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Abstract

Nested recurrence relations are highly sensitive to their initial conditions. The
best-known nested recurrence, the Hofstadter Q-recurrence, generates sequences
displaying a wide variety of behaviors. Most famous among these is the Hofstadter
Q-sequence, which appears to be structured at a macro level and chaotic at a micro
level. Other choices of initial conditions can lead to more predictable solutions,
frequently interleavings of simple sequences. Previous work has focused on the
form of a desired solution and on describing an initial condition that generates such
a solution. In this paper, we flip this paradigm around. We illustrate how focusing
on the form of an initial condition and describing the resulting sequences can yield
strange families of new solutions to nested recurrences.

1. Introduction

The Hofstadter Q-sequence [10] is defined by the nested recurrence

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2))

with the initial conditions Q(1) = 1 and Q(2) = 1. As successive terms are gener-

ated, the Q-sequence seems to behave rather chaotically. But, plots of the sequence

suggest that Q(n) remains close to n
2 , and there appears to be a sort of fractal

structure in the plot. See Figure 1 for a plot of the first ten thousand terms.

A key question regarding the Q-sequence is whether it is, in fact, an infinite

sequence. Based on the recurrence, the value of Q(n) depends on the value of

Q(n−Q(n− 1)). If Q(n− 1) ≥ n, then the value of Q(n) depends on the value of

Q at a nonpositive index. Since the Q-sequence is only defined starting with Q(1),

Q(n−Q(n− 1)) would not exist, and hence Q(n) would not exist in this scenario.

If a sequence defined by a nested recurrence is finite in this way, we say that the

sequence dies after n− 1 terms, or that it dies at index n. It is still open whether

the Q-sequence dies, but it contains at least 1010 terms [14].
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Figure 1: Plot of the first 10000 terms of the Hofstadter Q-sequence

1.1. Notation

Before we continue, we introduce a few pieces of notation that appear throughout

this paper. The only recurrence relation we discuss is the Hofstadter Q-recurrence,

but we study it with many different initial conditions. The notation Q(n) refers

to the nth term of the Q-sequence itself. The notation Q∗(n) refers to a generic

sequence that satisfies the Q-recurrence. For any other specific sequence satisfying

the Q-recurrence, we use Q with a subscript that we define for that particular

sequence.

We use angle brackets to denote our initial conditions. For example, 〈1, 1〉 is

shorthand for Q∗(1) = 1 and Q∗(2) = 1, the initial condition for the Hofstadter

Q-sequence. Sometimes, it is convenient to define Q∗(n) = 0 for all n ≤ 0, as

forcing sequences to die as previously described can limit the diversity of solutions

we encounter [13, 4]. This convention is noted with a symbol 0̄ followed by a

semicolon at the start of the initial condition. For example, 〈0̄; 1, 1〉 is shorthand

for Q∗(n) = 0 for n ≤ 0, Q∗(1) = 1, and Q∗(2) = 1.

Note that it is still possible for a sequence with such an extended initial condition

to be finite. If Q∗(n− 1) = 0 for some n, then Q∗(n) would be self-referential. This

sort of issue cannot be resolved via an initial condition tweak, so we declare Q∗(n)

to be undefined in this case. To avoid confusion with earlier terminology, we do not

say that such a sequence dies. Rather, we say that it ends after n− 1 terms or at
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index n.

1.2. Preliminarities

Nested recurrence relations, such as the Hofstadter Q-recurrence, are highly sensi-

tive to their initial conditions. For example, if we change the initial condition of

the Q-recurrence to 〈3, 2, 1〉, we obtain a sequence consisting of three interleaved

constant or linear sequences [9], which we denote by QG:










QG(3k) = 3k − 2

QG(3k + 1) = 3

QG(3k + 2) = 3k + 2.

(To use the above expression to determine QG(n), first write n = 3k + r where

r = n mod 3, and then refer to the appropriate case.) Going forward, we say that

a sequence consisting of m interleaved constant and linear sequences is quasilinear

with period m. In this language, QG is quasilinear with period 3. Another notable

initial condition to the Q-recurrence is 〈0̄; 3, 6, 5, 3, 6, 8〉. The resulting sequence

is not quasilinear; rather, it is an interleaving of two constant sequences with the

Fibonacci sequence [13].

Previous approaches [9, 13, 2, 4, 6, 7, 8, 15, 1, 3, 11, 12] have focused on trying to

find initial conditions to nested recurrences that produce solutions of a specific form.

In this paper, we instead find predictable solutions to the Hofstadter Q-recurrence

by specifying the form of the initial condition and determining the behavior of the

resulting sequence. In Section 2, we characterize the sequences resulting from the

family of initial conditions of the form 〈1, 2, 3, . . . , N〉, and in Section 3, we study

the more general initial condition 〈0̄; 1, 2, 3, . . . , N〉. Finally, we suggest some future

research directions in Section 4.

2. A Family of Dying Sequences

In this section, we consider sequences obtained from the Hofstadter Q-recurrence

and an initial condition of the form 〈1, 2, 3, . . . , N〉 for some integer N ≥ 2. Hence-

forth, we denote this sequence for a given value of N by QN .

We have the following result, which characterizes the behaviors of almost all of

these sequences.

Theorem 1. For N = 8, N = 11, N = 12, or N ≥ 14, the sequence QN dies.

Furthermore, if N ≥ 21, the sequence has exactly N+28 terms, and if 14 ≤ N ≤ 20,

the sequence has exactly N + 32 terms.

Proof. It is straightforward to verify by computing terms that Q8(420) = 430,

Q11(199) = 206, and Q12(69) = 77, so these sequences all die [14].
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In general, we can compute terms following the initial condition as a function of

the parameter N . First, we compute QN (N + 1). By the Q-recurrence, this equals

QN(N+1−QN(N))+QN(N+1−QN(N−1)). Both Q(N) and Q(N−1) lie in the

initial condition, so they equal N and N − 1 respectively. This allows us to simplify

the expression to QN(N +1−N)+QN(N +1− (N −1)) = QN(1)+QN (2). Again,

we have two terms from the initial condition, so we obtain that QN(N + 1) = 3.

This calculation is invalid if N = 1 (as then neither index 2 nor index N − 1 would

be in the initial condition), but it is valid for any N ≥ 2.

Subsequent terms are computed using a similar process. Two important notes:

(a) The terms arising in the intermediate steps are not always from the initial

condition. But, if a term is not from the initial condition, we can proceed

as long as it lies before the current term. In that eventuality, we would have

already computed it, so we can use its computed value.

(b) The calculations at each step are only valid for N sufficiently large. If a fact of

the form Q(i) = i is used to simplify an expression for some constant i, then

we must have N ≥ i. Similarly, if a fact of the form Q(N − i) = N − i is used,

we must have N > i.

Using this process, we can compute 28 terms following the initial condition before

we run into any issues. These 28 terms are:

3, N + 1, N + 2, 5, N + 3, 6, 7, N + 4, N + 6, 10, 8, N + 6, N + 10, 12, N + 7,

14, N + 12, 11, N + 11, N + 15, 16, 13, 17, 15, N + 14, 20, 20, 2N + 8.

See Appendix 4 for explicit computations of these terms, along with a bound on the

values of N for which that computation and all previous computations are valid. In

particular, note that the calculations are valid for N ≥ 13.

The last term we have is Q(N + 28) = 2N + 8. We try to compute Q(N + 29):

QN(N+ 29) = QN (N + 29−QN(N + 28)) +QN(N + 29−QN (N + 27))

= QN (N + 29− (2N + 8)) +QN (N + 29− 20)

= QN (−N + 21) +QN (N + 9) .

If N ≥ 21, then −N +21 ≤ 0, so QN (−N +21) is undefined and the sequence dies.

This just leaves the values 14 ≤ N ≤ 20 to examine. This is a finite range, so it

suffices to individually check that these sequences all die after N + 32 terms. But,

these seven sequences all die according to the same pattern, so we give a unifying

proof for all of them. Suppose 14 ≤ N ≤ 20. We then haveQN(−N+21) = −N+21,

as that term now lies in the initial condition. So, we can continue to compute terms.

All calculations below are only valid if N ≥ 13, which is the case for the range we

are considering.

QN(N+ 29) = QN (−N + 21) +QN (N + 9) = −N + 21 +N + 6 = 27
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QN(N+ 30) = QN (N + 30−QN(N + 29)) +QN(N + 30−QN (N + 28))

= QN (N + 30− 27) +QN (N + 30− (2N + 8))

= QN (N + 3) +QN (−N + 22) = N + 2−N + 22 = 24

QN(N+ 31) = QN (N + 31−QN(N + 30)) +QN(N + 31−QN (N + 29))

= QN (N + 31− 24) +QN (N + 31− 27)

= QN (N + 7) +QN (N + 4) = 7 + 5 = 12

QN(N+ 32) = QN(N + 32−QN (N + 31)) +QN(N + 32−QN (N + 30))

= QN(N + 32− 12) +QN (N + 32− 24)

= QN (N + 20) +QN (N + 8) = N + 15 +N + 4 = 2N+ 19.

If N ≥ 14, then 2N + 19 ≥ N + 33. This means that, if 14 ≤ N ≤ 20, then

QN(N + 33) fails to exist. So, QN dies after N + 32 terms whenever 14 ≤ N ≤ 20,

as required.

Theorem 1 says that QN dies for all but finitely many N . This begs the question

of what happens when N ∈ {2, 3, 4, 5, 6, 7, 9, 10, 13}. The sequence Q2 is Hofs-

tadter’s sequence without the initial 1, so it is unknown whether Q2 dies. Since

Q2(3) = 3, Q3 = Q2, so N = 3 also gives Hofstadter’s sequence. The remaining N

values in this set give sequences that are different from Hofstadter’s sequence and

different from each other. Like Hofstadter’s, it is unknown whether any of these

sequences dies. All of these sequences last for at least 30 million terms [14].

3. More Complicated Behavior

The sequences in Section 2 almost all die. Here, we consider what happens if we

prevent them from dying by defining their values to be zero at nonpositive integers.

For an integer N ≥ 2, let QN̄ denote the sequence obtained from the Hofstadter

Q-recurrence with initial condition 〈0̄; 1, 2, 3, . . . , N〉.

Somewhat surprisingly, the behavior of QN̄ depends on the congruence class of N

modulo 5. Before delving into details, we describe the high-level structure of these

sequences for sufficiently large N . First, the sequences QN and QN̄ agree until QN

dies. Shortly after that point, QN̄ settles into a period-5 quasilinear pattern. Unlike

the sequence QG mentioned in the introduction, where the quasilinear pattern lasts

forever, the period-5 behavior of QN̄ is only temporary. What happens once it

collapses depends on N mod 5. For three congruence classes, a term in QN̄ depends

on itself shortly after the quasilinear behavior stops, causing the sequence to end

there. In one case, the sequence ends only 4 terms beyond the end of the quasilinear
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part. The other two cases last 11 and 158 terms beyond it. Of the two remaining

congruence classes, one of them leads to a seemingly infinite sequence some of whose

terms are predictable and others of which appear chaotic. The other class leads to a

period-5 quasilinear pattern not unlike the one that stopped shortly before. Like the

original period-5 pattern, this one is also temporary. When it finishes, the same five

possible continuations of behavior are possible, with the behavior now dependent

on N mod 25. Similar period-5 chunks appear to be possible to arbitrary depths.

The structure of this section is as follows. In 3.1 we formally introduce the semi-

predictable sequences discussed above. Then, in 3.2, we formally state and prove

Theorem 2, which fully describes the structure of QN̄ . Then, 3.3 is devoted to a

further discussion, in plain language, of the consequences of Theorem 2. Finally,

a discussion of the remaining cases, when N is not sufficiently large, is carried out

in 3.4.

3.1. Interlude: A Family of Semi-Predictable Solutions

In order to fully characterize the sequences QN̄ , it is necessary to describe a peculiar

family of sequences that satisfy Hofstadter’s recurrence. Historically, solutions to

Hofstadter-like recurrences have looked one of the following:

(a) Finite (dying/ending) sequences (e.g. Q70)

(b) Apparently infinite sequences with seemingly chaotic behavior, though perhaps

with some detectable patterns (e.g. the Hofstadter Q-sequence)

(c) A sequence satisfying a linear recurrence relation (e.g. QG)

(d) A monotone increasing sequence with successive differences 0 or 1 (e.g. Tanny’s

sequence [15])

Now, we describe a family of solutions to the Q-recurrence that does not fall

cleanly into the above classification, instead combining elements of cases (b) and (c).

In particular, the solutions are interleavings of five sequences. Four of them are

chaotic and seemingly infinite, and the fifth is a constant sequence.

As auxiliary objects, we define three sequences via a system of nested recurrences:

Definition 1. Define sequences R(n), S(n), and T (n) as follows:

• R(n) = 0 for n ≤ 0, R(1) = 1, R(2) = 2, R(n) = R(n−R(n− 1)) + S(n− 1)

for n ≥ 3

• S(n) = 0 for n < 0, S(0) = 1, S(1) = 1, S(n) = S(n−R(n))+S(n−R(n−1))

for n ≥ 2

• T (n) = 0 for n < 0, T (0) = 1, T (n) = T (n−R(n)) + T (n− S(n)) for n ≥ 1
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Figure 2: Plot of R(1) through R(2000)

Plots of these sequences are given in Figures 2, 3, and 4 respectively. All of

them appear to behave fairly chaotically, and, much like the Q-sequence, it is un-

known whether or not they end. According to the plots, R and S appear to grow

approximately linearly, whereas T appears to grow superlinearly.

Multiples of the R, S, and T sequences can appear as equally-spaced subse-

quences of solutions to the Hofstadter Q-recurrence. We denote such solutions by

QT . Proposition 1 describes a parametrized family of such solutions. All solutions

in this family eventually consist of five interleaved subsequences: two multiples of

R, one multiple each of S and T , and a sequence of all fours. In the next sec-

tion, we will see that some of the sequences QN̄ are eventually characterized by

Proposition 1.

Proposition 1. Let K ≥ 0, λ ≥ 9 and µ ≥ K + 6 be integers. The initial con-

dition 〈0̄; a1, a2, . . . , aK , 5, λ, 4, µ〉 (each ai an arbitrary integer) for the Hofstadter

Q-recurrence generates the following pattern, beginning with index K + 5 (the first
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Figure 3: Plot of S(0) through S(2000)

case, with k = 1),






























QT (K + 5k) = 5R(k)

QT (K + 5k + 1) = 5S(k)

QT (K + 5k + 2) = λT (k)

QT (K + 5k + 3) = 4

QT (K + 5k + 4) = 5R(k).

The pattern lasts as long as the R, S, and T sequences live and as long as λT (k) ≥

K + 5k + 4.

One may wonder how restrictive the condition λT (k) ≥ K +5k+4 is. Since the

T -sequence appears to grow superlinearly, it should be satisfied by sufficiently large

λ for fixed K. In particular, λ = 9 seems to suffice for K = 0, lasting for at least

fifty million terms (and λ = 8 fails within the first 60 terms) [14]. The case K = 0,

λ = 9 and µ = 6 is depicted in Figure 5.

We now prove Proposition 1.

Proof. The proof is by induction on n. As a base case, we first manually check

n = K + 5 through n = K + 8.

• QT (K + 5) = QT (K + 5− µ) +QT (K + 5− 4) = QT (K + 1) = 5 = 5R(1).
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Figure 4: Plot of T (0) through T (2000)

Figure 5: The first 2000 terms of QT with initial condition 〈0̄; 5, 9, 4, 6〉
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• QT (K + 6) = QT (K + 6− 5) +QT (K + 6− µ) = QT (K + 1) = 5 = 5S(1).

• QT (K + 7) = QT (K + 7− 5) +QT (K + 7− 5) = 2QT (K + 2) = 2λ = λT (1).

• QT (K + 8) = QT (K + 8− 2λ) +QT (K + 8− 5) = QT (K + 3) = 4.

(Note that K + 8 − 2λ ≤ 0 because λT (1) = 2λ ≥ K + 5 + 4 = K + 9.) We now

proceed by induction on n for n ≥ K + 9. There are 5 cases to consider.

n−K ≡ 0 (mod 5): Here, n = K + 5k for some k ≥ 2. We have

QT (K + 5k) = QT (K + 5k −QT (K + 5k − 1))

+QT (K + 5k −QT (K + 5k − 2))

= QT (K + 5k − 5R(k − 1)) +QT (K + 5k − 4)

= 5R(k −R(k − 1)) + 5S(k − 1)

= 5R(k),

as required.

n−K ≡ 1 (mod 5): Here, n = K + 5k + 1 for some k ≥ 2. We have

QT (K + 5k + 1) = QT (K + 5k + 1−QT (K + 5k))

+QT (K + 5k + 1−QT (K + 5k − 1))

= QT (K + 5k + 1− 5R(k)) +QT (K + 5k + 1− 5R(k − 1))

= 5S(k −R(k)) + 5S(k − R(k − 1))

= 5S(k),

as required.

n−K ≡ 2 (mod 5): Here, n = K + 5k + 2 for some k ≥ 2. We have

QT (K + 5k + 2) = QT (K + 5k + 2−QT (K + 5k + 1))

+QT (K + 5k + 2−QT (K + 5k))

= QT (K + 5k + 2− 5S(k)) +QT (K + 5k + 2− 5R(k))

= λT (k − S(k)) + λT (k −R(k))

= λT (k),

as required.

n−K ≡ 3 (mod 5): Here, n = K + 5k + 3 for some k ≥ 2. We have

QT (K + 5k + 3) = QT (K + 5k + 3−QT (K + 5k + 2))

+QT (K + 5k + 3−QT (K + 5k + 1))

= QT (K + 5k + 3− λT (k)) +QT (K + 5k + 3− 5S(k))

= 0 + 4

= 4,
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as required.

n−K ≡ 4 (mod 5): Here, n = K + 5k + 4 for some k ≥ 1. We have

QT (K + 5k + 4) = QT (K + 5k + 4−QT (K + 5k + 3))

+QT (K + 5k + 4−QT (K + 5k + 2))

= QT (K + 5k + 4− 4) +QT (K + 5k + 4− λT (k))

= QT (K + 5k) + 0

= 5R(k),

as required.

What assumptions do we make about λ and µ? When computing QT (K + 6), we

require µ ≥ K + 6. After this, µ never appears again. For λ, when computing

QT (K + 5k + 3) we need λT (k) ≥ K + 5k + 4 for every k, as required.

Aside from the existence of the solutions described in Proposition 1 and the

single application to the sequences QN̄ , little is known about these and related

semi-predictable solutions to the Q-recurrence. A preliminary exploration can be

found in [5].

3.2. Structure Theorem for QN̄

In this section, we formally state and prove a theorem (Theorem 2) that describes

the full behavior of all but finitely many of the sequencesQN̄ , modulo open questions

about whether or not the sequences in 3.1 are infinite. The theorem has many parts,

all of which have some substance. Because of the length and amount of technical

detail in this theorem, we state both a short version and a long version.

Before we state Theorem 2, we introduce some auxiliary sequences.

Definition 2. Fix an integer N . Define A0 = N−2, A1 = 2N+4, B1 = −11N−22,

and C1 = (N − 1) mod 5. Then, for i ≥ 2, define

Ai+1 = Ai

(

Ai −Ai−1 + 2

5

)

+Bi,

Bi+1 = Ai+1 −Ai,

and

Ci = (Ai + 2i+ 1) mod 5.

Finally, for all i ≥ 1, define

C′
i = max(0, ((3− Ci) mod 5)− 1).
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Note that Ai is not guaranteed to always be an integer, but it is an integer

whenever we use it (a fact that is guaranteed by Propopsition 2 on p. 20). We now

state our main theorem.

Theorem 2 (Short Version). Let N be a natural number. Let j be the first index

where Cj 6= 1 (or j = ∞ if Cj = 1 for all j). Provided N ≥ 35, the sequence QN̄

has the following structure:

(a) For all 1 ≤ i ≤ N , QN̄ (i) = i.

(b) The 28 terms following the initial conditions are the remaining 28 terms of

QN (see Appendix 4). The sequence then contains six sporadic terms, which

are then followed by a quasilinear chunk with period 5 that lasts through index

A1 + C′
1.

(c) For each 1 ≤ m < j, the previous quasilinear chunk is followed by five sporadic

terms and then another quasilinear chunk with period 5 that lasts through index

Am+1 + C′
m+1.

(d) If Cj = 0 and N ≥ 118, then QN̄ is finite, and it contains 158 terms after the

last quasilinear chunk concludes.

(e) If Cj = 2, then the behavior of the rest of the sequence is described by Propo-

sition 1, where the initial condition in that proposition is given by the already-

generated terms along with the two next terms.

(f) If Cj = 3, then QN̄ is finite, and it contains 4 terms after the last quasilinear

chunk concludes.

(g) If Cj = 4, then QN̄ is finite, and it contains 11 terms after the last quasilinear

chunk concludes.

Theorem 2 (Full Version). Let N be a natural number. Let j be the first index

where Cj 6= 1 (or j = ∞ if Cj = 1 for all j). Provided N ≥ 35, the sequence QN̄

has the following structure:

(a) For all 1 ≤ i ≤ N , QN̄ (i) = i.

(b) For 1 ≤ k ≤ 28, QN̄ (N + k) = QN(N + k) (see Appendix 4). The next

six terms are QN̄ (N + 29) = N + 6, QN̄(N + 30) = 24, QN̄ (N + 31) = 32,

QN̄ (N + 32) = 2N + 4, QN̄ (N + 33) = 3, QN̄(N + 34) = 32. Thereafter, for

35 ≤ 5k + r ≤ A1 + C′
1 with 0 ≤ r < 5,






























QN̄ (N + 5k) = A1k +B1

QN̄ (N + 5k + 1) = 5

QN̄ (N + 5k + 2) = A1

QN̄ (N + 5k + 3) = 3

QN̄ (N + 5k + 4) = 5.
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(c) For each 1 ≤ m < j, QN̄(Am+2) = 5, QN̄(Am+3) = 8, QN̄(Am+4) = Am+1,

QN̄ (Am + 5) = 3, QN̄ (Am + 6) = 8, and for all 7 ≤ 5k + r ≤ Am+1 + C′
m+1

with 0 ≤ r < 5,































QN̄ (Am + 5k) = 3

QN̄ (Am + 5k + 1) = 5

QN̄ (Am + 5k + 2) = Am+1k +Bm+1

QN̄ (Am + 5k + 3) = 5

QN̄ (Am + 5k + 4) = Am+1.

(d) If Cj = 0 and N ≥ 118, then QN̄ ends after Aj + 160 terms. See Appendix 4

for the remaining 158 terms.

(e) If Cj = 2, then QN̄(Aj +1) = 4, QN̄(Aj +2) = Aj

(

Aj−Aj−1−4
5

)

+Bj +2, and

thereafter, for 5k + r ≥ 3 with 0 ≤ r < 5































QN̄ (Aj + 5k) = AjT (k)

QN̄ (Aj + 5k + 1) = 4

QN̄ (Aj + 5k + 2) = 5R(k)

QN̄ (Aj + 5k + 3) = 5R(k + 1)

QN̄ (Aj + 5k + 4) = 5S(k + 1)

assuming the R, S, and T sequences from 3.1 last forever and assuming that,

for all k ≥ 1,

T (k) ≥ 1 +
5k + 2

Aj

.

(f) If Cj = 3, then QN̄ ends after Aj + 4 terms. The remaining 4 terms are:

• QN̄(Aj + 1) = 6

• QN̄(Aj + 2) = Aj + 5

• QN̄(Aj + 3) = Aj

(

Aj−Aj−1−5
5

)

+Bj

• QN̄(Aj + 4) = 0

(g) If Cj = 4, then QN̄ ends after Aj + 14 terms. The remaining 11 terms are:

• QN̄(Aj + 4) = 7

• QN̄(Aj + 5) = Aj + 5

• QN̄(Aj + 6) = 4

• QN̄(Aj + 7) = Aj + 2

• QN̄(Aj + 8) = 13

• QN̄(Aj+9) = Aj

(

Aj−Aj−1−6
5

)

+

Bj + 7

• QN̄(Aj + 10) = 5



INTEGERS: 20A (2020) 14

• QN̄(Aj + 11) = 4

• QN̄(Aj + 12) = Aj + 15

• QN̄(Aj+13) = Aj

(

Aj−Aj−1−6
5

)

+

Bj + 7

• QN̄(Aj + 14) = 0

It is worth noting that the condition

T (k) ≥ 1 +
5k + 2

Aj

in part (e) of Theorem 2 is almost certainly not necessary, since the T -sequence

appears to grow superlinearly and Aj is always at least 80 (and often much larger).

The proof of Theorem 2 requires the following lemma, which is of a similar flavor

to Proposition 1.

Lemma 1. Let K ≥ 0 be an integer, and let λ and µ be any integers satisfying

λ > K + 5 and λ + µ > K + 6. Let ν = max(0, ((K + 4 − λ) mod 5) − 1).

Then, for arbitrary integers a1, a2, . . . , aK , denote the sequence resulting from the

Hofstadter Q-recurrence and the initial condition 〈0̄; a1, a2, . . . , aK , µ, 5, λ, 3〉 by QC.

The sequence QC follows the following pattern from QC(K +1) through QC(λ+ ν):































QC(K + 5k) = 5

QC(K + 5k + 1) = λk + µ

QC(K + 5k + 2) = 5

QC(K + 5k + 3) = λ

QC(K + 5k + 4) = 3.

Proof. The proof is by induction on the index. The base cases are QC(K + 1)

through QC(K +4), which are part of the initial condition. Now, suppose K +5 ≤

n ≤ λ (we handle indices greater than λ later), and suppose that QC(n
′) is what

we want it to be for all K + 1 ≤ n′ < n. There are five cases to consider:

n−K ≡ 0 (mod 5): In this case, n = K + 5k for some k. Applying the Q-

recurrence, we have

QC(K + 5k) = QC(K + 5k −QC(K + 5k + 4))

+QC(K + 5k −QC(K + 5k + 3))

= QC(K + 5k − 3) +QC(K + 5k − λ)

= 5 + 0

= 5,

as required. Note that the validity of this case depends on n ≤ λ.
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n−K ≡ 1 (mod 5): In this case, n = K + 5k + 1 for some k. Applying the Q-

recurrence, we have

QC(K + 5k + 1) = QC(K + 5k + 1−QC(K + 5k))

+QC(K + 5k + 1−QC(K + 5k − 1))

= QC(K + 5k + 1− 5) +QC(K + 5k + 1− 3)

= λ(k − 1) + µ+ λ

= λk + µ,

as required. Note that the validity of this case does not depend on λ or µ.

n−K ≡ 2 (mod 5): In this case, n = K + 5k + 2 for some k. Applying the Q-

recurrence, we have

QC(K + 5k + 2) = QC(K + 5k + 2−QC(K + 5k + 1))

+QC(K + 5k + 2−QC(K + 5k))

= QC(K + 5k + 2− (λk + µ)) +QC(K + 5k + 2− 5)

= 0 + 5

= 5,

as required. Note that the validity of this case does not depend on λ or µ.

n−K ≡ 3 (mod 5): In this case, n = K + 5k + 3 for some k. Applying the Q-

recurrence, we have

QC(K + 5k + 3) = QC(K + 5k + 3−QC(K + 5k + 2))

+QC(K + 5k + 3−QC(K + 5k + 1))

= QC(K + 5k + 3− 5) +QC(K + 5k + 3− (λk + µ))

= λ+ 0

= λ,

as required. Note that the validity of this case does not depend on λ or µ.

n−K ≡ 4 (mod 5): In this case, n = K + 5k + 4 for some k. Applying the Q-

recurrence, we have

QC(K + 5k + 4) = QC(K + 5k + 4−QC(K + 5k + 3))

+QC(K + 5k + 4−QC(K + 5k + 2))

= QC(K + 5k + 4− λ) +QC(K + 5k + 4− 5)

= 0 + 3

= 3,

as required. Note that the validity of this case depends on n ≤ λ.
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This proves that the pattern lasts through index λ. We now complete the proof

by showing that the pattern continues through index λ+ ν. There are five cases to

consider:

λ−K ≡ 0 (mod 5): In this case, ν = 3, and the calculation of QC(λ) falls into the

first case above. The next three cases do not depend on λ, so the values of

QC(λ+ 1), QC(λ+ 2), and QC(λ + 3) are what we want.

λ−K ≡ 1 (mod 5): In this case, ν = 2, and the calculation of QC(λ) falls into the

second case above. The next two cases do not depend on λ, so the values of

QC(λ+ 1) and QC(λ+ 2) are what we want.

λ−K ≡ 2 (mod 5): In this case, ν = 1, and the calculation of QC(λ) falls into

the third case above. The next case does not depend on λ, so the value of

QC(λ+ 1) is what we want.

λ−K ≡ 3 (mod 5): In this case, ν = 0, so there is nothing to be checked.

λ−K ≡ 4 (mod 5): In this case, ν = 0, so there is nothing to be checked.

We now prove Theorem 2.

Proof. We refer the reader to Appendix 4 for terms QN̄(1) through QN̄ (N + 28).

Those calculations, which are for QN , also apply for QN̄ . From there, it is easy

to compute QN̄(N + 29) through QN̄ (N + 34), and each one equals its purported

value. We now compute the next four terms:

• QN̄ (N + 35) = QN̄ (N + 3) +QN̄(N + 32) = (N + 2) + (2N + 4) = 3N + 6.

• QN̄ (N + 36) = QN̄ (N + 4) = 5.

• QN̄ (N + 37) = QN̄ (N + 32) = 2N + 4 = A1.

• QN̄ (N + 38) = QN̄ (N + 33) = 3.

By Lemma 1, taking K = N + 34, λ = 2N + 4, and µ = 3N + 6, these four terms

spawn a period-5 pattern:































QN̄(N + 34 + 5k) = 5

QN̄(N + 34 + 5k + 1) = (2N + 4)k + (3N + 6)

QN̄(N + 34 + 5k + 2) = 5

QN̄(N + 34 + 5k + 3) = 2N + 4

QN̄(N + 34 + 5k + 4) = 3,
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provided that N > 35. Lemma 1 then guarantees that this pattern persists through

index QN̄ (A1 + ν), where

ν = max(0, ((N + 34 + 4−A1) mod 5)− 1)

= max(0, ((N + 34 + 4− 2N − 4) mod 5)− 1)

= max(0, ((34−N) mod 5)− 1)

= max(0, ((4−N) mod 5)− 1)

= max(0, ((3− (N − 1)) mod 5)− 1)

= max(0, ((3− C1) mod 5)− 1)

= C′
1,

as required. Shifting indices and recalling the definitions of A1 and B1 allow us to

rewrite this pattern as






























QN̄ (N + 5k) = A1k +B1

QN̄ (N + 5k + 1) = 5

QN̄ (N + 5k + 2) = A1

QN̄ (N + 5k + 3) = 3

QN̄ (N + 5k + 4) = 5,

which is the required form.

We now prove part (c) of Theorem 2, which refers to a parameter 1 ≤ m < j.

Suppose inductively that we are considering the value m < j, and that QN̄ (Am −

3) = 3, QN̄ (Am − 2) = 5, QN̄(Am − 1) = Am

(

Am−Am−1−3
5

)

+ Bm, QN̄ (Am) = 5,

and QN̄(Am + 1) = Am. Note that this is all true if m = 0, from the above. So,

m = 0 serves as our (already proved) base case.

Since m < j, it must be the case that C′
m = 1 (as Cm = 1 implies C′

m = 1). So,

QN̄(Am + 2) is the first non-calculated term. We compute the next 9 terms:

• QN̄ (Am + 2) = QN̄ (2) +QN̄(Am − 3) = 2 + 3 = 5.

• QN̄ (Am + 3) = QN̄ (Am − 2) +QN̄ (3) = 5 + 3 = 8.

• QN̄ (Am+4) = QN̄ (Am−4)+QN̄(Am−1). We have that QN̄ (Am−4) = Am.

But, QN̄ (Am − 1) = Am

(

Am−Am−1−3
5

)

+Bm. So,

QN̄ (Am + 4) = Am

(

1 +
Am −Am−1 − 3

5

)

+Bm

= Am

(

Am −Am−1 + 2

5

)

+Bm

= Am+1.

This term is much larger than Am.
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• QN̄ (Am + 5) = QN̄ (Am − 3) = 3.

• QN̄ (Am + 6) = QN̄ (Am + 1) = 8.

• QN̄ (Am+7) = QN̄(Am−1)+QN̄(Am+4). We have from beforeQN̄ (Am−1) =

Am

(

Am−Am−1−3
5

)

+Bm. But, our calculations in the QN̄ (Am+4) step allow

us to write QN̄(Am − 1) = Am+1 − Am. So, QN̄ (Am + 7) = Am+1 − Am +

Am+1 = 2Am+1 −Am = Am+1 +Bm+1.

• QN̄ (Am + 8) = QN̄ (Am) = 5.

• QN̄ (Am + 9) = QN̄ (Am + 4) = Am+1.

• QN̄ (Am + 10) = QN̄(Am + 5) = 3.

The first five of these terms are what we want. And, by Lemma 1, the last four

terms generate a period-5 pattern as in the lemma statement, with K = Am + 6,

λ = Am+1, and µ = Am+1 +Bm+1. The resulting pattern is































QN̄(Am + 6 + 5k) = 5

QN̄(Am + 6 + 5k + 1) = Am+1(k + 1) +Bm+1

QN̄(Am + 6 + 5k + 2) = 5

QN̄(Am + 6 + 5k + 3) = Am+1

QN̄(Am + 6 + 5k + 4) = 3,

which lasts through index Am+1 + ν, where

ν = max(0, ((Am + 6 + 4−Am+1) mod 5)− 1)

= max(0, ((Am −Am+1) mod 5)− 1).

Shifting indices by 6, the pattern can be rewritten as































QN̄ (Am + 5k) = 3

QN̄ (Am + 5k + 1) = 5

QN̄ (Am + 5k + 2) = Am+1k +Am+1 −Am = Am+1k +Bm+1

QN̄ (Am + 5k + 3) = 5

QN̄ (Am + 5k + 4) = Am+1,

the required form

To complete the proof of part (c) of the theorem, we need to show that ν =

C′
m+1. We know that Cm+1 ≡ (Am+1 + 2m+ 3) mod 5. This means that Am+1 ≡

(Cm+1 − 2m− 3) mod 5. Similarly, Am ≡ (Cm − 2m− 1) mod 5. But, we know
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that Cm = 1. So, Am ≡ −2m mod 5. Combining these yields Am+1 − Am ≡

(Cm+1 − 3) mod 5. This allows us to say that

ν = max(0, ((Am −Am+1) mod 5)− 1)

= max(0, ((3 − Cm+1) mod 5)− 1)

= C′
m+1,

as required.

All that remains now is to determine the eventual behaviors for Cj ∈ {0, 2, 3, 4}

(parts (d), (e), (f), and (g) of the theorem respectively).

Cj = 0: The first term here we have not yet computed is QN̄ (Aj +3). We compute

the next 158 terms (see Appendix 4), and we observe that the sequence ends

once QN̄ (Aj + 160) = 0. Computation of these terms assumes that N ≥

118, because computing QN̄(Aj + 157) refers to QN̄(118), which we assume

equals 118 (and this is the strongest requirement we use anywhere in the

calculations).

Cj = 2: The first term here we have not yet computed is QN̄ (Aj +1). We compute

the next 2 terms (keeping in mind that QN̄ (Aj) = Aj and QN̄ (Aj − 1) = 5):

• QN̄(Aj + 1) = QN̄ (1) +QN̄ (Aj − 4) = 1 + 3 = 4.

• QN̄(Aj + 2) = QN̄ (Aj − 2) +QN̄(2) = Aj

(

Aj−Aj−1−4
5

)

+Bj + 2.

We now have the sort of initial condition described by Proposition 1 with

K = Aj − 2, λ = Aj , and µ = Aj

(

Aj−Aj−1−4
5

)

+ Bj + 2. By Proposition 1,

this results in the pattern































QN̄ (Aj − 2 + 5k) = 5R(k)

QN̄ (Aj − 2 + 5k + 1) = 5S(k)

QN̄ (Aj − 2 + 5k + 2) = AjT (k)

QN̄ (Aj − 2 + 5k + 3) = 4

QN̄ (Aj − 2 + 5k + 4) = 5R(k),

as long as the R, S, and T sequences exist and as long as AjT (k) ≥ Aj − 2+

5k + 4. This last condition is equivalent to

T (k) ≥ 1 +
5k + 2

Aj

.
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Shifting indices by 2, the pattern can be rewritten as






























QN̄(Aj + 5k) = AjT (k)

QN̄(Aj + 5k + 1) = 4

QN̄(Aj + 5k + 2) = 5R(k)

QN̄(Aj + 5k + 3) = 5R(k + 1)

QN̄(Aj + 5k + 4) = 5S(k + 1),

as required.

Cj = 3: The first term here we have not yet computed is QN̄ (Aj +1). We compute

the next 4 terms, obtaining the values in the theorem statement. We observe

that the sequence ends once QN̄(Aj + 4) = 0.

Cj = 4: The first term here we have not yet computed is QN̄ (Aj +4). We compute

the next 11 terms, obtaining the values in the theorem statement. We observe

that the sequence ends once QN̄(Aj + 14) = 0.

3.3. Discussion of Theorem 2

See Figure 6 for a plot of the first 30000 terms of Q42. For N = 42, we have

j = 3 and C3 = 2, so, after the initial condition, there is the zone before Q42 dies,

followed by a (very short) quasilinear piece, followed by two (successively longer)

quasilinear pieces, followed by the eventual Proposition 1-like behavior. Both axes

have logarithmic scales, as otherwise the third quasilinear piece would dominate the

plot. (Each Ai is on the order of the square of the previous one.)

Theorem 2 completely characterizes the behavior of QN̄ (as long as N is suffi-

ciently large and as long as conjectures about the R, S, and T sequences hold),

but the characterization of which values of N result in which behaviors is not im-

mediately apparent. Every N with j < ∞ (which is every known value of N) is

associated to a pair (j, Cj) ∈ Z>0 × {0, 2, 3, 4}. We denote these values by j(N)

and C(N) respectively. We also use notation Ai(N), Bi(N), and Ci(N) to denote

Ai, Bi, and Ci values for N . Our first observation is the following:

Proposition 2. Let N be a positive integer, and let j = j(N). For all 1 ≤ i ≤ j,

Ai(N + 5j) ≡ Ai(N) (mod 5j−i+1).

Proof. The proof is by induction on i. If i = 1, then A1(N) = 2N + 4 and A1(N +

5j) = 2
(

N + 5j
)

+ 4 = 2N + 4 + 2 · 5j. Then, A1(N + 5j)−A1(N) = 2 · 5j, which

is divisible by 5j = 5j−1+1, as required. If i = 2, then

A2(N) =
2

5
N2 − 7N −

78

5
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Figure 6: The first 30000 terms of Q42 (both axes log scale)

and

A2(N + 5j) =
2

5
N2 − 7N −

78

5
+ 2 · 52j−1 − 7 · 5j + 4 · 5j−1.

The difference is divisible by 5j−1, as required.

Now, suppose i ≥ 3 and suppose that Proposition 2 holds for all smaller i values.

Recall that

Ai = Ai−1

(

Ai−1 −Ai−2 + 2

5

)

+Bi−1.

Since i ≥ 3, Bi−1 = Ai−1 −Ai−2, so we can eliminate Bi−1 and write

Ai = Ai−1

(

Ai−1 −Ai−2 + 7

5

)

−Ai−2.

By induction, Ai−1(N + 5j) = Ai−1(N) + α · 5j−i+2 for some integer α. Similarly,

Ai−2(N + 5j) = Ai−2(N) + β · 5j−i+3 for some integer β.
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We now evaluate

Ai(N + 5j)−Ai(N) = Ai−1(N + 5j)

(

Ai−1(N + 5j)−Ai−2(N + 5j) + 7

5

)

−Ai−2(N + 5j)−Ai−1(N)

(

Ai−1(N)−Ai−2(N) + 7

5

)

−Ai−2(N)

=
(

Ai−1(N) + α · 5j−i+2
)

·

(

(

Ai−1(N) + α · 5j−i+2
)

−
(

Ai−2(N) + β · 5j−i+3
)

+ 7

5

)

−
(

Ai−2(N) + β · 5j−i+2
)

−Ai−1(N)

(

Ai−1(N)−Ai−2(N) + 7

5

)

−Ai−2(N).

Simplifying this expression yields

Ai(N + 5j)−Ai(N) = 5j−i+1 (2αAi−1(N)− 5βAi−1(N)− αAi−2(N)

+α2 · 5j−i+2 − α · 5j−i+3 + 7α− 25β
)

,

which is divisible by 5j−i+1, as required.

Of course, Proposition 2 immediately generalizes to replacing 5j with any inte-

ger multiple of 5j . We have the following corollary to Proposition 2 (which also

generalizes in this way):

Corollary 1. For all N , and for all 1 ≤ i ≤ j(N), Ci

(

N + 5j(N)
)

= Ci(N). In

particular, j
(

N + 5j(N)
)

= j(N).

Proof. Let j = j(N). Let 1 ≤ i ≤ j. By Proposition 2,

Ai(N + 5j) ≡ Ai(N) (mod 5j−i+1).

Since Ci is a function solely of Ai mod 5 and of i, we have Ci(N + 5j) = Ci(N).

Since i is arbitrary in the preceding expression, we have Ci(N + 5j) = Ci(N) for

every such i, as required. Also, Ci(N) = 1 if i < j (by the definition of j). So, by

the definition of j, we have j
(

N + 5j
)

= j(N), as required.

Corollary 1 tells us that, to determine the behavior of QN̄ , we should first look

at N mod 5. If C1(N) = 1, then we need to look at N mod 25. If C2(N) = 1,

then we need to look at N mod 125, etc. This process can be thought of in terms

of exploring a tree on a subset of the strings {0, 1, 2, 3, 4}
∗
, each of which can be

thought of as an integer written in base 5. In addition, each leaf of the tree has one

of four “types.”
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• The root of the tree is the empty string, and it has the five length-1 strings

as children.

• For a string w, interpret it as a base 5 integer Nw. Let C = C|w|(Nw) (where

|w| denotes the length of w). If C = 1, then w has children {xw : x ∈

{0, 1, 2, 3, 4}}; otherwise w is a leaf of type C.

To determine the behavior of QN̄ , read the base-5 digits of N from right to left, and

traverse the tree accordingly. Each internal node (non-leaf) visited corresponds to

an additional temporary quasilinear piece in the sequence. When a leaf is reached,

stop, and the leaf’s type determines the eventual behavior, according to Theorem 2.

Consider N = 42 as an example. In base 5, 42 is 1325. The last digit is 2, so we go

from the root of the tree to the node labeled 2. This is not a leaf, so we go from it

to the node labeled 32. This is also not a leaf, so we continue to the node labeled

132. This is a leaf of type 2. So, Q42 consists of three period-5 quasilinear pieces

followed by a Proposition 1-like piece. (Note that strings can have leading zeroes.

If 132 had been an internal node, we would traverse to 0132 next.)

The tree has a structure consisting of levels: level i consists of the strings of

length i that appear in the tree. See Figure 7 for a diagram of levels 0 through 7 of

the tree. Each leaf is labeled as its type (0, 2, 3, or 4). The black nodes are internal

nodes. This includes the black nodes on the right. Each of these has five children,

but they are not shown because the tree is truncated. The structure of this tree is

poorly understood. See [5] for further discussion.

3.4. The Remaining Values of N

Theorem 2 characterizes the behavior of QN̄ for all

N /∈ {n : 2 ≤ n ≤ 34}∪{n : 1 < n < 118 and n ≡ 1 (mod 5)}∪{57, 67, 82, 107, 117} .

These 55 sequences can be studied individually by generating the sequences and

observing the terms. This study is carried out in [5]; what follows is a summary of

those findings. If N ≤ 27, QN̄ appears to behave chaotically and last for a long time

(at least 10 million terms), unless N ∈ {19, 23, 26}, in which case QN̄ is finite with

no observable structure. Thereafter, the remaining QN̄ sequences are finite, except

for N ∈ {33, 36, 67, 71}. These all eventually satisfy the conditions of Proposition 1

and are therefore conjectured to be infinite.

Of the N values exceeding 27, all but N = 67 and N = 117 can be computed

explicitly until either a 0 appears (ending the sequence) or until the conditions of

Proposition 1 are satisfied. For N = 67 and N = 117, Theorem 2 can be used to

describe many terms. Thereafter, Q67 can be shown to satisfy Proposition 1, and

Q117 can be shown to reach 0, and hence its end, not too long after Theorem 2

stops applying.
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4 : 3

3 : 2

2

42 : 4

32

432

4432 : 3

3432

43432 : 4

33432 : 0

23432

423432

4423432 : 4

3423432 : 4

2423432 : 4

1423432 : 4

0423432 : 4

323432

4323432 : 2

3323432 : 2

2323432 : 2

1323432 : 2

0323432 : 2

223432

4223432

3223432

2223432

1223432

0223432

123432

4123432

3123432

2123432

1123432

0123432

023432

4023432 : 2

3023432 : 2

2023432 : 2

1023432 : 2

0023432 : 2

13432 : 2

03432 : 3

2432 : 4

1432 : 2

0432 : 0

332 : 3

232 : 0

132 : 2

032 : 4

22 : 3

12 : 0

02 : 2

1 : 0

0 : 4

Figure 7: Levels 0 through 7 of the tree of behaviors
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4. Future Work

This paper presents an initial application of the method of using parametrized

families of initial conditions to generate solutions to nested recurrence relations.

The application here involves the simplest sort of non-constant initial condition

(a sequential one) and the most well-known nested recurrence (the Q-recurrence).

Our methods are applicable to a wider range of initial conditions and recurrence

relations. Some initial work in this direction is undertaken in [5].

Subsection 3.1 introduces a seemingly chaotic system of three nested recurrences,

and it uses them to construct a solution to Hofstadter’s recurrence that weaves

together predictability and unpredictability. There are a few directions that work

related to these sequences could progress in [5]. These include a deeper study of the

properties of the R, S, and T sequences or a search for other families of solutions to

the Q-recurrence (or other recurrences) that behave analogously to Proposition 1.

Quasilinear sequences appear frequently in this paper. There are many known

solutions to nested recurrences that are eventually quasilinear [9, 4]. The quasilinear

chunks of these solutions have a fixed starting point, but they continue forever. Here,

we consider quasilinear chunks with fixed starting and stopping points. Previous

work [4] gives a method for discovering eventually quasilinear solutions of arbitrary

periods to arbitrary recurrences. Perhaps it can be extended to also find temporary

quasilinear solutions.

Finally, the structure of the tree in Figure 7 remains poorly understood. In

particular, it is unknown whether the tree is finite or infinite, and it is unknown

whether every string in {0, 1, 2, 3, 4}∗ has a suffix in some leaf (equivalently, whether

j(N) < ∞ for all N). A full understanding of this tree would give a more efficient

characterization of the behaviors of the sequences QN̄ .

Acknowledgements. The author would like to thank Dr. Doron Zeilberger of

Rutgers University for introducing him to the Hofstadter Q-recurrence, and to Dr.

Doron Zeilberger along with Dr. Michael Saks, Dr. Swastik Kopparty, and Dr. Neil

Sloane (my dissertation committee) for their feedback on this work. The author

would also like to thank Yonah Biers-Ariel of Rutgers University for proofreading

a draft of this paper and providing him with useful feedback.

References

[1] B. Balamohan, A. Kuznetzov, and S. Tanny, On the behavior of a variant of Hofstadter’s
Q-sequence, J. Integer Seq. 52 (2007), 29.

[2] B.W. Conolly, Meta-Fibonacci sequences, Chapter XII in S. Vajda, Fibonacci and Lucas

Numbers, and the Golden Section, Ellis Horwood Limited, Chichester, England, 1989.



INTEGERS: 20A (2020) 26

[3] A. Erickson, A. Isgur, B. Jackson, F. Ruskey, and S. Tanny, Nested recurrence relations with
Conolly-like solutions, SIAM J. Discrete Math. 26 (2012), 206-238.

[4] N. Fox, Discovering Linear-recurrent solutions to Hofstadter-like recurrences using symbolic
computation, J. Symbolic Comput. 87 (2018), 99-126.

[5] N. Fox, An Exploration of Nested Recurrences Using Experimental Mathematics, Ph.D.
dissertation, Rutgers, The State University of New Jersey, 2017.

[6] N. Fox, Linear recurrent subsequences of generalized meta-Fibonacci sequences, J. Difference

Equ. Appl. 22 (2016), 1019-1026.

[7] N. Fox, Quasipolynomial solutions to the Hofstadter Q-recurrence, Integers 16 (2016), A68.

[8] N. Fox, A slow relative of Hofstadter’s Q-sequence, J. Integer Seq. 20 (2017), 3.

[9] S.W. Golomb, Discrete chaos: sequences satisfying “strange” recursions, unpublished
manuscript (1991).
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Appendix A. First 28 Terms Following Initial Condition of QN

Assuming N ≥ 14, these are the first 28 terms of QN following the initial condition.

QN(N+ 1) = QN(N + 1−QN(N)) +QN(N + 1−QN(N − 1))

= QN(N + 1−N) +QN (N + 1− (N − 1))

= QN(1) +QN(2) = 1 + 2 = 3

(N ≥ 2)

QN(N+ 2) = QN(N + 2−QN(N + 1)) +QN (N + 2−QN(N))

= QN(N + 2− 3) +QN (N + 2−N)

= QN(N − 1) +QN (2) = N − 1 + 2 = N+ 1

(N ≥ 2)

QN(N+ 3) = QN (N + 3−QN (N + 2)) +QN (N + 3−QN (N + 1))

= QN (N + 3− (N + 1)) +QN (N + 3− 3)

= QN (2) +QN (N) = 2 +N = N+ 2

(N ≥ 2)

QN(N+ 4) = QN (N + 4−QN (N + 3)) +QN (N + 4−QN (N + 2))

= QN (N + 4− (N + 2)) +QN (N + 4− (N + 1))

= QN (2) +QN (3) = 2 + 3 = 5

(N ≥ 3)

QN(N+ 5) = QN (N + 5−QN (N + 4)) +QN (N + 5−QN (N + 3))

= QN (N + 5− 5) +QN(N + 5− (N + 2))

= QN (N) +QN(3) = N + 3 = N+ 3

(N ≥ 3)

QN(N+ 6) = QN (N + 6−QN (N + 5)) +QN (N + 6−QN (N + 4))

= QN (N + 6− (N + 3)) +QN (N + 6− 5)

= QN (3) +QN (N + 1) = 3 + 3 = 6

(N ≥ 3)
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QN(N+ 7) = QN (N + 7−QN (N + 6)) +QN (N + 7−QN (N + 5))

= QN (N + 7− 6) +QN(N + 7− (N + 3))

= QN (N + 1) +QN(4) = 3 + 4 = 7

(N ≥ 4)

QN(N+ 8) = QN (N + 8−QN (N + 7)) +QN (N + 8−QN (N + 6))

= QN (N + 8− 7) +QN(N + 8− 6)

= QN (N + 1) +QN(N + 2) = 3 +N + 1 = N+ 4

(N ≥ 4)

QN(N+ 9) = QN (N + 9−QN (N + 8)) +QN (N + 9−QN (N + 7))

= QN (N + 9− (N + 4)) +QN (N + 9− 7)

= QN (5) +QN (N + 2) = 5 +N + 1 = N+ 6

(N ≥ 5)

QN(N+ 10) = QN(N + 10−QN (N + 9)) +QN(N + 10−QN (N + 8))

= QN(N + 10− (N + 6)) +QN (N + 10− (N + 4))

= QN(4) +QN(6) = 4 + 6 = 10

(N ≥ 6)

QN(N+ 11) = QN(N + 11−QN (N + 10)) +QN(N + 11−QN (N + 9))

= QN(N + 11− 10) +QN (N + 11− (N + 6))

= QN(N + 1) +QN (5) = 3 + 5 = 8

(N ≥ 6)

QN(N+ 12) = QN (N + 12−QN(N + 11)) +QN(N + 12−QN (N + 10))

= QN (N + 12− 8) +QN (N + 12− 10)

= QN (N + 4) +QN (N + 2) = 5 +N + 1 = N+ 6

(N ≥ 6)

QN(N+ 13) = QN (N + 13−QN(N + 12)) +QN(N + 13−QN (N + 11))

= QN (N + 13− (N + 6)) +QN(N + 13− 8)

= QN (7) +QN (N + 5) = 7 +N + 3 = N+ 10

(N ≥ 7)



INTEGERS: 20A (2020) 29

QN(N+ 14) = QN (N + 14−QN(N + 13)) +QN(N + 14−QN (N + 12))

= QN (N + 14− (N + 10)) +QN (N + 14− (N + 6))

= QN (4) +QN (8) = 4 + 8 = 12

(N ≥ 8)

QN(N+ 15) = QN (N + 15−QN(N + 14)) +QN(N + 15−QN (N + 13))

= QN (N + 15− 12) +QN (N + 15− (N + 10))

= QN (N + 3) +QN (5) = N + 2 + 5 = N+ 7

(N ≥ 8)

QN(N+ 16) = QN (N + 16−QN(N + 15)) +QN(N + 16−QN (N + 14))

= QN (N + 16− (N + 7)) +QN(N + 16− 12)

= QN (9) +QN (N + 4) = 9 + 5 = 14

(N ≥ 9)

QN(N+ 17) = QN (N + 17−QN(N + 16)) +QN(N + 17−QN (N + 15))

= QN (N + 17− 14) +QN (N + 17− (N + 7))

= QN (N + 3) +QN (10) = N + 2 + 10 = N+ 12

(N ≥ 10)

QN(N+ 18) = QN (N + 18−QN(N + 17)) +QN(N + 18−QN (N + 16))

= QN (N + 18− (N + 12)) +QN (N + 18− 14)

= QN (6) +QN (N + 4) = 6 + 5 = 11

(N ≥ 10)

QN(N+ 19) = QN (N + 19−QN(N + 18)) +QN(N + 19−QN (N + 17))

= QN (N + 19− 11) +QN (N + 19− (N + 12))

= QN (N + 8) +QN (7) = N + 4 + 7 = N+ 11

(N ≥ 10)

QN(N+ 20) = QN (N + 20−QN(N + 19)) +QN(N + 20−QN (N + 18))

= QN (N + 20− (N + 11)) +QN (N + 20− 11)

= QN (9) +QN (N + 9) = 9 +N + 6 = N+ 15

(N ≥ 10)
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QN(N+ 21) = QN (N + 21−QN(N + 20)) +QN(N + 21−QN (N + 19))

= QN (N + 21− (N + 15)) +QN (N + 21− (N + 11))

= QN (6) +QN (10) = 6 + 10 = 16

(N ≥ 10)

QN(N+ 22) = QN (N + 22−QN(N + 21)) +QN(N + 22−QN (N + 20))

= QN (N + 22− 16) +QN (N + 22− (N + 15))

= QN (N + 6) +QN (7) = 6 + 7 = 13

(N ≥ 10)

QN(N+ 23) = QN (N + 23−QN(N + 22)) +QN(N + 23−QN (N + 21))

= QN (N + 23− 13) +QN (N + 23− 16)

= QN (N + 10) +QN (N + 7) = 10 + 7 = 17

(N ≥ 10)

QN(N+ 24) = QN (N + 24−QN(N + 23)) +QN(N + 24−QN (N + 22))

= QN (N + 24− 17) +QN (N + 24− 13)

= QN (N + 7) +QN (N + 11) = 7 + 8 = 15

(N ≥ 10)

QN(N+ 25) = QN (N + 25−QN(N + 24)) +QN(N + 25−QN (N + 23))

= QN (N + 25− 15) +QN (N + 25− 17)

= QN (N + 10) +QN (N + 8) = 10 +N + 4 = N+ 14

(N ≥ 10)

QN(N+ 26) = QN (N + 26−QN(N + 25)) +QN(N + 26−QN (N + 24))

= QN (N + 26− (N + 14)) +QN (N + 26− 15)

= QN (12) +QN(N + 11) = 12 + 8 = 20

(N ≥ 12)

QN(N+ 27) = QN (N + 27−QN(N + 26)) +QN(N + 27−QN (N + 25))

= QN (N + 27− 20) +QN (N + 27− (N + 14))

= QN (N + 7) +QN (13) = 7 + 13 = 20

(N ≥ 13)
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QN(N+ 28) = QN (N + 28−QN(N + 27)) +QN(N + 28−QN (N + 26))

= QN (N + 28− 20) +QN (N + 28− 20)

= QN (N + 8) +QN (N + 8) = N + 4 +N + 4 = 2N+ 8

(N ≥ 13)

Appendix B. Final Terms of QN̄ in the Cj = 0 Case

These are the final 158 terms in QN̄ (n) when Cj = 0 and N ≥ 118.

• QN̄ (Aj + 3) = 6

• QN̄ (Aj + 4) = 7

• QN̄ (Aj + 5) = 8

• QN̄ (Aj + 6) = 8

• QN̄ (Aj + 7) = 10

• QN̄ (Aj + 8) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 3

• QN̄ (Aj + 9) = 5

• QN̄ (Aj + 10) = 8

• QN̄ (Aj + 11) = 14

• QN̄ (Aj + 12) = 10

• QN̄ (Aj + 13) = 11

• QN̄ (Aj + 14) = 13

• QN̄ (Aj + 15) = Aj + 7

• QN̄ (Aj + 16) = 15

• QN̄ (Aj + 17) = Aj + 10

• QN̄ (Aj + 18) = 14

• QN̄ (Aj + 19) = 17

• QN̄ (Aj + 20) = 14

• QN̄ (Aj + 21) = 17

• QN̄(Aj +22) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 11

• QN̄(Aj + 23) = 8

• QN̄(Aj + 24) = 15

• QN̄(Aj + 25) = Aj + 18

• QN̄(Aj + 26) = 22

• QN̄(Aj + 27) = 17

• QN̄(Aj + 28) = 22

• QN̄(Aj + 29) = 20

• QN̄(Aj +30) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 11

• QN̄(Aj + 31) = 14

• QN̄(Aj + 32) = 14

• QN̄(Aj + 33) = 34

• QN̄(Aj +34) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 14

• QN̄(Aj + 35) = 5

• QN̄(Aj + 36) = 14

• QN̄(Aj + 37) = 22

• QN̄(Aj + 38) = 30

• QN̄(Aj + 39) = Aj + 15
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• QN̄ (Aj + 40) = 33

• QN̄ (Aj +41) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 29

• QN̄ (Aj + 42) = 5

• QN̄ (Aj + 43) = 30

• QN̄ (Aj + 44) = Aj + 28

• QN̄ (Aj + 45) = Aj + 24

• QN̄ (Aj + 46) = 40

• QN̄ (Aj + 47) = 33

• QN̄ (Aj +48) = Aj

(

Aj−Aj−1−2
5

)

+

Aj +Bj + 10

• QN̄ (Aj + 49) = 15

• QN̄ (Aj + 50) = 5

• QN̄ (Aj + 51) = 54

• QN̄ (Aj + 52) = 36

• QN̄ (Aj + 53) = Aj + 15

• QN̄ (Aj + 54) = 53

• QN̄ (Aj + 55) = Aj + 40

• QN̄ (Aj + 56) = 22

• QN̄ (Aj + 57) = 22

• QN̄ (Aj + 58) = 28

• QN̄ (Aj + 59) = 36

• QN̄ (Aj + 60) = 29

• QN̄ (Aj + 61) = Aj + 32

• QN̄ (Aj + 62) = 64

• QN̄ (Aj + 63) = 36

• QN̄(Aj +64) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 22

• QN̄(Aj + 65) = 20

• QN̄(Aj + 66) = 40

• QN̄(Aj + 67) = 50

• QN̄(Aj + 68) = 36

• QN̄(Aj + 69) = 51

• QN̄(Aj +70) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 31

• QN̄(Aj + 71) = 14

• QN̄(Aj + 72) = 28

• QN̄(Aj + 73) = Aj + 60

• QN̄(Aj + 74) = 54

• QN̄(Aj + 75) = 32

• QN̄(Aj +76) = Aj

(

Aj−Aj−1−2
5

)

+

Aj +Bj + 39

• QN̄(Aj + 77) = Aj + 24

• QN̄(Aj + 78) = 54

• QN̄(Aj + 79) = Aj + 73

• QN̄(Aj + 80) = 29

• QN̄(Aj + 81) = 44

• QN̄(Aj + 82) = Aj + 45

• QN̄(Aj + 83) = Aj + 53

• QN̄(Aj + 84) = 70

• QN̄(Aj + 85) = Aj + 39

• QN̄(Aj + 86) = 62

• QN̄(Aj + 87) = Aj + 66

• QN̄(Aj + 88) = 44
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• QN̄ (Aj + 89) = Aj + 47

• QN̄ (Aj + 90) = 83

• QN̄ (Aj +91) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 47

• QN̄ (Aj + 92) = 5

• QN̄ (Aj + 93) = 44

• QN̄ (Aj + 94) = Aj + 52

• QN̄ (Aj + 95) = 97

• QN̄ (Aj + 96) = 49

• QN̄ (Aj+97) = 2Aj

(

Aj−Aj−1−2
5

)

+

Aj + 2Bj + 10

• QN̄ (Aj + 98) = 15

• QN̄ (Aj + 99) = 70

• QN̄ (Aj+100) = Aj

(

Aj−Aj−1−2
5

)

+

Aj +Bj + 50

• QN̄ (Aj + 101) = 14

• QN̄ (Aj + 102) = 44

• QN̄ (Aj + 103) = Aj + 83

• QN̄ (Aj + 104) = 50

• QN̄ (Aj + 105) = Aj + 62

• QN̄ (Aj + 106) = 66

• QN̄ (Aj+107) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 74

• QN̄ (Aj + 108) = 5

• QN̄ (Aj + 109) = 50

• QN̄ (Aj + 110) = Aj + 91

• QN̄ (Aj + 111) = Aj + 52

• QN̄(Aj + 112) = 81

• QN̄(Aj + 113) = 75

• QN̄(Aj + 114) = Aj + 49

• QN̄(Aj + 115) = 99

• QN̄(Aj + 116) = Aj + 77

• QN̄(Aj + 117) = 54

• QN̄(Aj+118) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 63

• QN̄(Aj + 119) = 20

• QN̄(Aj+120) = Aj

(

Aj−Aj−1−2
5

)

+

Aj +Bj + 50

• QN̄(Aj + 121) = 14

• QN̄(Aj + 122) = 5

• QN̄(Aj+123) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 113

• QN̄(Aj + 124) = 20

• QN̄(Aj + 125) = Aj + 62

• QN̄(Aj + 126) = 130

• QN̄(Aj + 127) = Aj + 65

• QN̄(Aj + 128) = 66

• QN̄(Aj + 129) = 100

• QN̄(Aj+130) = 2Aj

(

Aj−Aj−1−2
5

)

+

2Bj + 33

• QN̄(Aj + 131) = 14

• QN̄(Aj+132) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 63

• QN̄(Aj + 133) = 20

• QN̄(Aj + 134) = Aj + 49
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• QN̄ (Aj + 135) = 185

• QN̄ (Aj + 136) = 92

• QN̄ (Aj + 137) = 2Aj + 24

• QN̄ (Aj + 138) = 40

• QN̄ (Aj + 139) = 70

• QN̄ (Aj+140) = 2Aj

(

Aj−Aj−1−2
5

)

+

Aj + 2Bj + 81

• QN̄ (Aj + 141) = 14

• QN̄ (Aj + 142) = 66

• QN̄ (Aj + 143) = Aj + 124

• QN̄ (Aj + 144) = 74

• QN̄ (Aj + 145) = 35

• QN̄ (Aj + 146) = Aj + 80

• QN̄ (Aj + 147) = 148

• QN̄ (Aj+148) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 68

• QN̄(Aj + 149) = 5

• QN̄(Aj + 150) = 35

• QN̄(Aj + 151) = 2Aj + 157

• QN̄(Aj + 152) = 54

• QN̄(Aj + 153) = 70

• QN̄(Aj+154) = Aj

(

Aj−Aj−1−2
5

)

+

Aj +Bj + 120

• QN̄(Aj + 155) = Aj + 39

• QN̄(Aj + 156) = 117

• QN̄(Aj + 157) = 151

• QN̄(Aj+158) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 39

• QN̄(Aj+159) = Aj

(

Aj−Aj−1−2
5

)

+

Bj + 3

• QN̄(Aj + 160) = 0


