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Abstract
In this note, we discuss the periodicity of Fyi-continued fractions, where [ € N.
It is used to determine the solvability of the Pell equation X2 — DY? = 1, under
the condition that (X,Y) € Z x 2!Z. In particular, we establish a correspondence
between the set of solutions of the Pell equation (under the given condition) and

the set of Fyi-convergents of v/ D, where D is a non-square positive integer.

1. Introduction

A Diophantine equation of the form X? — DY? = 1 is known as a Pell equation
and X2 — DY? = —1 as a negative Pell equation, where D is a non-square positive
integer. Finding solution(s) to the Pell equation has been an interesting problem
for a long time. A solution (X,Y’) to this equation gives that X + VDY has
norm 1, and hence it is a unit in Z[v/D]. Thus, this equation is directly related
to algebraic number theory and describes units in quadratic integer rings Z[v/D].
Furthermore, these equations are also related to Archimedes’ cattle problem and
Chebyshev polynomials. For details, we refer the reader to the surveys by Lenstra
1, 2].

A solution to X2 — DY?2 = 41 serves as a best rational approximation of v/D.
The best approximations of a real number are characterized by convergents of the
regular continued fraction of the number. Euler introduced the continued fraction
approach to solve the Pell equation. Later, Lagrange proved that a solution to
this equation depends on the regular continued fraction expansion of v/D which is
purely periodic. He showed that every Pell equation has infinitely many solutions
(see [5, 11]).

In this note, we look for solutions to the Pell equation over Z x 27, for 1 > 1.
We know that the negative Pell equation is not always solvable in Z x Z, and
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its solvability depends on the parity of the period length of the regular continued
fraction of v/D. For example, suppose D = 29; then the regular continued fraction
of v/D is periodic with an odd period length. We know that (70,13) is one of
the solutions to X2 — DY? = —1, but (70,13) ¢ Z x 2'Z for | > 1. Suppose
(X,Y) € Z x 2'7Z is a solution of a negative Pell equation, then the integer X is odd
and X2 — DY? =1 mod 4, which is a contradiction. Thus, we see that a negative
Pell equation is not solvable over Z x 2!Z for any I € N. Further, it is well known
that X2 — DY? = 1 is always solvable over Z x Z. Suppose (Xy, Yp) is a solution of
X2 - DY? =1 in Z x Z. Then (X1,Y}), obtained by comparing (X; 4+ vDY;) =
(Xo + \/EYO)QZ, is a solution of the Pell equation in Z x 2Z. Given a solution
(X1,Y1) € Z x 2'Z, one can find infinitely many solutions, (X, 11, Ynt1) € Z x 2!Z
for n > 0, by the following equation:

(Xng1 + \/EYnH) = (X1 + \/5Y1)2n~

Suppose [ € N. Consider a subset Xy of Q = QU {00} given by
Xyt = {;;q : p,q €Z ,q>0,gcd(p,2q) = 1} U {oo}.

If (P,Q) € Z x 2'Z is a solution to X2 — DY? = 1, then P/Q € X,. The set Xy
is related to Fyi-continued fractions introduced by Sarma et al. in [4, 8]. A finite
continued fraction of the form

l
12 a @ &% s
0+ b+ a1+ as+ an
or an infinite continued fraction of the form

1 20 g €9 €n
04+ b+ a1+ as+ an+

)

where b is an odd integer, aj, as, ... are even positive integers, and €, €3, -+ - € {£1},
is called an Fyi-continued fraction. Every irrational number has a unique infinite
Foi-continued fraction expansion. The expression

B 1 QZ €1 €2 €;

Qi 0+ b+ art+ axt  a

for ¢ > 0 is called the i-th Fyi-convergent which belongs to 5. The Foi-continued
fractions also characterize best approximations of a real number by elements of X5:.
A rational number p/q € Xy is called a best approximation of a real number o by
an element of X, if for every p’/q’ € Xy different from p/q with 0 < ¢’ < ¢, we
have |ga — p| < |¢'a = p/l.

Thus, we have a class of continued fractions satisfying a kind of best approx-
imation property. Note that these continued fractions are closely related to the
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continued fractions with even partial quotients (ECF) [9], but the study shows that
an ECF has no approximation property [9, 10]. Thus, we raise a question to solve
the Pell equation over Z x 2!Z using Fyi-continued fractions.

The organization of this article is as follows. Section 2 recalls the known prop-
erties of the Fyi-continued fractions. We derive certain results which we will use
to prove our main results. Section 3 deals with the question of periodicity of an
Foi-continued fraction. In particular, we show that an irrational number has a peri-
odic Fyi-continued fraction if and only if it is a quadratic surd. The notion of pure
periodicity of Fyi-continued fractions is introduced and related results are proved.
We derive results on the periodicity of the continued fractions with even partial
quotients proved in [3]. In Section 4, we achieve our main results describing the
solution set of the Pell equation over Z x 2!Z. We conclude this section by adding
a remark on the contribution of our results in algebraic number theory.

2. Preliminaries

Here, we summarize a few results of Fy-continued fractions; for more details, we
refer to [4, 8]. For the basic properties of regular continued fractions and semi-
regular continued fractions, we refer to [6, 7]. Further, we derive certain results
related to Fyi-continued fractions which will be used later in this paper.

Given an Fyi-continued fraction

the continued fraction
€ €it1 €n

a;+ Qi1+ ant
is called the fin at the i-th stage of the Fyi-continued fraction for ¢ > 1. Here,
we record certain propositions describing properties of Fyi-continued fractions dis-
cussed in [8].

12 e e e, o ...
Proposition 2.1. Let 5= = i iy o be the Fyi-continued

fraction of a real number «. Let y; denote the i-th ﬁn of the continued fraction.
Then

1. b=2[2""1a] + 1, the nearest odd integer to 2\~

2. a; =2|3 (1 + ﬁ) |, the nearest even integer to 1/|y;|, fori>1;

3. €; =sign(y;), fori>1;

_ 1
4. yi_;,_l = m — ;.
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Propositiqn 2.2. Suppose a = ﬁ T aT ook ay --- lsan For-continued frac-
tion and {%}1920 is the sequence of Fyi-convergents of . Suppose (p_1,q-1) = (1,0)
and (po,qo) = (b,2'). Let y; be the fin at the i-th stage of the Foi-continued fraction

of a. Then for i >0, we have
(1) pigi—1 — qipi—1 = £2);
(2) piv1 = aiv1pi + €ip1pio1 and gip1 = Qip1Gi + €i41Gi-1;
(3) the sequence {q;}i>0 is strictly increasing;
(4) BB fori# j;
q; q;
(5) fori>1, |y;| < 1;

€D 1
(6) o= Lit1Pi ¥ Cit1Pi 1, where x; = —

Ti+1qi + €i+1Gi—1 lyi|

Proposition 2.3. Suppose x € R has an eventually constant Fo-continued frac-
tion. Then x € Q if and only if all but finitely many partial numerators are —1 and
all but finitely many partial denominators are 2.

Corollary 2.4. If a is an irrational number, then there are infinitely many i € N
such that €;/a; # —1/2.

In Section 1, we introduced the definition of a best approximation by an element
in X5. Here, we record a result on best approximation properties of Fy:-continued
fractions.

Theorem 2.5. Let o be an irrational number and r/s € Xy. Then r/s is a best
approzimation of a real number a by an element of Xov if and only if r/s is an
For-convergent of a.

Lemma 2.6. Let « be a real number and p;/q; be the sequence of Foi-convergents
of a. If pp/qn is an Far-convergent of o with €,41/an+1 # —1/2, then

| = pn/an| < 2l/‘172r

Proof. We know that

|Ol _ Zﬁ _ Tn4+1Pn + €En+1Pn—1 o pi|
dn Tn+1Gn + €nt+1Qn—1 dn
2l

|xn+1qn + €En+1qn—1 |Qn '

If €41 = 1, then xp 411G + €n41Gn-1 > Gn- If €441 = —1, then a,41 > 4 so that
Tn+1 Z 3a and hence $n+1‘]n+€n+1Qn—l > An- ThUS, we get ‘Oé*pn/qn‘ < 21/(]3 U
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Using Corollary 2.4, we have the following corollary of Lemma 2.6.

Corollary 2.7. If « is an irrational number, then there are infinitely many p/q €
Xov such that |a — p/q| < 2'/q2.

3. Periodic F;:-continued Fractions

An Fyi-continued fraction is called periodic of period length m > 1 with an initial
block of length n > 1 if y,, # Ynir, for 7 > 1, but ypn1i = Y(ngkm)+i> that is,

€n+i = €(nd-km)+i and An+i = Q(n4-km)+is

for 1 < i < m and k > 0. A periodic continued fraction having no initial term
is called purely periodic. In this section, we discuss that a periodic Fy:-continued
fraction reaches to a quadratic surd and vice versa. Recall that a quadratic surd
is a solution of a quadratic equation Az? + Bz + C = 0 with integer coefficients
A #0, B, and C such that the discriminant D = B? —4AC is not a perfect square.
Here, we record an observation which we will use further.

Lemma 3.1. A real number « is a quadratic surd if and only if sa+t is a quadratic

surd, where 0 #£ s € Q and t € Q.

Lemma 3.2. Suppose « is an irrational number and y; is the i-th fin of the Fy -
continued fraction expansion of a. If yr, = y, for some k,r with r > k, then yy4; =
Yr+j for each j > 1. In particular, the continued fraction is periodic.

Proof. By the fourth statement of Proposition 2.1, yx11 = \T:L;cl — ag, where ay is
the nearest even integer to 1/|yi|. Thus, we get that the statement is true for j = 1.
Now suppose ¥x+j—1 = Yr+j—1. Using the fact that y; is an irrational for each i > 1,
we get ap4j—1 = ar4;—1 and by the induction hypothesis, we have yj4; = yr4; for
each j > 1. We can find the smallest n such that y,+1 = ys41 for some s > n (then
1 < n < k), and choose the smallest m > n such that y,+1 = ymy1. Thus, the
continued fraction is periodic of the length m with an initial block of length n. [

Theorem 3.3. Suppose « is an irrational number. The Foi-continued fraction of
« 1s periodic if and only if a is a quadratic surd.

Proof. Suppose the Fyi-continued fraction of « is periodic and given by

!
T = L 2_ €1 €n €n+1 €n+m €n+1 €n+m €n+1
0+ b+ a1+ an+ an+1+ an+m+ an+1+ an+m+ an+1+

where n > 0 and m > 1. Let P;/Q; denote the i-th convergent and y; be the i-th
fin of the continued fraction. Then ¥, 11 = Y(ntmr)+1, for £ > 0. Using Proposition
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2.2, we have y; 11 = OLQP%O:%A so that
Pn - aQn _ Pn+m - aQn+m

b

aQn—l — P, B aQ(ner)fl - P(n+m)71

which gives that « is a root of the quadratic polynomial Rz? + Sz + T, where R =
Qn—lQn+m7Qn+m—1Qn7 S = (QnPn+m—17Pn+an—1+PnQn+m—17Pn—1Qn+m)
and T = P, Pyym-1 + Pu—1Pnym. By assumption, « is an irrational, and hence it
is a quadratic surd. For the converse part, we assume that o is a quadratic surd.
By Lemma 3.1, y; = 2'a — b is also a quadratic surd. Thus, there exist 0 # Ry € Z
and Sy, Ty € Z such that

Royi + Soyr + To = 0.

The Fyi-continued fraction of « is given by

1 20 ¢ €9 €n
0= — —— —— ... e,
04+ b+ a1+ as+ an+

Let yi be the fin at the k-th stage for k > 1, and Ay /B denotes the k-th convergent

of the semi-regular continued fraction of y;. For k > 1,

y = Ap + Yry14k—1

1=
By, + yk+1Br—1

Then, we have
Riyiy1 + Seyps1 + T = 0,

where
Rit1 = RoAi_q + SoAk—1Br—1+ ToBi_1,
Sk+1 = 2A4pAR_1Ro + (ArxBr—1 + B Ap—1)So + 2By Bi—1To,
Tir1 = RoA; + SoAxBy + Ty By,

and the discriminant remains unchanged for each k. Note that Ry1 = Ty. If Ty,
and Tyy1 are bounded, then Ry and Sj are also bounded as the discriminant is
bounded. Again, note that P, = bBy + Ay and Q) = 2'By. By Corollary 2.4, the
cardinality of the set

K, ={k € N|egt1/ar+1 # —1/2 in the Fy-continued fraction of o}

is infinite. Let k* € K, then by Lemma 2.6

1
By — Ag| < —.
| E*Y1 k| By

We can write Ay = Bp+y1 + Bik*, for some § with |0] < 1. Using this value, we get

|Th++1] < |2Roy1| + |So| + |Rol,
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and hence Ty~ is bounded. Now we claim that T~ is also bounded for k* € K,,.
If e /ag« # —1/2, then k* — 1 € K, and we are done. So let e«/ag- = —1/2. If
Y41 > 0, then xp- > 2, and

1 1 1
= < .
|Brx—1 + Yr=Br=—2|  |2p=Brr—1 — Br=—2| ~ Br_1

|Br+—1y — Apr_1] =

Now suppose yg++1 < 0. Then ag+y+1 > 4 so that xx+y1 > 3 and equivalently
lyk=+1] < 1/3. We know that 1/|yy-
5/3 < 1/|yg+| < 7/3. Using this inequality, we get

— 2 = yp+41 and |yg=+1| < 1, and therefore

1 < 3
| B+ —12p= — B=—a| ~ 2Bpe_1’

|Br+—1y — Apr—1] =

We apply the same method to get the boundedness of T}~ as in the case of Tg41,
for each k* € K. Thus, we get Ryi1,Sk+1,Lr+1 are bounded for infinitely many
k, that is, for all k € K, and the discriminant remains unchanged. But there are
only finitely many polynomials with a given discriminant and bounded coefficients.
Thus, the sequence y,11 with k € K, has entries from a finite set. Thus, there
exist integers r, s € N with r < s such that y, 11 = ys1+1. The result is achieved by
Lemma 3.2. U

Here, we state a result on the periodicity of the continued fractions with even
partial quotients (see [3]) as a corollary of Theorem 3.3.

Corollary 3.4. The continued fraction of an irrational number 3 with even partial
quotient is periodic if and only if B is a quadratic surd.

Theorem 3.5. Suppose | > 1 and « is a quadratic surd with 0 < o < 1/2'=1. The
Foi-continued fraction of a is purely periodic if and only if & < 0.

Proof. Suppose a is a quadratic surd with 0 < o < 1/2/~!, and then b = 1. Let
@ < 0. Suppose the Foi-continued fraction of « is not purely periodic and it is given
by

l
1 2 €1 €m €n+1 €En+m €En+1 €n+2 €n+m

o = . . e
0+ 1+ a1+ an+ an+1+ an+m+ an+1+ an+2+ an+m+

where n > 1,m > 1 with y,, # Yntm and Ynti = Yntmsi for i > 1. Let P;/Q; be
the i-th convergent. Then, for ¢ > 0,

1 28 g € P+ yiaPia

0+ 14+ a1+ ai+Tix1 Qi+ Tir1Qi1’

and
__ bk -Qia
Yirt Qi1 — Py’




INTEGERS: 20A (2020) 8

We know that P; > 0, (since, a > 0) which gives that 7;571 < 0 for ¢ > 0. Further,
we claim that ;77 < —1. Note that P; > P;_;. Suppose —1 < 771 < 0, then
-1 < 621:;7?;71 <0,but 1 >0, Q; > Q;—1 and & < 0 give that P,_; > P;,
which is not possible. Thus, 7;71 < —1 for ¢ > 0. Since, U411 = Yntmi1, We get

€n 6n+rn

= Upim — Q- (3.1)

Yn  Yn+tm

We split the discussion into two cases. First, suppose dantm # a,. Note that
Un < —1 and Yp, 4y < —1, then

€ €
2 < Mmoo,

Yn  Yn+tm

The R.H.S. of (3.1) is an even integer, we get Z:" = Z":m , equivalently, a, = ap4+m

which is a contradiction. Now suppose a,, = Gnim, then €, # €,+m. Again, by
Equation (3.1)

n _ Enim
Un  Torm
which implies that 7, and ¥, 1., have different signs which is a contradiction.
Now for the converse part, we assume that o with 0 < a < 1/2!=! has a purely
periodic continued fraction. By Theorem 3.3, we know that « is a quadratic surd

with b = 1. Then there exists a positive integer m such that 2'a — 1 = y,,41 with

. Pm + ym+1Pm71
o = ’
Qm + Ym+1Qm—1

and 50 2'Qm_10% + (Qm — Qm-1 — 2'Pp_1)a + (Pp_1 — P,,) = 0. We know that
(Ppm—1— Pp) <0, and hence & is negative. O

Let D be a positive integer which is not a perfect square, then the irrational
conjugate of v/D is negative. Hence, we have the following corollary.

Corollary 3.6. If D is a non-square positive integer, then the Fai-continued frac-
tion of \/D is purely periodic.

Again we go back to continued fractions with even partial quotients. The follow-
ing lemma states a relation between periodic Fy-continued fractions and continued
fractions with even partial quotients.

Lemma 3.7. Let § > 1 be a quadratic surd. Then (3 has the purely periodic
continued fraction with even partial quotient if and only if the Foi-continued fraction

of 12'2'5 is purely periodic.

Using Lemma 3.7, we state a result from [3] as a corollary of Theorem 3.5.

Corollary 3.8. A quadratic surd § > 1 has a purely periodic continued fraction
with even partial quotient if and only if —1 < § < 0.
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The following proposition record a pattern of partial numerator ¢; and denomi-
nator a; in the Fyi-continued fraction expansion of v/ D.

Proposition 3.9. Suppose D is a non-square positive integer and m is the period
length of the Fy-continued fraction of VD. If m = 1, then a; = 2b with €, =
—1=4'"D —v? and if m > 1, then €145 = €ym_; and a; = an—; for an integer i,
1<i<m/2.

Proof. Suppose m = 1. Then y; = 2'v/D — b so that

1 2 €
VD= — =2 %
O+ b+ ay + (2'VD —b)
Thus, VD is a root of the polynomial
4122 4 2Nay — 2b)x + (b — arb — ).

Hence, a1 — 2b = 0, equivalently, a; = 2b and (b2 —a1b—¢€1) =0 mod 4. Using
these values, we get ¢; = —1 = 4'D — b%. Now, suppose m > 1. Then

VDb = L 2 .. Cm . 3.2
a1+ az+ am + (207D — b) (3.2)

If y; denote the fin at the i-th stage, then

€ € €
QIVbe:ylz ! y Y2 = 2 yeees Ym = "
ar +y2 az +ys3

am + Y1
For ¢ > 1, the number z; is given by
€ €i+1 €42
Ti=—=0q;+ —— —2 ...
Yi Ajr1+ G2
Then
€2 €3 €1
Ty=a1+—, Ta=0a2+ —,..., Tm;m =0am + —,
T2 zs3 Z1
equivalently,
—€2 __ €3 __ —€1 __
— =01 - T, — =002 =2y, ..., — = Qm — Tm-
i) I3 I
Thus,
—€1 €m €m—1 €2
T Gm—11 Qm—2+ a; — 1

Note that == = 2'/D + b, or say, == — 2b = 2v/D — b. Using Equations (3.2) and

T
(3.3), we get a,, = 2b,€,, = €. Further, using the fact that every irrational has a
unique Fyi-continued fraction, we get

€1+i = €Em—i and A; = Am—i

for an integer ¢ with 1 <14 <m/2. O
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4. Pell Equation

In this section, D denotes a positive integer which is not a perfect square. By
Corollary 3.6, the Fyi-continued fraction is purely periodic. For i > 0, P;/Q; denotes
the i-th convergent of the Fy-continued fraction of v/D. The following theorem
states that certain Fyi-convergents of v/D serve as a solution to X2 — DY?2 = 1.

Theorem 4.1. Suppose the Fy -continued fraction of \/D is periodic of period
length m. If m = 1, then each P;/Q; is a solution to the Pell equation X?>—DY? =1
fori > 0. If m > 1, then Ppr_1/Qmr_1 15 a solution to the Pell equation X2 —
DY? =1 for every k > 1.

Proof. Suppose the Fyi-continued fraction expansion of v/ D is given by

b L2 a o emoa o em o a
0+ b+ a1+ am~+ a1+ Am~+ a1+

If m = 1, then by Proposition 3.9, P§ — DQ3 = —e; = 1. Further, we can write

_iile—l n P1+(2l\/5_b)PO
"~ 04 b+ ay + (20V/D —b) or VD = Q1+ (2VD —b)Qo

On comparing rational and irrational parts, we get
P =0+4'D, and Q, =21

so that P — DQ? = (b? — 4'D)? = (P2 — DQ3)? = €2. Now suppose the result is
true up to some i > 1, that is, P? — DQ? = 1. Again,
P; 2D —b) P
VD= P+ @VD =R
Qi+1+ (2D — b)Q;s

On comparing rational and irrational part, we get P;y; = bP; +2!DQ; and Q11 =
bQ; + 2'P; so that
Pl = D@, = (PP=DQH(’ -4'D)=1.

7

Now suppose m > 1. Then for k > 1,

l
\/5: Pmk+(2\/5_b)Pmk—1 )
ka + (2l\/5 - b)ka—l

We get Qmi = bQmi—1 + 2'Ppi—1 and P = 2'DQmk—1 + bPi—1 so that

£2' = Quuk Prak—1 — Pk Qumi—1 = 21(P2u_1 — DQ21_1). (4.1)

Applying this modulo 4, one can see that P2, | —DQ?, ,=1foreach k> 1. O
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Lemma 4.2. Suppose | > 1, and 0 < K < 2!=%. Ifr/2ls € Xy is such that
K
2lsa —r| < o
2sa—rl < o,
then r/2's is an Fy -convergent of a.

Proof. Suppose p/2!q € Xy with 0 < ¢ < s and |2'qa — p| < [2!sa — r|. Then

20 — p| <
2ls’
We have

K K

<12 <t
2ls' T 4lsg  4ls?”

— <L Ticia-Etla-
2lgs 2lg  2ls 2lq

Thus, ¢ > s (% — 1) . By assumption 0 < K < 2!=! and so ¢ > s (27; — 1) > s,
which yields a contradiction. Thus, for p/2'q € Xy with 0 < ¢ < s and [2!qa — p| >

|2!sa.— 7| so that 7/2's is a best approximation of @ by an element of Xy, and hence
an Fyi-convergent of a. O

Theorem 4.3. Let D be a positive integer which is not a perfect square. If (X,Y) €
7. x 7. is a solution of the Pell equation X? — DY? =1 with Y € 2!Z. Then X/Y is
an Fyr-convergent of \/D.

Proof. Suppose (P,2!Q) is a solution to X? — DY? = 1, then

P?-D2%Q* = 1
(P —2'QVD)(P +2'QVD) 1
(P —2'QVD)? + (P — 2'QVD)2""'QvVD 1
1
P-2QVvD)2'Q < —=.
Note that P —2!Q+v/D > 0. By Lemma 4.2, we get that P/2!Q is an Fyi-convergent
of VD (since, 1/2v/D < 1). O

Lemma 4.4. If P;/Q; denotes the i-th convergent of the Fyi-continued fraction of

\/5, then
1. ‘Pi2 - DQ? = P/?m-‘ri - DQ?TLk+i’ fOTO S i S (m - ]‘)’
2. P? — DQ? =1 if and only if i = mk — 1, for some k € N;

5. |P2 = DQ¥ =|P2_ p — DQ2_ (1)l for 0<i< 2] 1.
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Proof. Suppose i > 0. The ¢ 4+ 1-th fin is given by
vDQ; — P;
Yitl = ==
P —VDQi4
We can write y;+1 in the following way:
M +2VD
Yi+1 = Ni+1 )
where M; 1 = +(P,Pi—1 — DQ;Q;—1) and N,y = +(P?, — DQ? ;). Since, the
continued fraction of v/D is purely periodic of length m, y; = Yrm+i, for 1 <i<m
and k£ > 0. On comparing the rational and irrational parts, we get that

M; = Mgy and Ny = Nyppyg.

Thus, P? , — DQ? | = Pgﬂﬁ_(i_l) - Dank+(i—l)7 for1 <i<mandk >0, and

we get the first statement. Now suppose P? — DQ? = 1 so that N;4o = 1. Then
|Yival = [Miya +2'VD] < 1,
and hence —M; 12— 1< 2l/D < —M;, 2+ 1. Observe that M; is an odd integer for
each 7. Thus, the above inequality gives that M, o = —b so that
Yirz =2VD = b = yrps,

for k > 0. Thus, we get i + 2 = mk + 1, equivalently, i = mk — 1. The converse
statement is clear from the proof of Theorem 4.1. For the third statement, recall
that

y 2P+ VDQy)
m—(i+1) — .
() Pii1+vVDQiys
Now we can write
€ir2(P; +vVDQ;)
P2 iy —DQo (iha) = (Pr—(is2) + + Qm—(i+2))4,

P+ \/BQi+1

where A = (Pp,—(i42) + \/BQm,(iJrg)) and 0 < i <[] — 1. Using the value of
Ym—(i+1) and comparing the rational and irrational terms, we get

B(Qm—(i+2)Piv1 + Qm—(i+3)Pi) = Feiro(PiPp_(it2) + DQiQm—(i+2))(4.2)
B(Qp—(i+2)Qit1 + Qum—(i+3)Qi) = Feiya(PiQm_(it2) + DQiPp_(i12))(4.3)
where B = (P} _ ;5 — DQ. _;.5)- By Equation (4.2) and (4.3),
Pm—(i+2) DQ —(i+2) = €z+2(P DQ ),

and hence
|F)2 —(i+2) DQ L+2)|_‘( DQ3)|
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Combining the results of Theorems 4.1, 4.3 and Lemma 4.4, we obtain our main

result which can be stated as follows.

Theorem 4.5. If D is a positive integer which is not a perfect square, then

1. the Pell equation X% — DY? =1 is always solvable in 7. x 2'7;

2. the solution set of X? — DY? =1 is given by

{(Prk—1,Qmr—1) | k € N},

Prr_1
where )

is the (mk — 1)-th convergent of the Fyi-continued fraction of
VD with period m.
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