36f144 > d
g (ffsff44 T2y, ) med D).

PD3(16n + 8)¢™ is congruent to 0

> PDs(16n +8)¢"

n=0

from which we see that the even part of Y

modulo 4, completing the proof of (5).
In order to prove (6), we use Lemma 5 to rewrite (34) modulo 4:

R HCTIVI L S 3 BRI Sl
fifsféfo — f1 féfe féfo
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Now, by (28), it follows that

- g™ = /3 (fﬁfg2 f18) m
2 PDs(n" = g (FpsHays ) (mod ),

from which we obtain

> PDs(12n)q" = f[—f = fifs ;3 (mod 4).

n=0

Finally, using (25), we extract the terms involving ¢". This yields

3 ( no I3 =1 (mod 4),

which implies (6).
From (32) and using (26) we obtain
(oo}
3 fis <f§f96 fefs 2f6f18>
PD3(2n+1)q" = + 2¢q +4
2 Phy(n+ g = T o+ 207y I
Extracting the terms of the form ¢3! on both sides of this identity, we are left

with

- ans1  J3f1s ( JEfS 4f6f18)
ZPD3(6n+3)q =55 2 f§5f18 +16 n )

n=0

from which it follows that

W I35 _ 1318
prg (6n +3)q" f122;2 =2 2f € (mod 8). (37)
n=0 1
Now, using (20) we extract the even parts on both sides of this congruence to obtain

ZPD3 12n 4 9)¢" f2;3f4 (mod 8),
1

n=0
which implies (7).
From Lemma 5 we see that

fQ;{:g = f5 (mod 4).
1

Then, by (37), we deduce

> PD3(6n+3)¢" =2ff (mod 8),
n=0
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from which (8) and (9) follow.
We close this section by proving (10) and (11). By Lemma 5,

B513fs _ fufi

= mod 2).
=Ty med?)
From (35), it follows that
- n — 3 f3
> PDs(6n+5)q" = 4f T (mod 8).
n=0 1

Now, using (24), we 2-dissect Y -, PD3(6n + 5)¢™ modulo 8 to obtain

iPD3(12n+5)qn :4f2f§lf8f122 — 4f6f8

=V fofos — gy (mod8),

n=0
and

:4f§1fff24 :4f§’fgf24
T fifsfiz T fshi2

> PDs(12n+11)g" (mod 8),

n=0

from which we obtain (8) and (9), respectively.
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