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Abstract
In this note, we discuss the periodicity of F2l-continued fractions, where l 2 N.
It is used to determine the solvability of the Pell equation X2 � DY 2 = 1, under
the condition that (X,Y ) 2 Z ⇥ 2lZ. In particular, we establish a correspondence
between the set of solutions of the Pell equation (under the given condition) and
the set of F2l-convergents of

p
D, where D is a non-square positive integer.

1. Introduction

A Diophantine equation of the form X2 � DY 2 = 1 is known as a Pell equation
and X2 �DY 2 = �1 as a negative Pell equation, where D is a non-square positive
integer. Finding solution(s) to the Pell equation has been an interesting problem
for a long time. A solution (X,Y ) to this equation gives that X +

p
DY has

norm 1, and hence it is a unit in Z[
p

D]. Thus, this equation is directly related
to algebraic number theory and describes units in quadratic integer rings Z[

p
D].

Furthermore, these equations are also related to Archimedes’ cattle problem and
Chebyshev polynomials. For details, we refer the reader to the surveys by Lenstra
[1, 2].

A solution to X2 �DY 2 = ±1 serves as a best rational approximation of
p

D.
The best approximations of a real number are characterized by convergents of the
regular continued fraction of the number. Euler introduced the continued fraction
approach to solve the Pell equation. Later, Lagrange proved that a solution to
this equation depends on the regular continued fraction expansion of

p
D which is

purely periodic. He showed that every Pell equation has infinitely many solutions
(see [5, 11]).

In this note, we look for solutions to the Pell equation over Z ⇥ 2lZ for l � 1.
We know that the negative Pell equation is not always solvable in Z ⇥ Z, and
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its solvability depends on the parity of the period length of the regular continued
fraction of

p
D. For example, suppose D = 29; then the regular continued fraction

of
p

D is periodic with an odd period length. We know that (70, 13) is one of
the solutions to X2 � DY 2 = �1, but (70, 13) 62 Z ⇥ 2lZ for l � 1. Suppose
(X,Y ) 2 Z⇥2lZ is a solution of a negative Pell equation, then the integer X is odd
and X2 �DY 2 ⌘ 1 mod 4, which is a contradiction. Thus, we see that a negative
Pell equation is not solvable over Z ⇥ 2lZ for any l 2 N. Further, it is well known
that X2 �DY 2 = 1 is always solvable over Z⇥Z. Suppose (X0, Y0) is a solution of
X2 �DY 2 = 1 in Z ⇥ Z. Then (X1, Y1), obtained by comparing (X1 +

p
DY1) =

(X0 +
p

DY0)2
l
, is a solution of the Pell equation in Z ⇥ 2lZ. Given a solution

(X1, Y1) 2 Z⇥ 2lZ, one can find infinitely many solutions, (Xn+1, Yn+1) 2 Z⇥ 2lZ
for n � 0, by the following equation:

(Xn+1 +
p

DYn+1) = (X1 +
p

DY1)2
n

.

Suppose l 2 N. Consider a subset X2l of Q̂ = Q [ {1} given by

X2l =
⇢

p

2lq
: p, q 2 Z , q > 0, gcd(p, 2q) = 1

�
[ {1}.

If (P,Q) 2 Z ⇥ 2lZ is a solution to X2 �DY 2 = 1, then P/Q 2 X2l . The set X2l

is related to F2l-continued fractions introduced by Sarma et al. in [4, 8]. A finite
continued fraction of the form

1
0+

2l

b+
✏1

a1+
✏2

a2+
· · · ✏n

an
(n � 0)

or an infinite continued fraction of the form

1
0+

2l

b+
✏1

a1+
✏2

a2+
· · · ✏n

an+
· · · ,

where b is an odd integer, a1, a2, . . . are even positive integers, and ✏1, ✏2, · · · 2 {±1},
is called an F2l-continued fraction. Every irrational number has a unique infinite
F2l-continued fraction expansion. The expression

Pi

Qi
=

1
0+

2l

b+
✏1

a1+
✏2

a2+
· · · ✏i

ai

for i � 0 is called the i-th F2l-convergent which belongs to X2l . The F2l-continued
fractions also characterize best approximations of a real number by elements of X2l .
A rational number p/q 2 X2l is called a best approximation of a real number ↵ by
an element of X2l , if for every p0/q0 2 X2l di↵erent from p/q with 0 < q0  q, we
have |q↵� p| < |q0↵� p0|.

Thus, we have a class of continued fractions satisfying a kind of best approx-
imation property. Note that these continued fractions are closely related to the
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continued fractions with even partial quotients (ECF) [9], but the study shows that
an ECF has no approximation property [9, 10]. Thus, we raise a question to solve
the Pell equation over Z⇥ 2lZ using F2l-continued fractions.

The organization of this article is as follows. Section 2 recalls the known prop-
erties of the F2l-continued fractions. We derive certain results which we will use
to prove our main results. Section 3 deals with the question of periodicity of an
F2l-continued fraction. In particular, we show that an irrational number has a peri-
odic F2l-continued fraction if and only if it is a quadratic surd. The notion of pure
periodicity of F2l-continued fractions is introduced and related results are proved.
We derive results on the periodicity of the continued fractions with even partial
quotients proved in [3]. In Section 4, we achieve our main results describing the
solution set of the Pell equation over Z⇥ 2lZ. We conclude this section by adding
a remark on the contribution of our results in algebraic number theory.

2. Preliminaries

Here, we summarize a few results of F2l-continued fractions; for more details, we
refer to [4, 8]. For the basic properties of regular continued fractions and semi-
regular continued fractions, we refer to [6, 7]. Further, we derive certain results
related to F2l-continued fractions which will be used later in this paper.

Given an F2l-continued fraction

1
0+

2l

b+
✏1

a1+
✏2

a2+
✏3

a3+
· · · ✏n

an+
· · · ,

the continued fraction
✏i

ai+
✏i+1

ai+1+
· · · ✏n

an+
· · ·

is called the fin at the i-th stage of the F2l-continued fraction for i � 1. Here,
we record certain propositions describing properties of F2l-continued fractions dis-
cussed in [8].

Proposition 2.1. Let 1
0+

2l

b+
✏1

a1+
✏2

a2+
✏3

a3+
· · · ✏n

an+ · · · be the F2l-continued
fraction of a real number ↵. Let yi denote the i-th fin of the continued fraction.
Then

1. b = 2b2l�1↵c+ 1, the nearest odd integer to 2l�1↵;

2. ai = 2
⌅

1
2

⇣
1 + 1

|yi|

⌘ ⇧
, the nearest even integer to 1/|yi|, for i � 1;

3. ✏i = sign(yi), for i � 1;

4. yi+1 = 1
|yi| � ai.
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Proposition 2.2. Suppose ↵ = 1
0+

2l

b+
✏1

a1+
✏2

a2+
✏3

a3+
. . . is an F2l-continued frac-

tion and {pi

qi
}1i=0 is the sequence of F2l-convergents of ↵. Suppose (p�1, q�1) = (1, 0)

and (p0, q0) = (b, 2l). Let yi be the fin at the i-th stage of the F2l-continued fraction
of ↵. Then for i � 0, we have

(1) piqi�1 � qipi�1 = ±2l;

(2) pi+1 = ai+1pi + ✏i+1pi�1 and qi+1 = ai+1qi + ✏i+1qi�1;

(3) the sequence {qi}i�0 is strictly increasing;

(4)
pi

qi
6= pj

qj
for i 6= j;

(5) for i � 1, |yi|  1;

(6) ↵ =
xi+1pi + ✏i+1pi�1

xi+1qi + ✏i+1qi�1
, where xi =

1
|yi|

.

Proposition 2.3. Suppose x 2 R has an eventually constant F2l-continued frac-
tion. Then x 2 Q if and only if all but finitely many partial numerators are �1 and
all but finitely many partial denominators are 2.

Corollary 2.4. If ↵ is an irrational number, then there are infinitely many i 2 N
such that ✏i/ai 6= �1/2.

In Section 1, we introduced the definition of a best approximation by an element
in X2l . Here, we record a result on best approximation properties of F2l-continued
fractions.

Theorem 2.5. Let ↵ be an irrational number and r/s 2 X2l . Then r/s is a best
approximation of a real number ↵ by an element of X2l if and only if r/s is an
F2l-convergent of ↵.

Lemma 2.6. Let ↵ be a real number and pi/qi be the sequence of F2l-convergents
of ↵. If pn/qn is an F2l-convergent of ↵ with ✏n+1/an+1 6= �1/2, then

|↵� pn/qn| < 2l/q2
n.

Proof. We know that

|↵� pn

qn
| = |xn+1pn + ✏n+1pn�1

xn+1qn + ✏n+1qn�1
� pn

qn
|

=
2l

|xn+1qn + ✏n+1qn�1|qn
.

If ✏n+1 = 1, then xn+1qn + ✏n+1qn�1 > qn. If ✏n+1 = �1, then an+1 � 4 so that
xn+1 � 3, and hence xn+1qn+✏n+1qn�1 > qn. Thus, we get |↵�pn/qn| < 2l/q2

n.
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Using Corollary 2.4, we have the following corollary of Lemma 2.6.

Corollary 2.7. If ↵ is an irrational number, then there are infinitely many p/q 2
X2l such that |↵� p/q| < 2l/q2.

3. Periodic F2l-continued Fractions

An F2l-continued fraction is called periodic of period length m � 1 with an initial
block of length n � 1 if yn 6= yn+r, for r � 1, but yn+i = y(n+km)+i, that is,

✏n+i = ✏(n+km)+i and an+i = a(n+km)+i,

for 1  i  m and k � 0. A periodic continued fraction having no initial term
is called purely periodic. In this section, we discuss that a periodic F2l-continued
fraction reaches to a quadratic surd and vice versa. Recall that a quadratic surd
is a solution of a quadratic equation Ax2 + Bx + C = 0 with integer coe�cients
A 6= 0, B, and C such that the discriminant D = B2� 4AC is not a perfect square.
Here, we record an observation which we will use further.

Lemma 3.1. A real number ↵ is a quadratic surd if and only if s↵+t is a quadratic
surd, where 0 6= s 2 Q and t 2 Q.

Lemma 3.2. Suppose ↵ is an irrational number and yi is the i-th fin of the F2l-
continued fraction expansion of ↵. If yk = yr for some k, r with r > k, then yk+j =
yr+j for each j � 1. In particular, the continued fraction is periodic.

Proof. By the fourth statement of Proposition 2.1, yk+1 = 1
|yk| � ak, where ak is

the nearest even integer to 1/|yk|. Thus, we get that the statement is true for j = 1.
Now suppose yk+j�1 = yr+j�1. Using the fact that yi is an irrational for each i � 1,
we get ak+j�1 = ar+j�1 and by the induction hypothesis, we have yk+j = yr+j for
each j � 1. We can find the smallest n such that yn+1 = ys+1 for some s > n (then
1  n < k), and choose the smallest m > n such that yn+1 = ym+1. Thus, the
continued fraction is periodic of the length m with an initial block of length n.

Theorem 3.3. Suppose ↵ is an irrational number. The F2l-continued fraction of
↵ is periodic if and only if ↵ is a quadratic surd.

Proof. Suppose the F2l-continued fraction of ↵ is periodic and given by

x =
1

0+
2l

b+
✏1

a1+
· · · ✏n

an+
✏n+1

an+1+
· · · ✏n+m

an+m+
✏n+1

an+1+
· · · ✏n+m

an+m+
✏n+1

an+1+
· · · ,

where n � 0 and m � 1. Let Pi/Qi denote the i-th convergent and yi be the i-th
fin of the continued fraction. Then yn+1 = y(n+mk)+1, for k � 0. Using Proposition
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2.2, we have yi+1 = Pi�↵Qi

↵Qi�1�Pi�1
so that

Pn � ↵Qn

↵Qn�1 � Pn�1
=

Pn+m � ↵Qn+m

↵Q(n+m)�1 � P(n+m)�1
,

which gives that ↵ is a root of the quadratic polynomial Rx2 + Sx + T, where R =
Qn�1Qn+m�Qn+m�1Qn, S = (QnPn+m�1�Pn+mQn�1+PnQn+m�1�Pn�1Qn+m)
and T = PnPn+m�1 + Pn�1Pn+m. By assumption, ↵ is an irrational, and hence it
is a quadratic surd. For the converse part, we assume that ↵ is a quadratic surd.
By Lemma 3.1, y1 = 2l↵� b is also a quadratic surd. Thus, there exist 0 6= R0 2 Z
and S0, T0 2 Z such that

R0y
2
1 + S0y1 + T0 = 0.

The F2l-continued fraction of ↵ is given by

↵ =
1

0+
2l

b+
✏1

a1+
✏2

a2+
· · · ✏n

an+
· · · .

Let yk be the fin at the k-th stage for k � 1, and Ak/Bk denotes the k-th convergent
of the semi-regular continued fraction of y1. For k � 1,

y1 =
Ak + yk+1Ak�1

Bk + yk+1Bk�1
.

Then, we have
Rky2

k+1 + Skyk+1 + Tk = 0,

where

Rk+1 = R0A
2
k�1 + S0Ak�1Bk�1 + T0B

2
k�1,

Sk+1 = 2AkAk�1R0 + (AkBk�1 + BkAk�1)S0 + 2BkBk�1T0,

Tk+1 = R0A
2
k + S0AkBk + T0B

2
k,

and the discriminant remains unchanged for each k. Note that Rk+1 = Tk. If Tk

and Tk+1 are bounded, then Rk and Sk are also bounded as the discriminant is
bounded. Again, note that Pk = bBk + Ak and Qk = 2lBk. By Corollary 2.4, the
cardinality of the set

K↵ = {k 2 N | ✏k+1/ak+1 6= �1/2 in the F2l-continued fraction of ↵}

is infinite. Let k⇤ 2 K↵, then by Lemma 2.6

|Bk⇤y1 �Ak| <
1

Bk⇤
.

We can write Ak⇤ = Bk⇤y1 + �
Bk⇤

, for some � with |�| < 1. Using this value, we get

|Tk⇤+1| < |2R0y1| + |S0| + |R0|,
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and hence Tk⇤+1 is bounded. Now we claim that Tk⇤ is also bounded for k⇤ 2 K↵.
If ✏k⇤/ak⇤ 6= �1/2, then k⇤ � 1 2 K↵ and we are done. So let ✏k⇤/ak⇤ = �1/2. If
yk⇤+1 > 0, then xk⇤ > 2, and

|Bk⇤�1y �Ak⇤�1| =
1

|Bk⇤�1 + yk⇤Bk⇤�2|
=

1
|xk⇤Bk⇤�1 �Bk⇤�2|

<
1

Bk⇤�1
.

Now suppose yk⇤+1 < 0. Then ak⇤+1 � 4 so that xk⇤+1 > 3 and equivalently
|yk⇤+1| < 1/3. We know that 1/|yk⇤ | � 2 = yk⇤+1 and |yk⇤+1| < 1, and therefore
5/3 < 1/|yk⇤ | < 7/3. Using this inequality, we get

|Bk⇤�1y �Ak⇤�1| =
1

|Bk⇤�1xk⇤ �Bk⇤�2|
<

3
2Bk⇤�1

.

We apply the same method to get the boundedness of Tk⇤ as in the case of Tk⇤+1,
for each k⇤ 2 K↵. Thus, we get Rk+1, Sk+1, Tk+1 are bounded for infinitely many
k, that is, for all k 2 K↵ and the discriminant remains unchanged. But there are
only finitely many polynomials with a given discriminant and bounded coe�cients.
Thus, the sequence yk+1 with k 2 K↵ has entries from a finite set. Thus, there
exist integers r, s 2 N with r < s such that yr+1 = ys+1. The result is achieved by
Lemma 3.2.

Here, we state a result on the periodicity of the continued fractions with even
partial quotients (see [3]) as a corollary of Theorem 3.3.

Corollary 3.4. The continued fraction of an irrational number � with even partial
quotient is periodic if and only if � is a quadratic surd.

Theorem 3.5. Suppose l � 1 and ↵ is a quadratic surd with 0 < ↵ < 1/2l�1. The
F2l-continued fraction of ↵ is purely periodic if and only if ↵̄ < 0.

Proof. Suppose ↵ is a quadratic surd with 0 < ↵ < 1/2l�1, and then b = 1. Let
↵̄ < 0. Suppose the F2l-continued fraction of ↵ is not purely periodic and it is given
by

↵ =
1

0+
2l

1+
✏1

a1+
· · · ✏m

an+
✏n+1

an+1+
· · · ✏n+m

an+m+
✏n+1

an+1+
✏n+2

an+2+
· · · ✏n+m

an+m+
· · · ,

where n � 1,m � 1 with yn 6= yn+m and yn+i = yn+m+i for i � 1. Let Pi/Qi be
the i-th convergent. Then, for i � 0,

↵̄ =
1

0+
2l

1+
✏1

a1+
· · · ✏i

ai + yi+1
=

Pi + yi+1Pi�1

Qi + yi+1Qi�1
,

and
yi+1 =

Pi �Qi↵̄

Qi�1↵̄� Pi�1
.
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We know that Pi > 0, (since, ↵ > 0) which gives that yi+1 < 0 for i � 0. Further,
we claim that yi+1 < �1. Note that Pi � Pi�1. Suppose �1 < yi+1 < 0, then
�1 < Pi�Qi↵̄

Qi�1↵̄�Pi�1
< 0, but Pi�1 > 0, Qi > Qi�1 and ↵̄ < 0 give that Pi�1 > Pi,

which is not possible. Thus, yi+1 < �1 for i � 0. Since, yn+1 = yn+m+1, we get
✏n

yn
� ✏n+m

yn+m
= an+m � an. (3.1)

We split the discussion into two cases. First, suppose an+m 6= an. Note that
yn < �1 and yn+m < �1, then

�2 <
✏n

yn
� ✏n+m

yn+m
< 2.

The R.H.S. of (3.1) is an even integer, we get ✏n
yn

= ✏n+m

yn+m
, equivalently, an = an+m

which is a contradiction. Now suppose an = an+m, then ✏n 6= ✏n+m. Again, by
Equation (3.1)

✏n

yn
=

✏n+m

yn+m
,

which implies that yn and yn+m have di↵erent signs which is a contradiction.
Now for the converse part, we assume that ↵ with 0 < ↵ < 1/2l�1 has a purely

periodic continued fraction. By Theorem 3.3, we know that ↵ is a quadratic surd
with b = 1. Then there exists a positive integer m such that 2l↵� 1 = ym+1 with

↵ =
Pm + ym+1Pm�1

Qm + ym+1Qm�1
,

and so 2lQm�1↵2 + (Qm �Qm�1 � 2lPm�1)↵ + (Pm�1 � Pm) = 0. We know that
(Pm�1 � Pm) < 0, and hence ↵̄ is negative.

Let D be a positive integer which is not a perfect square, then the irrational
conjugate of

p
D is negative. Hence, we have the following corollary.

Corollary 3.6. If D is a non-square positive integer, then the F2l-continued frac-
tion of

p
D is purely periodic.

Again we go back to continued fractions with even partial quotients. The follow-
ing lemma states a relation between periodic F2l-continued fractions and continued
fractions with even partial quotients.

Lemma 3.7. Let � > 1 be a quadratic surd. Then � has the purely periodic
continued fraction with even partial quotient if and only if the F2l-continued fraction
of 1+�

2l� is purely periodic.

Using Lemma 3.7, we state a result from [3] as a corollary of Theorem 3.5.

Corollary 3.8. A quadratic surd � > 1 has a purely periodic continued fraction
with even partial quotient if and only if �1 < �̄ < 0.
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The following proposition record a pattern of partial numerator ✏i and denomi-
nator ai in the F2l-continued fraction expansion of

p
D.

Proposition 3.9. Suppose D is a non-square positive integer and m is the period
length of the F2l-continued fraction of

p
D. If m = 1, then a1 = 2b with ✏1 =

�1 = 4lD � b2 and if m > 1, then ✏1+i = ✏m�i and ai = am�i for an integer i,
1  i  m/2.

Proof. Suppose m = 1. Then y1 = 2l
p

D � b so that

p
D =

1
0+

2l

b+
✏1

a1 + (2l
p

D � b)
.

Thus,
p

D is a root of the polynomial

4lx2 + 2l(a1 � 2b)x + (b2 � a1b� ✏1).

Hence, a1 � 2b = 0, equivalently, a1 = 2b and (b2 � a1b � ✏1) ⌘ 0 mod 4. Using
these values, we get ✏1 = �1 = 4lD � b2. Now, suppose m > 1. Then

2l
p

D � b =
✏1

a1+
✏2

a2+
· · · ✏m

am + (2l
p

D � b)
. (3.2)

If yi denote the fin at the i-th stage, then

2l
p

D � b = y1 =
✏1

a1 + y2
, y2 =

✏2
a2 + y3

, . . . , ym =
✏m

am + y1
.

For i � 1, the number xi is given by

xi =
✏i

yi
= ai +

✏i+1

ai+1+
✏i+2

ai+2
· · · .

Then
x1 = a1 +

✏2
x2

, x2 = a2 +
✏3
x3

, . . . , xm = am +
✏1
x1

,

equivalently,

�✏2
x2

= a1 � x1,
�✏3
x3

= a2 � x2, . . . ,
�✏1
x1

= am � xm.

Thus,
�✏1
x1

= am +
✏m

am�1+
✏m�1

am�2+
· · · ✏2

a1 � x1
. (3.3)

Note that �✏1
x1

= 2l
p

D + b, or say, �✏1
x1
� 2b = 2

p
D� b. Using Equations (3.2) and

(3.3), we get am = 2b, ✏m = ✏1. Further, using the fact that every irrational has a
unique F2l-continued fraction, we get

✏1+i = ✏m�i and ai = am�i

for an integer i with 1  i  m/2.



INTEGERS: 20A (2020) 10

4. Pell Equation

In this section, D denotes a positive integer which is not a perfect square. By
Corollary 3.6, the F2l-continued fraction is purely periodic. For i � 0, Pi/Qi denotes
the i-th convergent of the F2l-continued fraction of

p
D. The following theorem

states that certain F2l-convergents of
p

D serve as a solution to X2 �DY 2 = 1.

Theorem 4.1. Suppose the F2l-continued fraction of
p

D is periodic of period
length m. If m = 1, then each Pi/Qi is a solution to the Pell equation X2�DY 2 = 1
for i � 0. If m > 1, then Pmk�1/Qmk�1 is a solution to the Pell equation X2 �
DY 2 = 1 for every k � 1.

Proof. Suppose the F2l-continued fraction expansion of
p

D is given by

p
D =

1
0+

2l

b+
✏1

a1+
· · · ✏m

am+
✏1

a1+
· · · ✏m

am+
✏1

a1+
· · · .

If m = 1, then by Proposition 3.9, P 2
0 �DQ2

0 = �✏1 = 1. Further, we can write

p
D =

1
0+

2l

b+
✏1

a1 + (2l
p

D � b)
or
p

D =
P1 + (2l

p
D � b)P0

Q1 + (2l
p

D � b)Q0

.

On comparing rational and irrational parts, we get

P1 = b2 + 4lD, and Q1 = 2l+1b

so that P 2
1 �DQ2

1 = (b2 � 4lD)2 = (P 2
0 �DQ2

0)2 = ✏21. Now suppose the result is
true up to some i > 1, that is, P 2

i �DQ2
i = 1. Again,

p
D =

Pi+1 + (2l
p

D � b)Pi

Qi+1 + (2l
p

D � b)Qi

.

On comparing rational and irrational part, we get Pi+1 = bPi + 2lDQi and Qi+1 =
bQi + 2lPi so that

P 2
i+1 �DQ2

i+1 = (P 2
i �DQ2

i )(b
2 � 4lD) = 1.

Now suppose m > 1. Then for k � 1,

p
D =

Pmk + (2l
p

D � b)Pmk�1

Qmk + (2l
p

D � b)Qmk�1

.

We get Qmk = bQmk�1 + 2lPmk�1 and Pmk = 2lDQmk�1 + bPmk�1 so that

±2l = QmkPmk�1 � PmkQmk�1 = 2l(P 2
mk�1 �DQ2

mk�1). (4.1)

Applying this modulo 4, one can see that P 2
mk�1�DQ2

mk�1 = 1 for each k � 1.
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Lemma 4.2. Suppose l � 1, and 0 < K  2l�1. If r/2ls 2 X2l is such that

|2ls↵� r| <
K

2ls
,

then r/2ls is an F2l-convergent of ↵.

Proof. Suppose p/2lq 2 X2l with 0 < q  s and |2lq↵� p| < |2ls↵� r|. Then

|2lq↵� p| <
K

2ls
.

We have

1
2lqs

 | p

2lq
� r

2ls
|  |↵� p

2lq
| + |↵� r

2ls
| <

K

4lsq
+

K

4ls2
.

Thus, q > s
⇣

2l

K � 1
⌘

. By assumption 0 < K < 2l�1, and so q > s
⇣

2l

K � 1
⌘
� s,

which yields a contradiction. Thus, for p/2lq 2 X2l with 0 < q  s and |2lq↵� p| �
|2ls↵�r| so that r/2ls is a best approximation of ↵ by an element of X2l , and hence
an F2l-convergent of ↵.

Theorem 4.3. Let D be a positive integer which is not a perfect square. If (X,Y ) 2
Z⇥Z is a solution of the Pell equation X2�DY 2 = 1 with Y 2 2lZ. Then X/Y is
an F2l-convergent of

p
D.

Proof. Suppose (P, 2lQ) is a solution to X2 �DY 2 = 1, then

P 2 �D22lQ2 = 1
(P � 2lQ

p
D)(P + 2lQ

p
D) = 1

(P � 2lQ
p

D)2 + (P � 2lQ
p

D)2l+1Q
p

D = 1

(P � 2lQ
p

D)2lQ <
1

2
p

D
.

Note that P � 2lQ
p

D > 0. By Lemma 4.2, we get that P/2lQ is an F2l-convergent
of
p

D (since, 1/2
p

D < 1).

Lemma 4.4. If Pi/Qi denotes the i-th convergent of the F2l-continued fraction ofp
D, then

1. P 2
i �DQ2

i = P 2
km+i �DQ2

mk+i, for 0  i  (m� 1);

2. P 2
i �DQ2

i = 1 if and only if i = mk � 1, for some k 2 N;

3. |P 2
i �DQ2

i | = |P 2
m�(i+2) �DQ2

m�(i+2)|, for 0  i  bm
2 c � 1.
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Proof. Suppose i � 0. The i + 1-th fin is given by

yi+1 =
p

DQi � Pi

Pi�1 �
p

DQi�1

.

We can write yi+1 in the following way:

yi+1 =
Mi+1 + 2l

p
D

Ni+1
,

where Mi+1 = ±(PiPi�1 � DQiQi�1) and Ni+1 = ±(P 2
i�1 � DQ2

i�1). Since, the
continued fraction of

p
D is purely periodic of length m, yi = ykm+i, for 1  i  m

and k � 0. On comparing the rational and irrational parts, we get that

Mi = Mmk+i and Ni = Nmk+i.

Thus, P 2
i�1 � DQ2

i�1 = P 2
mk+(i�1) � DQ2

mk+(i�1), for 1  i  m and k � 0, and
we get the first statement. Now suppose P 2

i �DQ2
i = 1 so that Ni+2 = 1. Then

|yi+2| = |Mi+2 + 2l
p

D| < 1,

and hence �Mi+2� 1 < 2l
p

D < �Mi+2 +1. Observe that Mi is an odd integer for
each i. Thus, the above inequality gives that Mi+2 = �b so that

yi+2 = 2l
p

D � b = ymk+1,

for k � 0. Thus, we get i + 2 = mk + 1, equivalently, i = mk � 1. The converse
statement is clear from the proof of Theorem 4.1. For the third statement, recall
that

ym�(i+1) =
✏i+2(Pi +

p
DQi)

Pi+1 +
p

DQi+1

.

Now we can write

P 2
m�(i+2) �DQ2

m�(i+2) = (Pm�(i+2) +
✏i+2(Pi +

p
DQi)

Pi+1 +
p

DQi+1

Qm�(i+2))A,

where A = (Pm�(i+2) +
p

DQm�(i+2)) and 0  i  bm
2 c � 1. Using the value of

ym�(i+1) and comparing the rational and irrational terms, we get

B(Qm�(i+2)Pi+1 + Qm�(i+3)Pi) = ±✏i+2(PiPm�(i+2) + DQiQm�(i+2)),(4.2)
B(Qm�(i+2)Qi+1 + Qm�(i+3)Qi) = ±✏i+2(PiQm�(i+2) + DQiPm�(i+2)),(4.3)

where B = (P 2
m�(i+2) �DQ2

m�(i+2)). By Equation (4.2) and (4.3),

P 2
m�(i+2) �DQ2

m�(i+2) = ✏i+2(P 2
i �DQ2

i ),

and hence
|P 2

m�(i+2) �DQ2
m�(i+2)| = |(P 2

i �DQ2
i )|.
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Combining the results of Theorems 4.1, 4.3 and Lemma 4.4, we obtain our main
result which can be stated as follows.

Theorem 4.5. If D is a positive integer which is not a perfect square, then

1. the Pell equation X2 �DY 2 = 1 is always solvable in Z⇥ 2lZ;

2. the solution set of X2 �DY 2 = 1 is given by

{(Pmk�1, Qmk�1) | k 2 N} ,

where Pmk�1
Qmk�1

is the (mk � 1)-th convergent of the F2l-continued fraction of
p

D with period m.
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