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Abstract

Nested recurrence relations are highly sensitive to their initial conditions. The
best-known nested recurrence, the Hofstadter @-recurrence, generates sequences
displaying a wide variety of behaviors. Most famous among these is the Hofstadter
@-sequence, which appears to be structured at a macro level and chaotic at a micro
level. Other choices of initial conditions can lead to more predictable solutions,
frequently interleavings of simple sequences. Previous work has focused on the
form of a desired solution and on describing an initial condition that generates such
a solution. In this paper, we flip this paradigm around. We illustrate how focusing
on the form of an initial condition and describing the resulting sequences can yield
strange families of new solutions to nested recurrences.

1. Introduction

The Hofstadter Q-sequence [10] is defined by the nested recurrence

Qn) =Qn—-Qn—-1))+Qn—-Q(n—2))

with the initial conditions @Q(1) = 1 and Q(2) = 1. As successive terms are gener-
ated, the Q-sequence seems to behave rather chaotically. But, plots of the sequence
suggest that Q(n) remains close to %,
structure in the plot. See Figure 1 for a plot of the first ten thousand terms.

and there appears to be a sort of fractal

A key question regarding the @-sequence is whether it is, in fact, an infinite
sequence. Based on the recurrence, the value of @Q(n) depends on the value of
Q(n—Q(n —1)). If Q(n —1) > n, then the value of Q(n) depends on the value of
@ at a nonpositive index. Since the @-sequence is only defined starting with Q(1),
Q(n —Q(n — 1)) would not exist, and hence Q(n) would not exist in this scenario.
If a sequence defined by a nested recurrence is finite in this way, we say that the
sequence dies after n — 1 terms, or that it dies at index n. It is still open whether
the Q-sequence dies, but it contains at least 1019 terms [14].
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Figure 1: Plot of the first 10000 terms of the Hofstadter QQ-sequence

1.1. Notation

Before we continue, we introduce a few pieces of notation that appear throughout
this paper. The only recurrence relation we discuss is the Hofstadter Q)-recurrence,
but we study it with many different initial conditions. The notation Q(n) refers
to the nth term of the @-sequence itself. The notation Q*(n) refers to a generic
sequence that satisfies the Q-recurrence. For any other specific sequence satisfying
the @-recurrence, we use ) with a subscript that we define for that particular
sequence.

We use angle brackets to denote our initial conditions. For example, (1,1) is
shorthand for Q*(1) = 1 and Q*(2) = 1, the initial condition for the Hofstadter
@-sequence. Sometimes, it is convenient to define @*(n) = 0 for all n < 0, as
forcing sequences to die as previously described can limit the diversity of solutions
we encounter [13, 4]. This convention is noted with a symbol 0 followed by a
semicolon at the start of the initial condition. For example, (0;1,1) is shorthand
for Q*(n) =0 for n <0, Q*(1) =1, and @*(2) = 1.

Note that it is still possible for a sequence with such an extended initial condition
to be finite. If Q*(n —1) = 0 for some n, then Q*(n) would be self-referential. This
sort of issue cannot be resolved via an initial condition tweak, so we declare Q*(n)
to be undefined in this case. To avoid confusion with earlier terminology, we do not
say that such a sequence dies. Rather, we say that it ends after n — 1 terms or at
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index n.

1.2. Preliminarities

Nested recurrence relations, such as the Hofstadter Q-recurrence, are highly sensi-
tive to their initial conditions. For example, if we change the initial condition of
the @Q-recurrence to (3,2,1), we obtain a sequence consisting of three interleaved
constant or linear sequences [9], which we denote by Qa:

Qc(Bk)=3k—2
Qe(Bk+1)=3
Qa(Bk+2)=3k+2.

(To use the above expression to determine Qg(n), first write n = 3k + r where
r = n mod 3, and then refer to the appropriate case.) Going forward, we say that
a sequence consisting of m interleaved constant and linear sequences is quasilinear
with period m. In this language, Q¢ is quasilinear with period 3. Another notable
initial condition to the @Q-recurrence is (0;3,6,5,3,6,8). The resulting sequence
is not quasilinear; rather, it is an interleaving of two constant sequences with the
Fibonacci sequence [13].

Previous approaches [9, 13, 2, 4, 6, 7, 8, 15, 1, 3, 11, 12] have focused on trying to
find initial conditions to nested recurrences that produce solutions of a specific form.
In this paper, we instead find predictable solutions to the Hofstadter Q-recurrence
by specifying the form of the initial condition and determining the behavior of the
resulting sequence. In Section 2, we characterize the sequences resulting from the
family of initial conditions of the form (1,2,3,..., N), and in Section 3, we study
the more general initial condition (0;1,2,3,..., N). Finally, we suggest some future
research directions in Section 4.

2. A Family of Dying Sequences

In this section, we consider sequences obtained from the Hofstadter Q-recurrence
and an initial condition of the form (1,2,3,..., N) for some integer N > 2. Hence-
forth, we denote this sequence for a given value of N by Q.

We have the following result, which characterizes the behaviors of almost all of
these sequences.

Theorem 1. For N =8, N = 11, N = 12, or N > 14, the sequence Qn dies.
Furthermore, if N > 21, the sequence has exactly N +28 terms, and if 14 < N < 20,
the sequence has exactly N + 32 terms.

Proof. Tt is straightforward to verify by computing terms that Qg(420) = 430,
@11(199) = 206, and Q12(69) = 77, so these sequences all die [14].
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In general, we can compute terms following the initial condition as a function of
the parameter N. First, we compute @ (N + 1). By the Q-recurrence, this equals
QN(N+1-Qn(N)+Qn(N+1-Qn(N —1)). Both Q(N) and Q(N —1) lie in the
initial condition, so they equal N and N — 1 respectively. This allows us to simplify
the expression to Qn(N+1—-N)+Qn(N+1—(N—-1)) = Qn(1)+Qn(2). Again,
we have two terms from the initial condition, so we obtain that QN (N + 1) = 3.
This calculation is invalid if N =1 (as then neither index 2 nor index N — 1 would
be in the initial condition), but it is valid for any N > 2.

Subsequent terms are computed using a similar process. Two important notes:

(a) The terms arising in the intermediate steps are not always from the initial
condition. But, if a term is not from the initial condition, we can proceed
as long as it lies before the current term. In that eventuality, we would have
already computed it, so we can use its computed value.

(b) The calculations at each step are only valid for N sufficiently large. If a fact of
the form Q(¢) = i is used to simplify an expression for some constant 4, then
we must have N > 4. Similarly, if a fact of the form Q(N —¢) = N — i is used,
we must have N > i.

Using this process, we can compute 28 terms following the initial condition before
we run into any issues. These 28 terms are:

3,N+1, N+2,5 N+3,6,7, N+4, N+6,10,8 N +6, N + 10, 12, N +7,
14, N +12, 11, N + 11, N + 15, 16, 13, 17, 15, N + 14, 20, 20, 2N + 8.

See Appendix 4 for explicit computations of these terms, along with a bound on the
values of N for which that computation and all previous computations are valid. In
particular, note that the calculations are valid for N > 13.

The last term we have is Q(IN + 28) = 2N + 8. We try to compute Q(N + 29):

QNN +29) = QN (N +29 — QN (N +28)) + Qn(N +29 — Qn(N +27))
=QnN(N +29 — (2N + 8)) + Qn (N + 29 — 20)
=QN(-N+21)+Qn (N +9).

If N > 21, then —N +21 <0, so Qn(—N +21) is undefined and the sequence dies.

This just leaves the values 14 < N < 20 to examine. This is a finite range, so it
suffices to individually check that these sequences all die after N + 32 terms. But,
these seven sequences all die according to the same pattern, so we give a unifying
proof for all of them. Suppose 14 < N < 20. We then have Qn(—N+21) = —N+21,
as that term now lies in the initial condition. So, we can continue to compute terms.
All calculations below are only valid if N > 13, which is the case for the range we
are considering.

Qn(N+29) =Qn (=N +21)+ QN (N +9) =N +21 + N +6 = 27
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Qn(N +30) = Qn(N +30 — Qn(N +29)) + Qn(N + 30 — Qn (N + 28))
=QN(N +30-27) + Qn(N +30 — (2N +38))
=QN(N+3)+Qn(-N+22)=N+2-N+22=24

QN(N +31) = Qn(N + 31 — Qn(N +30)) + Qn(N + 31 — Qn (N +29))
=QnN(N +31—24) + Qn(N + 31 —27)
=QNN+T)+QNn(N+4)=7+5=12

QN(N +32) = Qn(N + 32 — Qn (N +31)) + Qn(N + 32 — Qn (N + 30))
=QN(N +32-12) + Qn(N + 32 — 24)
=QN(N+20)+Qn(N+8)=N+15+ N +4=2N +19.

If N > 14, then 2N + 19 > N + 33. This means that, if 14 < N < 20, then
QnN(N + 33) fails to exist. So, Qn dies after N 4 32 terms whenever 14 < N < 20,
as required. [l

Theorem 1 says that @ dies for all but finitely many N. This begs the question
of what happens when N € {2,3,4,5,6,7,9,10,13}. The sequence @2 is Hofs-
tadter’s sequence without the initial 1, so it is unknown whether @2 dies. Since
Q2(3) =3, Q3 = Q2, so N = 3 also gives Hofstadter’s sequence. The remaining N
values in this set give sequences that are different from Hofstadter’s sequence and
different from each other. Like Hofstadter’s, it is unknown whether any of these
sequences dies. All of these sequences last for at least 30 million terms [14].

3. More Complicated Behavior

The sequences in Section 2 almost all die. Here, we consider what happens if we
prevent them from dying by defining their values to be zero at nonpositive integers.
For an integer N > 2, let Q5 denote the sequence obtained from the Hofstadter
Q-recurrence with initial condition (0;1,2,3,..., N).

Somewhat surprisingly, the behavior of () i depends on the congruence class of N
modulo 5. Before delving into details, we describe the high-level structure of these
sequences for sufficiently large N. First, the sequences Qn and Q5 agree until Q
dies. Shortly after that point, Q) 5 settles into a period-5 quasilinear pattern. Unlike
the sequence Q¢ mentioned in the introduction, where the quasilinear pattern lasts
forever, the period-5 behavior of Q)5 is only temporary. What happens once it
collapses depends on N mod 5. For three congruence classes, a term in () 5 depends
on itself shortly after the quasilinear behavior stops, causing the sequence to end
there. In one case, the sequence ends only 4 terms beyond the end of the quasilinear
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part. The other two cases last 11 and 158 terms beyond it. Of the two remaining
congruence classes, one of them leads to a seemingly infinite sequence some of whose
terms are predictable and others of which appear chaotic. The other class leads to a
period-5 quasilinear pattern not unlike the one that stopped shortly before. Like the
original period-5 pattern, this one is also temporary. When it finishes, the same five
possible continuations of behavior are possible, with the behavior now dependent
on N mod 25. Similar period-5 chunks appear to be possible to arbitrary depths.

The structure of this section is as follows. In 3.1 we formally introduce the semi-
predictable sequences discussed above. Then, in 3.2, we formally state and prove
Theorem 2, which fully describes the structure of Q5. Then, 3.3 is devoted to a
further discussion, in plain language, of the consequences of Theorem 2. Finally,
a discussion of the remaining cases, when N is not sufficiently large, is carried out
in 3.4.

3.1. Interlude: A Family of Semi-Predictable Solutions

In order to fully characterize the sequences Q) 5, it is necessary to describe a peculiar
family of sequences that satisfy Hofstadter’s recurrence. Historically, solutions to
Hofstadter-like recurrences have looked one of the following:

(a) Finite (dying/ending) sequences (e.g. Q7o)

(b) Apparently infinite sequences with seemingly chaotic behavior, though perhaps
with some detectable patterns (e.g. the Hofstadter Q-sequence)

(c) A sequence satisfying a linear recurrence relation (e.g. Q¢)

(d) A monotone increasing sequence with successive differences 0 or 1 (e.g. Tanny’s
sequence [15])

Now, we describe a family of solutions to the @-recurrence that does not fall
cleanly into the above classification, instead combining elements of cases (b) and (c).
In particular, the solutions are interleavings of five sequences. Four of them are
chaotic and seemingly infinite, and the fifth is a constant sequence.

As auxiliary objects, we define three sequences via a system of nested recurrences:

Definition 1. Define sequences R(n), S(n), and T(n) as follows:

e R(n)=0forn<0,R(1)=1, R(2)=2, R(n) =R(n—R(n—1))+S(n—1)
forn >3

e S(n)=0forn<0,50)=1,51)=1,Sn)=Sn—Rn)+Sn—R(n—1))
forn>2

e I'(n)=0forn<0,T(0)=1,T(n)=T(Mn—Rn))+T(n—Sn)) forn>1
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Figure 2: Plot of R(1) through R(2000)

Plots of these sequences are given in Figures 2, 3, and 4 respectively. All of
them appear to behave fairly chaotically, and, much like the @-sequence, it is un-
known whether or not they end. According to the plots, R and S appear to grow
approximately linearly, whereas T" appears to grow superlinearly.

Multiples of the R, S, and T sequences can appear as equally-spaced subse-
quences of solutions to the Hofstadter Q-recurrence. We denote such solutions by
Q. Proposition 1 describes a parametrized family of such solutions. All solutions
in this family eventually consist of five interleaved subsequences: two multiples of
R, one multiple each of S and T, and a sequence of all fours. In the next sec-
tion, we will see that some of the sequences Q)5 are eventually characterized by
Proposition 1.

Proposition 1. Let K > 0, A > 9 and p > K + 6 be integers. The initial con-
dition (0;a1,az,...,ax,5,\,4,u) (each a; an arbitrary integer) for the Hofstadter
Q-recurrence generates the following pattern, beginning with index K + 5 (the first
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Figure 3: Plot of S(0) through S(2000)

case, with k = 1),

Qr(K + 5k) =5R(k)

Qr(K +5k+1) =55(k)

Qr(K +5k+2) = \T(k)

Qr(K +5k+3)=4

Qr(K +5k+4) =5R(k).
The pattern lasts as long as the R, S, and T sequences live and as long as XT' (k) >
K +5k+4.

One may wonder how restrictive the condition AT (k) > K + 5k + 4 is. Since the
T-sequence appears to grow superlinearly, it should be satisfied by sufficiently large
A for fixed K. In particular, A = 9 seems to suffice for K = 0, lasting for at least
fifty million terms (and A = 8 fails within the first 60 terms) [14]. The case K = 0,
A =9 and p = 6 is depicted in Figure 5.

We now prove Proposition 1.

Proof. The proof is by induction on n. As a base case, we first manually check
n = K + 5 through n = K + 8.

¢ Qr(K+5)=Qr(K+5—p)+Qr(K+5—-4)=Qr(K +1)=5=5R(1).
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Figure 5: The first 2000 terms of Qr with initial condition (0;5,9, 4, 6)
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* Qr(K +6)=Qr(K+6—5)+Qr(K+6—u) =Qr(K+1)=5=55(1).
¢ Qr(K+7)=Qr(K+7-5)+Qr(K +7—5)=2Qr(K +2) =2\ = \T(1).
o Qr(K +8)=Qr(K +8-2)\) +Qr(K +8-5)=Qr(K +3) =4.
(Note that K 4+ 8 — 2A < 0 because \T(1) =2\ > K +5+4 =K +9.) We now
proceed by induction on n for n > K + 9. There are 5 cases to consider.
n— K =0 (mod 5): Here, n = K + 5k for some k > 2. We have
Qr(K +5k) = Qr(K + 5k — Qr(K + 5k — 1))
+ Qr(K + 5k — Qr(K + 5k — 2))
=Qr(K +5k—5R(k—1))+ Qr(K + 5k —4)
=5R(k—R(k—1))+5S5(k—-1)
— 5R(k),
as required.
n— K =1 (mod 5): Here, n = K + 5k + 1 for some k > 2. We have
Qr(K +5k+1)=Qr(K +5k+1—Qr(K + 5k))
+Qr(K +5k +1—Qr(K + 5k — 1))
=Qr(K +5k+1-5R(k)) + Qr(K + 5k +1—5R(k — 1))
=5S(k — R(k)) +5S(k — R(k — 1))
= 55(k),
as required.
n— K =2 (mod 5): Here, n = K + 5k + 2 for some k > 2. We have
Qr(K +5k+2)=Qr(K +5k+2—Qr(K +5k+1))
+ Qr(K + 5k +2 — Qr(K + 5k))
= Qr(K + 5k +2—5S(k)) + Qr(K + 5k + 2 — 5R(k))
= NT'(k— S(k)) + \XT'(k — R(k))
— \T(k),
as required.
n— K =3 (mod 5): Here, n = K + 5k + 3 for some k > 2. We have
Qr(K +5k+3) =Qr(K +5k+3—Qr(K + 5k +2))
+Qr(K + 5k +3 — Qr(K + 5k + 1))
= Qr(K + 5k +3 — AT (k) + Qr(K + 5k + 3 — 55(k))
=0+4
=4,
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as required.

n— K =4 (mod 5): Here, n = K + 5k + 4 for some k£ > 1. We have

Qr(K +5k+4) =Qr(K + 5k +4—Qr(K + 5k + 3))
+ Qr(K +5k +4 — Qr(K + 5k 4+ 2))
=Qr(K +5k+4—4)+ Qr(K + 5k +4 — \T(k))
=Qr(K +5k)+0
= 5R(k),

as required.

What assumptions do we make about A and u? When computing Qr (K + 6), we
require u > K + 6. After this, u never appears again. For A, when computing
Qr(K + 5k + 3) we need AT'(k) > K + 5k + 4 for every k, as required. O

Aside from the existence of the solutions described in Proposition 1 and the
single application to the sequences @, little is known about these and related
semi-predictable solutions to the @Q-recurrence. A preliminary exploration can be
found in [5].

3.2. Structure Theorem for Q5

In this section, we formally state and prove a theorem (Theorem 2) that describes
the full behavior of all but finitely many of the sequences () 5, modulo open questions
about whether or not the sequences in 3.1 are infinite. The theorem has many parts,
all of which have some substance. Because of the length and amount of technical
detail in this theorem, we state both a short version and a long version.

Before we state Theorem 2, we introduce some auxiliary sequences.

Definition 2. Fiz an integer N. Define Ag = N—2, Ay =2N+4, B| = —11N-22,
and C; = (N — 1) mod 5. Then, fori > 2, define

Aip1 = Ay (7Ai “ A1t 2> B,
5
Bit1 = A1 — A,

and

C; = (A; +2i+ 1) mod 5.
Finally, for all i > 1, define

C! = max(0, ((3 — C;) mod 5) — 1).
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Note that A; is not guaranteed to always be an integer, but it is an integer
whenever we use it (a fact that is guaranteed by Propopsition 2 on p. 20). We now
state our main theorem.

Theorem 2 (Short Version). Let N be a natural number. Let j be the first index
where Cj # 1 (or j = o0 if C; =1 for all j). Provided N > 35, the sequence Q
has the following structure:

(a) For all1 <i< N, Qm(i) =1i.

(b) The 28 terms following the initial conditions are the remaining 28 terms of
QN (see Appendiz 4). The sequence then contains six sporadic terms, which
are then followed by a quasilinear chunk with period 5 that lasts through index
A+ CF.

(¢) For each 1 < m < j, the previous quasilinear chunk is followed by five sporadic
terms and then another quasilinear chunk with period 5 that lasts through index
Am+1 + O;n-i-l .

(d) If C; =0 and N > 118, then Qy is finite, and it contains 158 terms after the
last quasilinear chunk concludes.

(e) If C; = 2, then the behavior of the rest of the sequence is described by Propo-
sitton 1, where the initial condition in that proposition is given by the already-
generated terms along with the two next terms.

(f) If C; = 3, then Qg is finite, and it contains 4 terms after the last quasilinear
chunk concludes.

(9) If C; =4, then Qg is finite, and it contains 11 terms after the last quasilinear
chunk concludes.

Theorem 2 (Full Version). Let N be a natural number. Let j be the first index
where C; # 1 (or j = o0 if C; =1 for all j). Provided N > 35, the sequence Q5
has the following structure:

(a) For all1 <i< N, Qx(i)=1.
(b) For 1 < k < 28, Qxy(N + k) = Qn(N + k) (see Appendiz 4). The next
siz terms are Qxy(N +29) = N +6, Qx(N +30) = 24, Qx(N + 31) = 32,

Qn(N+32) =2N +4, Qx(N +33) =3, Qx(N + 34) = 32. Thereafter, for
3B5<5k+r <A +Cf with0<r <5,

Qn(N +5k) = A1k + By
Qyv(N+5k+1)=5
Qn(N +5k+2)=4;
Qn(N+5k+3)=3
Qn(N+5k+4)=5

N

N

N
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(c) Foreach1 <m < j, Qx(An+2) =5, Qn(A4n+3) =8, Qx(4An+4) = Apt1,
Qn(Am +5) =3, Qx(An +6) =8, and for all 7 < 5k +7 < Apyp1 +C) g
with 0 < r <5,

Qx (A +5k) =3

Q(Am + 5k +1) =

Qx(Am +5k+2) = A1k + B
Qn (A +5k+3) =

Qx(Am +5k+4) = Apis.

(d) If C; =0 and N > 118, then Qy ends after Aj + 160 terms. See Appendiz 4

for the remaining 158 terms.

(e) If C; =2, then Qu(4;+1) = 4, Qu(4;+2) = 4; (A=424) 1 By 49, and
thereafter, for 5k +r >3 with 0 <r <5

Qn(4j +5k) = AjT()
Qn(A; +5k+1) =

Qu(A; +5k+2)_5R(k:)
Qu(A; +5k+3) =5R(k+1)
Qx(A; +5k+4) =55k +1)

assuming the R, S, and T sequences from 3.1 last forever and assuming that,

forallk > 1,
5k+2

J

T(k)>1+

(f) If C; = 3, then Qx ends after A; +4 terms. The remaining 4 terms are:

e Qn(4;+4)=0

(9) If C; = 4, then Qg ends after A; + 14 terms. The remaining 11 terms are:

* Qn(4;+4) = * Qn(4;+8) =13

(A+5) AJ+5 ° QN(AJ+9):AJ (Aj*Ag—l*G)_F
* Qy(4;+6)= Bj+7
° QN(A+7) AJ+2 ° QN(Aj—FlO):
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° Qn(4;+11) =4 o Qn(A4;+13) = A; (W)ﬂL
B +7
° QN(Aj+12):Aj+15 ° QN(Aj+14>:O

It is worth noting that the condition

S5k + 2

J

T(k)>1+

in part (e) of Theorem 2 is almost certainly not necessary, since the T-sequence
appears to grow superlinearly and A; is always at least 80 (and often much larger).

The proof of Theorem 2 requires the following lemma, which is of a similar flavor
to Proposition 1.

Lemma 1. Let K > 0 be an integer, and let X and u be any integers satisfying
A> K+5and A+ p > K+ 6. Let v = max(0,((K +4 — X) mod 5) — 1).
Then, for arbitrary integers ai,as,...,ax, denote the sequence resulting from the
Hofstadter Q-recurrence and the initial condition (0; a1, az, ..., ax, 1,5\, 3) by Qc.
The sequence Q¢ follows the following pattern from Qc(K + 1) through Qe(A+v):

Qc(K +5k)=5
Qc(K +5k+1) =
Qc(K +5k+2)=5
Qc(K +5k+3) =\
Qc(K +5k+4)=3

Ak + 1

Proof. The proof is by induction on the index. The base cases are Q¢ (K + 1)
through Q¢ (K + 4), which are part of the initial condition. Now, suppose K +5 <
n < A (we handle indices greater than A later), and suppose that Q¢(n’) is what
we want it to be for all K +1 < n’ < n. There are five cases to consider:

n— K =0 (mod 5): In this case, n = K + 5k for some k. Applying the Q-
recurrence, we have

Qc(K 4 5k) = Qo (K + 5k — Qc (K + 5k +4))

+ Qc(K + 5k — Qc(K + 5k + 3))
= Qc(K + 5k —3) + Qo (K + 5k — \)
=5+0
=5,

as required. Note that the validity of this case depends on n < A.
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n— K =1 (mod 5): In this case, n = K + 5k + 1 for some k. Applying the Q-
recurrence, we have
Qc(K +5k+1)=Qc(K + 5k +1— Qc(K + 5k))
+Qc(K +5k+1—Qc(K +5k —1))
=Qc(K +5k+1-5)+Qc(K +5k+1-3)
=Mk—1)+p+A
=Mk +u,

as required. Note that the validity of this case does not depend on A\ or p.
n— K =2 (mod 5): In this case, n = K + 5k + 2 for some k. Applying the Q-

recurrence, we have
Qc(K +5k+2) = Qc(K + 5k +2 — Qc(K + 5k + 1))
+Qc(K + 5k +2 — Qo (K + 5k))
=Qc(K +5k+2— (A + ) + Qc(K + 5k +2 —5)
=0+5
= 5,

as required. Note that the validity of this case does not depend on A or p.
n— K =3 (mod 5): In this case, n = K + 5k + 3 for some k. Applying the Q-

recurrence, we have
Qc(K +5k+3) = Qc(K + 5k + 3 — Qo (K + 5k +2))
+Qc(K +5k+3— Qc(K +5k+1))
=Qc(K +5k+3—-5)+Qc(K +5k+3— (M +p))
=A+0
= )\,

as required. Note that the validity of this case does not depend on A or .

n— K =4 (mod 5): In this case, n = K + 5k + 4 for some k. Applying the Q-
recurrence, we have
Qc(K + 5k +4) = Qo (K + 5k + 4 — Qo (K + 5k +3))
+Qc(K + 5k +4 — Qc(K + 5k +2))
=Qc(K +5k+4 -\ +Qc(K +5k+4-5)
=0+3
=3,

as required. Note that the validity of this case depends on n < A.
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This proves that the pattern lasts through index A. We now complete the proof
by showing that the pattern continues through index A + v. There are five cases to
consider:

A— K =0 (mod 5): In this case, v = 3, and the calculation of Q¢(A) falls into the
first case above. The next three cases do not depend on A, so the values of
Qc(MN+1), Qe(A+2), and Qo (A + 3) are what we want.

A— K =1 (mod 5): In this case, v = 2, and the calculation of Q¢()) falls into the
second case above. The next two cases do not depend on )\, so the values of
Qc(A+1) and Qc(A + 2) are what we want.

A— K =2 (mod 5): In this case, v = 1, and the calculation of Q¢c()) falls into
the third case above. The next case does not depend on A, so the value of
Qc (N + 1) is what we want.

A— K =3 (mod 5): In this case, v = 0, so there is nothing to be checked.
A— K =4 (mod 5): In this case, v = 0, so there is nothing to be checked.

We now prove Theorem 2.

Proof. We refer the reader to Appendix 4 for terms Q (1) through Q5 (N + 28).
Those calculations, which are for QQn, also apply for Q5. From there, it is easy
to compute Q5 (N + 29) through Q5 (N + 34), and each one equals its purported
value. We now compute the next four terms:

e Qn(N+35)=Qx(N+3)+Qx(N +32) = (N +2)+ (2N +4) = 3N +6.
e Qn(N +36)=Qx(N+4)=5.

e Qn(N+37)=Qx(N+32)=2N +4=A4,.

e Qy(N+38)=Qx(N+33) =3

By Lemma 1, taking K = N + 34, A= 2N + 4, and u = 3N + 6, these four terms
spawn a period-5 pattern:

Qn(N+34+5k)=5
Qy(N+34+5k+1)=(2N+4)k+ (3N +6)
Qn(N+3445k+2)=5

Qn(N +34+45k+3) =2N + 4

Qn(N + 3445k +4) =3,
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provided that N > 35. Lemma 1 then guarantees that this pattern persists through
index Qx (A1 + v), where

v =max(0, (N +34+4— A;) mod 5) — 1)
=max(0,((N +344+4—2N —4) mod 5) — 1)
max(0, ((34 — N) mod 5) — 1)
=max(0,((4 — N) mod 5) — 1)
=max(0,((3 — (N —1)) mod 5) — 1)
= max(0,((3 — Cy) mod 5) — 1)
=1,

as required. Shifting indices and recalling the definitions of A; and B allow us to
rewrite this pattern as

Qn(N +5k) = Ak + By
Qn(N+5k+1)=5
Qn(N +5k+2) =

Qn(N 45k +3) =

Qn(N 45k +4) =

which is the required form.
We now prove part (¢) of Theorem 2, which refers to a parameter 1 < m < j.
Suppose inductively that we are considering the value m < j, and that Q5 (A4.;, —

3) =3, Qn(Am — 2) =5, Qn(An — 1) = Ay, (W) + Bm, QN(Am) =5,
and Qx(Am + 1) = A,,,. Note that this is all true if m = 0, from the above. So,
m = 0 serves as our (already proved) base case.

Since m < j, it must be the case that C], =1 (as C,, = 1 implies C], = 1). So,
Qn(Ap, + 2) is the first non-calculated term. We compute the next 9 terms:

* Qn(Am +2)=0Qx(2) + Qy(Am —3)=2+3=5.

e Qn(Am+3)=QxAn —2)+Qx3)=5+3=28.

e Qn(4An+4) = QN(A —4)4+Qx(An, —1). We have that Qx (A —4) = Ap,.

But, Qx(Am —1) = Ap (714”17?,173) + B, So,
A, —An_1-3
QN(Am+4) =An (14’%) + B,
— A, (—Am ~Amt 2) + Bum
5
= Am—i—l'

This term is much larger than A,,
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* Qn(Am +5)=Qy(An —3)=3.
e Qn(An+T7)=Qx(An—1)+Qx(A;m+4). We have from before Q (A —1) =

Am (W) + B,,. But, our calculations in the Q5 (A, +4) step allow

us to write Q5 (Am — 1) = Amy1 — Am. So, Q(Am +7) = A1 — A +
Am+1 = 2147n-i—1 - Am = Am—i—l + Bm+1-

* Qn(An +8)=Qy(4n) =5.
b QN(Am + 9) = QN(Am +4) =Amt1.
o Qu(Am +10) = Qx(Ap +5) = 3.

The first five of these terms are what we want. And, by Lemma 1, the last four
terms generate a period-5 pattern as in the lemma statement, with K = A,, + 6,
A= Apy1, and g = A1 + Big1. The resulting pattern is

Qn(

Qn(Am +6+5k+1)=Ap41(k+ 1)+ B+
Qn(Ay, +64+5k+2)=5

Qn(An +64+5k+3) = A

Qn(An +64+5k+4) =3,

which lasts through index A,,4+1 + v, where

v =max(0, ((Am +6+4— Apt1) mod 5) — 1)
= max(0, ((Ap — Amy1) mod 5) — 1).

Shifting indices by 6, the pattern can be rewritten as

QA +5k) = 3

Qn(Ayn +5k+1)=5

QN(Am + 5k + 2) =Ap1k+ Aps1 — A = Ak + By
Qn(Ay +5k+3)=5

Q(Ap + 5k +4) = Ay,

the required form

To complete the proof of part (c) of the theorem, we need to show that v =
C)i1- We know that Cpyq1 = (Apg1 +2m + 3) mod 5. This means that A, =
(Cnt1 — 2m — 3) mod 5. Similarly, A,, = (Cy, —2m — 1) mod 5. But, we know
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that C,, = 1. So, A,, = —2m mod 5. Combining these yields A,,11 — A =
(Crmy1 — 3) mod 5. This allows us to say that

v = max(0, ((Am — Am+1) mod 5) — 1)
= max(0, ((3 — Cpp41) mod 5) — 1)

_ v
- Cm+17

as required.
All that remains now is to determine the eventual behaviors for C; € {0,2,3,4}
(parts (d), (e), (f), and (g) of the theorem respectively).

C; = 0: The first term here we have not yet computed is @ 5(A4; +3). We compute
the next 158 terms (see Appendix 4), and we observe that the sequence ends
once Qi (A; +160) = 0. Computation of these terms assumes that N >
118, because computing Q 5(A; + 157) refers to Q5 (118), which we assume
equals 118 (and this is the strongest requirement we use anywhere in the
calculations).

C; = 2: The first term here we have not yet computed is Q 5(A4; +1). We compute
the next 2 terms (keeping in mind that Q5 (4;) = A; and Qx5 (4; — 1) = 5):

e Qn(A;+1)=Qx(1)+Qy(4; —4)=1+3=4.
e Qn(A; +2)=Qx(4; —2)+Qy(2) = 4 (7Aj_A§71_4) + Bj +2.

We now have the sort of initial condition described by Proposition 1 with
K=A;—2, A=A, and p = 4, (#) + B; + 2. By Proposition 1,
this results in the pattern

Qn(Aj — 24 5k) = 5R(k)
Qx(A; — 2+ 5k +1) =55(k)
Qn(A; —2+5k+2) = A;T(k)
Qn(Aj —2+5k+3) =4
Qu(A; — 245k +4) =5R(k),

as long as the R, S, and T sequences exist and as long as A;T(k) > A; —2+
5k + 4. This last condition is equivalent to

T(k)z1+5kAf2.

J
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Shifting indices by 2, the pattern can be rewritten as

Qn(A; +5k) = A;T(k)
Qn(A; +5k+1)=4

Qn(A; +5k+2) =5R(k)
Qn(A; +5k+3)=5R(k+1)
Qn(A4; +5k+4) =55k +1),

as required.

C; = 3: The first term here we have not yet computed is Q 5(A4; +1). We compute
the next 4 terms, obtaining the values in the theorem statement. We observe
that the sequence ends once Qx(A4; +4) = 0.

C; = 4: The first term here we have not yet computed is Q 5(A4; +4). We compute
the next 11 terms, obtaining the values in the theorem statement. We observe
that the sequence ends once Q (A4, + 14) = 0.

O

3.3. Discussion of Theorem 2

See Figure 6 for a plot of the first 30000 terms of (J;3. For N = 42, we have
j =3 and C3 = 2, so, after the initial condition, there is the zone before Q42 dies,
followed by a (very short) quasilinear piece, followed by two (successively longer)
quasilinear pieces, followed by the eventual Proposition 1-like behavior. Both axes
have logarithmic scales, as otherwise the third quasilinear piece would dominate the
plot. (Each A; is on the order of the square of the previous one.)

Theorem 2 completely characterizes the behavior of Q5 (as long as N is suffi-
ciently large and as long as conjectures about the R, S, and T sequences hold),
but the characterization of which values of NV result in which behaviors is not im-
mediately apparent. Every N with j < oo (which is every known value of N) is
associated to a pair (j,C;) € Zso x {0,2,3,4}. We denote these values by j(IN)
and C(N) respectively. We also use notation A4;(N), B;(N), and C;(N) to denote
A;, B;, and C; values for N. Our first observation is the following;:

Proposition 2. Let N be a positive integer, and let j = j(N). For all 1 <i < j,
A;(N +57) = A;(N) (mod 57~i+1).

Proof. The proof is by induction on 4. If i = 1, then A;(N) = 2N +4 and A; (N +
5)=2(N+57)+4=2N+4+2-5. Then, A;(N +57) — A;(N) =257, which
is divisible by 57 = 57711 as required. If i = 2, then

2 78

As(N) = gN2 N - =
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Figure 6: The first 30000 terms of Qg5 (both axes log scale)

and
_ ) . _ .
Ay(N +57) = gN2—7N— %8+2-523*1 —7-5/ +4.571,
The difference is divisible by 5771, as required.
Now, suppose i > 3 and suppose that Proposition 2 holds for all smaller ¢ values.

Recall that A A )
A= A <1——2+> B,
5
Since i > 3, B;_1 = A;_1 — A;_2, so we can eliminate B;_1 and write

Aoy — Ao+ 7) LA,

A=A < 5

By induction, A;_1(N +57) = A;_1(N) + - 5772 for some integer . Similarly,
Ai—o(N +57) = A;_o(N) + - 5773 for some integer S.
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We now evaluate

Ai(N +57) — A{(N) = A;_1(N +5%)

(A“(N +57) — A;_o(N +57) + 7>
5

~ a4 57) = Ay () (A AT
—Ai—2(N)
= (A1 (N) + - 5772

. <(Ai—1(N) +a-5THE) — (A a(N)+ 8577 + 7)

5
_ (Al-,g(N) +5- 5j7i+2)

DA CRU SRS,

) — A;_o(N).
Simplifying this expression yields

AZ(N + 5j) - AZ(N) = 5j_i+l (204Ai_1(N) - 56141'_1(]\[) — aAi_g(N)
+a? - 5772 — o 5T 4 70— 258)

which is divisible by 5771, as required. O

Of course, Proposition 2 immediately generalizes to replacing 57 with any inte-
ger multiple of 5/. We have the following corollary to Proposition 2 (which also
generalizes in this way):

Corollary 1. For all N, and for all 1 < i < j(N), C;(N +5™) = Cy(N). In
particular, j(N +5/N)) = j(N).

Proof. Let j = j(N). Let 1 <i < j. By Proposition 2,
Ai(N +57) = A;(N) (mod 5/~+1).

Since C; is a function solely of A; mod 5 and of i, we have C;(N + 57) = C;(N).
Since i is arbitrary in the preceding expression, we have C;(N + 57) = C;(N) for
every such i, as required. Also, C;(N) =1 if i < j (by the definition of j). So, by
the definition of j, we have j(N + 57) = j(NN), as required. O

Corollary 1 tells us that, to determine the behavior of @ 5, we should first look
at N mod 5. If C1(N) = 1, then we need to look at N mod 25. If Cy(N) = 1,
then we need to look at N mod 125, etc. This process can be thought of in terms
of exploring a tree on a subset of the strings {0, 1,2,3,4}", each of which can be
thought of as an integer written in base 5. In addition, each leaf of the tree has one
of four “types.”



INTEGERS: 20A (2020) 23

e The root of the tree is the empty string, and it has the five length-1 strings
as children.

e For a string w, interpret it as a base 5 integer N,,. Let C' = C,|(Ny) (where
|w| denotes the length of w). If C = 1, then w has children {zw : = €
{0,1,2,3,4}}; otherwise w is a leaf of type C.

To determine the behavior of ) 5, read the base-5 digits of N from right to left, and
traverse the tree accordingly. Each internal node (non-leaf) visited corresponds to
an additional temporary quasilinear piece in the sequence. When a leaf is reached,
stop, and the leaf’s type determines the eventual behavior, according to Theorem 2.
Consider N = 42 as an example. In base 5, 42 is 1325. The last digit is 2, so we go
from the root of the tree to the node labeled 2. This is not a leaf, so we go from it
to the node labeled 32. This is also not a leaf, so we continue to the node labeled
132. This is a leaf of type 2. So, Q45 consists of three period-5 quasilinear pieces
followed by a Proposition 1-like piece. (Note that strings can have leading zeroes.
If 132 had been an internal node, we would traverse to 0132 next.)

The tree has a structure consisting of levels: level i consists of the strings of
length ¢ that appear in the tree. See Figure 7 for a diagram of levels 0 through 7 of
the tree. Each leaf is labeled as its type (0, 2, 3, or 4). The black nodes are internal
nodes. This includes the black nodes on the right. Each of these has five children,
but they are not shown because the tree is truncated. The structure of this tree is
poorly understood. See [5] for further discussion.

3.4. The Remaining Values of NV

Theorem 2 characterizes the behavior of @) 5 for all
Né¢{n:2<n<34}U{n:1<n<118and n =1 (mod 5)}U{57,67,82,107,117}.

These 55 sequences can be studied individually by generating the sequences and
observing the terms. This study is carried out in [5]; what follows is a summary of
those findings. If N < 27, Qi appears to behave chaotically and last for a long time
(at least 10 million terms), unless N € {19, 23,26}, in which case Q5 is finite with
no observable structure. Thereafter, the remaining ) 5 sequences are finite, except
for N € {33,36,67,71}. These all eventually satisfy the conditions of Proposition 1
and are therefore conjectured to be infinite.

Of the N values exceeding 27, all but N = 67 and N = 117 can be computed
explicitly until either a 0 appears (ending the sequence) or until the conditions of
Proposition 1 are satisfied. For N = 67 and N = 117, Theorem 2 can be used to
describe many terms. Thereafter, Q= can be shown to satisfy Proposition 1, and
Q1= can be shown to reach 0, and hence its end, not too long after Theorem 2

stops applying.
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NGV
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42 -4
432
32
332:3
232:0
132:2
032 :4
22:3
12:0
02:2

3432

2432 : 4
1432 : 2
0432 :0

43432 : 4
33432 : 0

PRYEY

13432 : 2
03432 : 3

423432

323432

223432

123432

023432

Figure 7: Levels 0 through 7 of the tree of behaviors

24

4423432 -
3423432 -
2423432 -
1423432 :
0423432 :
4323432 :
3323432 :
2323432 :
1323432 :
0323432 :
4223432
3223432
2223432
1223432
0223432
4123432
3123432
2123432
1123432
0123432
4023432 :
3023432 :
2023432 :
1023432 :
0023432 :

DO DO DD DO DD b s s s

DO B DN DO N
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4. Future Work

This paper presents an initial application of the method of using parametrized
families of initial conditions to generate solutions to nested recurrence relations.
The application here involves the simplest sort of non-constant initial condition
(a sequential one) and the most well-known nested recurrence (the Q-recurrence).
Our methods are applicable to a wider range of initial conditions and recurrence
relations. Some initial work in this direction is undertaken in [5].

Subsection 3.1 introduces a seemingly chaotic system of three nested recurrences,
and it uses them to construct a solution to Hofstadter’s recurrence that weaves
together predictability and unpredictability. There are a few directions that work
related to these sequences could progress in [5]. These include a deeper study of the
properties of the R, S, and T sequences or a search for other families of solutions to
the @Q-recurrence (or other recurrences) that behave analogously to Proposition 1.

Quasilinear sequences appear frequently in this paper. There are many known
solutions to nested recurrences that are eventually quasilinear [9, 4]. The quasilinear
chunks of these solutions have a fixed starting point, but they continue forever. Here,
we consider quasilinear chunks with fixed starting and stopping points. Previous
work [4] gives a method for discovering eventually quasilinear solutions of arbitrary
periods to arbitrary recurrences. Perhaps it can be extended to also find temporary
quasilinear solutions.

Finally, the structure of the tree in Figure 7 remains poorly understood. In
particular, it is unknown whether the tree is finite or infinite, and it is unknown
whether every string in {0, 1,2,3,4}" has a suffix in some leaf (equivalently, whether
J(N) < oo for all N). A full understanding of this tree would give a more efficient
characterization of the behaviors of the sequences @ 5.
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Appendix A. First 28 Terms Following Initial Condition of Q

Assuming N > 14, these are the first 28 terms of @) following the initial condition.

ANN+1)=QN(N +1-Qn(N)) +Qn(N +1-Qn(N - 1))

Qn
ANN+1-N)+Qn(N+1-(N-1))
Qn

2

(D)+Qn((2)=1+2=3
2)

—~

QNN +2) =QN(N+2-Qn(N +1)) +On(N +2—-Qn(N))

(N
=QNN+2-3)+Qn(N+2—-N)
(N

>

(N-1)+Qn(2)=N-1+2=N+1
(N >2)

QNN +3)=Qn(N+3-Qn(N+2)+Qn(N+3—-Qn(N +1))
(N+3—(N+1)+Qn(N+3-3)

(2

=Qn
=Qn(2)+Qn(N)=2+N=N+2
>

—~

2)

QNN +4)=QnN(N +4-QN(N+3)) + Qn(N +4 - Qn(N +2))
QN(N+4—-(N+2)+Qn(N+4—-(N+1))

Qn(2)+QN(B)=2+3=5

>3)

—~

Qn(N+5)=Qn(N+5—Qn(N +4) + Qn(N 45— Qn(N +3))
=QN(N+5-5)+QNn(N+5—(N+2))
=QnN(N)+Qn@B)=N+3=N+3

(N >3)

QNN +6) =QN(N +6 - QN(N +5)) +QN(N +6 — Qn(N +4))
=QNN+6—(N+3)+Qn(N+6-05)
=QnNB)+QN(N+1)=3+3=6

—~

>3)
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QN(N+7)=QN(N+T7-Qn(N+6)) +Qn(N+7-Qn(N +5))
=QN(N+7-6)+ QNN +7— (N +3))
=Qn(N+1)+Qn(4)=3+4=7
(N =14)

Qn(N + 8) = N+8—-Qn(N+T7)+Qn(N+8—Qn(N +6))

Qn (
QN(N+8—T7)+Qn(N +8-6)
Qn (
>

N+1)+Qn(N+2)=3+N+1=N+4
4)

—~

Qn(N+9) = N+9-QnN(N+8)+Qn(N+9-Qn(N+T7))

(
(N+9—(N+4)+Qn(N+9-7)
B)+QN(N+2)=54+N+1=N+6

Qn
Qn
Qn
>

—~

5)

Qn(N+10) = Qn(N + 10— Qn(N +9)) + Qn(N + 10 — Qn (N +8))
(

QN

QN(N+10— (N +6)) + Qn(N +10— (N +4))
Qn(4) +Qn(6)=4+6=10

(N = 6)

Qn(N +11) = Qn(N + 11 — Qn(N +10)) + Qn(N + 11 — Qn (N +9))

QN
=QN(N+11-10) + Qn(N + 11 — (N +6))
QN
>

(

(N+1)+Qn(5)=3+5=38
6)

Qn(N +12) = Qn(N + 12— Qn(N + 11)) + Qn(N + 12 — Qn (N + 10))
=Qn(N+12-8)+Qn(N +12 - 10)
ON(N+4)+QN(N+2)=5+N+1=N+6

>6)

NN +13-Qn(N +12)) + Qn(N +13 - Qn(N +11))
N+13— (N +6))+Qn(N +13-38)
+QNN+5)=7+N+3=N+10

/\/\/\
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Qn(N +14) = Qn(N + 14 — Qn(N 4+ 13)) + Qn(N + 14 — Qn (N + 12))
=QN(N + 14— (N +10)) + Qn(N + 14 — (N +6))
=QNM4)+OQN@B)=4+8=12
(N =38)

Qn(N +15) = Qn(N + 15— Qn(N 4+ 14)) + Qn(N + 15 — Qn (N + 13))
=QN(N +15-12) + Qn(N + 15— (N +10))
=QN(N+3)+Qn(B)=N+2+5=N+7

(N =38)

NN 416 — Qn(N +15)) + Qn(N +16 — Qn(N + 14))
NN 416 — (N +7)) +Qn(N +16 — 12)

NO)+QN(N+4)=9+5=14
(N >9)

Qn(N+17) = Qn(N + 17— Qn(N 4+ 16)) + Qn(N + 17 — Qn (N + 15))
=QN(N+17—-14) + Qn(N + 17— (N +7))
=QN(N+3)+Qn(10)=N+2+10=N+12
(N > 10)

Qn(N +18) = Qn(N +18 = Qn(N +17)) + Qn(N + 18 — @n (N +16))
=QN(N+18— (N +12)) + Qn (N + 18 — 14)
=QN(6)+QN(N+4)=6+5=11
(N > 10)

QNN +19) =Qn(N +19 - Qn(N +18)) + Qn (N + 19 — Qn (N + 17))
=QN(N+19-11)+ Qn(N +19 — (N +12))
=QN(N+8)+Qn(7)=N+4+7=N+11
(N > 10)

Qn(N +20) = Qn(N +20 — Qn(N +19)) + Qn(N + 20 — Qn (N + 18))
=QN(N+20— (N +11)) + Qn(N +20 — 11)
=QN9)+QN(N+9)=9+N+6=N+15
(N >10)
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Qn(N +21) = Qn(N + 21 — Qn(N +20)) + Qn(N + 21 — Qn (N + 19))
=QN(N +21— (N +15)+Qn(N +21 — (N +11))
=Qn(6)+Qn(10)=6+10=16
(N >10)

QNN +22) = Qn (N +22 - Qn(N +21)) + QN (N +22 - Qn (N +20))
=QN(N +22-16) + Qn(N +22— (N +15))
=QN(N+6)+Qn(7)=6+7=13
(N > 10)

Qn(N +23) = Qn(N +23 — Qn(N +22)) + Qn(N + 23 — Qn (N +21))
=Qn(N +23—13) + Qn(N + 23 — 16)
=QNN+10)+ QNN +T7)=10+7=17
(N >10)

Qn(N +24) = Qn(N +24 — Qn(N +23)) + Qn(N + 24 — Qn (N +22))
=QN(N+24—17) + Qn(N + 24 — 13)
=QN(N+T7)+QnN(N+11)=7+8=15
(N > 10)

Qn(N +25) = Qn(N +25 — Qn(N +24)) + Qn(N + 25 — Qn (N + 23))
=Qn(N +25—15)+ QN (N 425 — 17)
=QN(N+10)+QN(N+8) =10+ N+4=N+14
(N >10)

QAN(N +26) = QN (N +26 — QN (N +25)) + QN (N +26 — Qn(N +24))
= QnN(N 426 — (N +14)) + Qn (N + 26 — 15)
=Qn(12)+ QN(N +11)=12+8 =20
(N >12)

Qn(N +27) = Qn(N + 27 — Qn(N +26)) + Qn(N + 27 — Qn (N + 25))
=QN(N +27-20) + Qn(N + 27— (N +14))
=QN(N+T7)+Qn(13)=7+13=20
(N >13)
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Qn(N +28) = Qn(N +28 — Qn(N +27)) + Qn(N + 28 — Qn (N + 26))
= QN (N + 28 —20) + Qn(N + 28 — 20)

=QN(N+8)+Qn(N+38) =

(N > 13)

N+4+N+4=2N+8

Appendix B. Final Terms of Q5 in the C; = 0 Case

These are the final 158 terms in Q)5 (n) when C; =0 and N > 118.

* Qn(4; +3) =
° Qn(4; +4) =
* Qn(4;+5)=
* Qn(4;+6)=
e Qn(4;+7)=1

o Qyl(A; +8) = A (w%

B;+3
e Qx(4;,+9) =5
* Qy
o Qu(A;+11
o Qu(A;+12
e Qu(A; +13
o Qu(A;+14

Aj+10

(

(

(

(

(
o Qu(A;+15
o Qn(A;+16
o Qu(A;+17
o Qn(A;+18) =
o Qn(A;+19
o Qn(A;+20
(

e Qn(4;+21

)=
)
)
)
)
)
)
)
)
)
)
)

0

Aj+

Q—(A»+35)

o Qy(A;+36) =14

o Qu(A; +37) =22

e Qy(A; +38) =30

o Qn(A; +39)=A;+15

31
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o Qx(A;+40) =33 o Qn(A;+64) = A; (%)Jr
o QulA;+41) = A; (B=4==2) + Bj + 22

B; +29 . QulA; +65) =20
° Qy(4;+42)= o Qy(A;+66) =40
* Qn(A4; +43)= e Qn(A; +67)=50
o Qu(A; +44) = A; + 28 e Qn(A; +68) =36
o Qn(Aj +45)=A; +24 o Qn(A4;+69) =51
o Qn(Aj+46) =40 . gjvfg;rm)_/lj (A Ajos 2)+
o Qn(A; +47) = . Oul, 4T - 1
o Qn(A;+48) = A, (MF . On(A; +72) =28

bR e Qu(A; +73)=A; +60
e Qn(A; +49)=15 . Oy +78) = 54
* Qn(A4;+50)=5 . Qnl(d, +75) =32
e Qn(A;+51) =54 o Qu(A; +76) = A; (w)+
e Qy(A; +52) =36 A, + B + 39
e Qn(A; +53)=A, + o Qu(A; +77) = A; + 24
* Qy(A; +54) =53 o Qn(A; +78) =54
e Qy(A;+55)=A;+ e Qu(A; +79)=A; +73
o Qy(A; +56) =22 e Qy(A;+80) =29

e Qn(A; +81) =44

o Qy(A; +57) =22 o
e Qu(A;+58) =28 oA 43— A £33
o Qy(A; +59)=36 Ot 8070
e Qn(A;+60) =29 o Qu(A; +85)=A; +39
e Qn(Aj+61)=A; + . Ol +86) 62
o Qn(A;+62) =64 . Qu(A; +87) = A, +66
e Qn(A; +63) =36 . QulA; +88) = 44
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* Qy(A; +89) = A;+47 o Qy(A;+112) =81
e Qx(A;+90) =83 e Qn(A; +113) =175
o QulA;+91) = A, (#F o Qn(A; +114) = A; +
B+t e Qu(A; +115) =99
° QN(A'—I—QZ) Q (A'+116):A
o Qx(A; +93) =44 o Qu(A; +117) =54
* Q4 +01) =4 * QA1) = 4, (A=)
o Qx(A; +95) =97 Bj+63
. QN(A'—I—QG): ° QN(Aj+119)=20

o Qu(A;+120) = A, (M)Jr

o Qu(A;+97) =24, (Aifimi=2)
{9 J( ’ ) A; + B; + 50

Aj +2B; 410
° QN(Aj + 121) =14

o Qy(4; +122)=5

o Qn(A; +98) =15

o Qx(A; +99) =170
o Qu(A;+123) = 4; (M)Jr

Aj—A; -2
o Qu(A;+100) = A, (7)+ B s

A; + B;j + 50
o Qn(A; +124
e Qn(A;+101) =14 @ (4 +124) =
o Qu(A;+125) =
1 QN(A + 102) =
* Qn(4; +126) =
Qn(A; +103) = A,
o Qi(A; +127) = A;
e Qy(A; +104) =
o Qn(A;+128) =
* Onld;+105)= o Qy(A; +129) =100
e Qx(A;+106) =

o Qu(A;+107) = A, (M)Jr 2B, + 33

B+ o Qu(A; +131) =14
e Qn(A; +108)=5 o Qx(A4+132) = A, (A Aer - 2)+
o Qx(A4; +109) = 50 B; + 63
o Qu(A; +110) = A; +91 o Qu(4; +133) = 20
o Qu(A; +111) = A; + 52 o Qu(A; +134) = A + 49
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e Qn(Aj +135) =185 e Qn(A; +149)=5

o Q(A; +136) =92 o Qy(A; +150) =35

o Qn(A; +137) =24;+24 o Qn(Aj+151) = 24; + 157
* Qn(4; +138) = o Qu(A; +152) =54

o Qi(4; +139) =

o Qy(A;+153) =170

A;j—A; 4
Aj; +2B; +81 e Qu(A;j+154) = A; (72)_’_
Aj+ Bj +120
e Qn(A; +141) =
e Qn(A; +142) =66 e Qn(A; +155)=A; +39
; -

* Qn(A; +143) = A4; +124 o Qn(A; +156) =117
° QN(A]-+144):7 ° QN(Aj+157):151
o Qy(A;j+145) =35 o Qx(A;+158) = A, (M)Jr
o Qn(Aj+146) = 4; Bj +39
o Qy(A; +147) =14 . Qu(A,4159) = A, (%)Jr

B;+3
o Qu(A;+148) = A; (%% i

B + 68 . QulA; +160) =0



