

PELL EQUATION: A REVISIT THROUGH PERIODIC \mathcal{F}_{2^l} -CONTINUED FRACTIONS

Seema Kushwaha

Harish-Chandra Research Institute, Prayagraj, India seema28k@gmail.com

Received: 3/9/19, Revised: 1/6/20, Accepted: 3/20/20, Published: 4/27/20

Abstract

In this note, we discuss the periodicity of \mathcal{F}_{2^l} -continued fractions, where $l \in \mathbb{N}$. It is used to determine the solvability of the Pell equation $X^2 - DY^2 = 1$, under the condition that $(X, Y) \in \mathbb{Z} \times 2^l \mathbb{Z}$. In particular, we establish a correspondence between the set of solutions of the Pell equation (under the given condition) and the set of \mathcal{F}_{2^l} -convergents of \sqrt{D} , where D is a non-square positive integer.

1. Introduction

A Diophantine equation of the form $X^2 - DY^2 = 1$ is known as a Pell equation and $X^2 - DY^2 = -1$ as a negative Pell equation, where D is a non-square positive integer. Finding solution(s) to the Pell equation has been an interesting problem for a long time. A solution (X, Y) to this equation gives that $X + \sqrt{D}Y$ has norm 1, and hence it is a unit in $\mathbb{Z}[\sqrt{D}]$. Thus, this equation is directly related to algebraic number theory and describes units in quadratic integer rings $\mathbb{Z}[\sqrt{D}]$. Furthermore, these equations are also related to Archimedes' cattle problem and Chebyshev polynomials. For details, we refer the reader to the surveys by Lenstra [1, 2].

A solution to $X^2 - DY^2 = \pm 1$ serves as a best rational approximation of \sqrt{D} . The best approximations of a real number are characterized by convergents of the regular continued fraction of the number. Euler introduced the continued fraction approach to solve the Pell equation. Later, Lagrange proved that a solution to this equation depends on the regular continued fraction expansion of \sqrt{D} which is purely periodic. He showed that every Pell equation has infinitely many solutions (see [5, 11]).

In this note, we look for solutions to the Pell equation over $\mathbb{Z} \times 2^{l}\mathbb{Z}$ for $l \geq 1$. We know that the negative Pell equation is not always solvable in $\mathbb{Z} \times \mathbb{Z}$, and its solvability depends on the parity of the period length of the regular continued fraction of \sqrt{D} . For example, suppose D = 29; then the regular continued fraction of \sqrt{D} is periodic with an odd period length. We know that (70,13) is one of the solutions to $X^2 - DY^2 = -1$, but (70,13) $\notin \mathbb{Z} \times 2^l \mathbb{Z}$ for $l \geq 1$. Suppose $(X,Y) \in \mathbb{Z} \times 2^l \mathbb{Z}$ is a solution of a negative Pell equation, then the integer X is odd and $X^2 - DY^2 \equiv 1 \mod 4$, which is a contradiction. Thus, we see that a negative Pell equation is not solvable over $\mathbb{Z} \times 2^l \mathbb{Z}$ for any $l \in \mathbb{N}$. Further, it is well known that $X^2 - DY^2 = 1$ is always solvable over $\mathbb{Z} \times \mathbb{Z}$. Suppose (X_0, Y_0) is a solution of $X^2 - DY^2 = 1$ in $\mathbb{Z} \times \mathbb{Z}$. Then (X_1, Y_1) , obtained by comparing $(X_1 + \sqrt{D}Y_1) =$ $(X_0 + \sqrt{D}Y_0)^{2^l}$, is a solution of the Pell equation in $\mathbb{Z} \times 2^l \mathbb{Z}$. Given a solution $(X_1, Y_1) \in \mathbb{Z} \times 2^l \mathbb{Z}$, one can find infinitely many solutions, $(X_{n+1}, Y_{n+1}) \in \mathbb{Z} \times 2^l \mathbb{Z}$ for $n \geq 0$, by the following equation:

$$(X_{n+1} + \sqrt{D}Y_{n+1}) = (X_1 + \sqrt{D}Y_1)^{2^n}.$$

Suppose $l \in \mathbb{N}$. Consider a subset \mathcal{X}_{2^l} of $\hat{\mathbb{Q}} = \mathbb{Q} \cup \{\infty\}$ given by

$$\mathcal{X}_{2^l} = \left\{ rac{p}{2^l q} : \ p,q \in \mathbb{Z} \ , q > 0, \operatorname{gcd}(p,2q) = 1
ight\} \cup \{\infty\}.$$

If $(P,Q) \in \mathbb{Z} \times 2^l \mathbb{Z}$ is a solution to $X^2 - DY^2 = 1$, then $P/Q \in \mathcal{X}_{2^l}$. The set \mathcal{X}_{2^l} is related to \mathcal{F}_{2^l} -continued fractions introduced by Sarma et al. in [4, 8]. A finite continued fraction of the form

$$\frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1+} \frac{\epsilon_2}{a_2+} \cdots \frac{\epsilon_n}{a_n} \quad (n \ge 0)$$

or an infinite continued fraction of the form

$$\frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1+} \frac{\epsilon_2}{a_2+} \cdots \frac{\epsilon_n}{a_n+} \cdots,$$

where b is an odd integer, a_1, a_2, \ldots are even positive integers, and $\epsilon_1, \epsilon_2, \cdots \in \{\pm 1\}$, is called an \mathcal{F}_{2^l} -continued fraction. Every irrational number has a unique infinite \mathcal{F}_{2^l} -continued fraction expansion. The expression

$$\frac{P_i}{Q_i} = \frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1+} \frac{\epsilon_2}{a_2+} \cdots \frac{\epsilon_i}{a_i}$$

for $i \geq 0$ is called the *i*-th \mathcal{F}_{2^l} -convergent which belongs to \mathcal{X}_{2^l} . The \mathcal{F}_{2^l} -continued fractions also characterize best approximations of a real number by elements of \mathcal{X}_{2^l} . A rational number $p/q \in \mathcal{X}_{2^l}$ is called a *best approximation of a real number* α by an element of \mathcal{X}_{2^l} , if for every $p'/q' \in \mathcal{X}_{2^l}$ different from p/q with $0 < q' \leq q$, we have $|q\alpha - p| < |q'\alpha - p'|$.

Thus, we have a class of continued fractions satisfying a kind of best approximation property. Note that these continued fractions are closely related to the continued fractions with even partial quotients (ECF) [9], but the study shows that an ECF has no approximation property [9, 10]. Thus, we raise a question to solve the Pell equation over $\mathbb{Z} \times 2^l \mathbb{Z}$ using \mathcal{F}_{2^l} -continued fractions.

The organization of this article is as follows. Section 2 recalls the known properties of the \mathcal{F}_{2^l} -continued fractions. We derive certain results which we will use to prove our main results. Section 3 deals with the question of periodicity of an \mathcal{F}_{2^l} -continued fraction. In particular, we show that an irrational number has a periodic \mathcal{F}_{2^l} -continued fraction if and only if it is a quadratic surd. The notion of pure periodicity of \mathcal{F}_{2^l} -continued fractions is introduced and related results are proved. We derive results on the periodicity of the continued fractions with even partial quotients proved in [3]. In Section 4, we achieve our main results describing the solution set of the Pell equation over $\mathbb{Z} \times 2^l \mathbb{Z}$. We conclude this section by adding a remark on the contribution of our results in algebraic number theory.

2. Preliminaries

Here, we summarize a few results of \mathcal{F}_{2^l} -continued fractions; for more details, we refer to [4, 8]. For the basic properties of regular continued fractions and semiregular continued fractions, we refer to [6, 7]. Further, we derive certain results related to \mathcal{F}_{2^l} -continued fractions which will be used later in this paper.

Given an \mathcal{F}_{2^l} -continued fraction

$$\frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1+} \frac{\epsilon_2}{a_2+} \frac{\epsilon_3}{a_3+} \cdots \frac{\epsilon_n}{a_n+} \cdots,$$

the continued fraction

$$\frac{\epsilon_i}{a_i+} \frac{\epsilon_{i+1}}{a_{i+1}+} \cdots \frac{\epsilon_n}{a_n+} \cdots$$

is called the *fin* at the *i*-th stage of the \mathcal{F}_{2^l} -continued fraction for $i \geq 1$. Here, we record certain propositions describing properties of \mathcal{F}_{2^l} -continued fractions discussed in [8].

Proposition 2.1. Let $\frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1+} \frac{\epsilon_2}{a_2+} \frac{\epsilon_3}{a_3+} \cdots \frac{\epsilon_n}{a_n+} \cdots$ be the \mathcal{F}_{2^l} -continued fraction of a real number α . Let y_i denote the *i*-th fin of the continued fraction. Then

1. $b = 2\lfloor 2^{l-1}\alpha \rfloor + 1$, the nearest odd integer to $2^{l-1}\alpha$; 2. $a_i = 2\lfloor \frac{1}{2} \left(1 + \frac{1}{|y_i|}\right) \rfloor$, the nearest even integer to $1/|y_i|$, for $i \ge 1$; 3. $\epsilon_i = \operatorname{sign}(y_i)$, for $i \ge 1$; 4. $y_{i+1} = \frac{1}{|y_i|} - a_i$.

Proposition 2.2. Suppose $\alpha = \frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1+} \frac{\epsilon_2}{a_2+} \frac{\epsilon_3}{a_3+} \dots$ is an \mathcal{F}_{2^l} -continued fraction and $\{\frac{p_i}{q_i}\}_{i=0}^{\infty}$ is the sequence of \mathcal{F}_{2^l} -convergents of α . Suppose $(p_{-1}, q_{-1}) = (1, 0)$ and $(p_0, q_0) = (b, 2^l)$. Let y_i be the fin at the *i*-th stage of the \mathcal{F}_{2^l} -continued fraction of α . Then for $i \geq 0$, we have

- (1) $p_i q_{i-1} q_i p_{i-1} = \pm 2^l;$
- (2) $p_{i+1} = a_{i+1}p_i + \epsilon_{i+1}p_{i-1}$ and $q_{i+1} = a_{i+1}q_i + \epsilon_{i+1}q_{i-1}$;
- (3) the sequence $\{q_i\}_{i\geq 0}$ is strictly increasing;
- (4) $\frac{p_i}{q_i} \neq \frac{p_j}{q_j}$ for $i \neq j$;
- (5) for $i \ge 1$, $|y_i| \le 1$;

(6)
$$\alpha = \frac{x_{i+1}p_i + \epsilon_{i+1}p_{i-1}}{x_{i+1}q_i + \epsilon_{i+1}q_{i-1}}, \text{ where } x_i = \frac{1}{|y_i|}$$

Proposition 2.3. Suppose $x \in \mathbb{R}$ has an eventually constant \mathcal{F}_{2^l} -continued fraction. Then $x \in \mathbb{Q}$ if and only if all but finitely many partial numerators are -1 and all but finitely many partial denominators are 2.

Corollary 2.4. If α is an irrational number, then there are infinitely many $i \in \mathbb{N}$ such that $\epsilon_i/a_i \neq -1/2$.

In Section 1, we introduced the definition of a best approximation by an element in \mathcal{X}_{2^l} . Here, we record a result on best approximation properties of \mathcal{F}_{2^l} -continued fractions.

Theorem 2.5. Let α be an irrational number and $r/s \in \mathcal{X}_{2^l}$. Then r/s is a best approximation of a real number α by an element of \mathcal{X}_{2^l} if and only if r/s is an \mathcal{F}_{2^l} -convergent of α .

Lemma 2.6. Let α be a real number and p_i/q_i be the sequence of \mathcal{F}_{2^l} -convergents of α . If p_n/q_n is an \mathcal{F}_{2^l} -convergent of α with $\epsilon_{n+1}/a_{n+1} \neq -1/2$, then

$$|\alpha - p_n/q_n| < 2^l/q_n^2.$$

Proof. We know that

$$\begin{aligned} |\alpha - \frac{p_n}{q_n}| &= |\frac{x_{n+1}p_n + \epsilon_{n+1}p_{n-1}}{x_{n+1}q_n + \epsilon_{n+1}q_{n-1}} - \frac{p_n}{q_n}| \\ &= \frac{2^l}{|x_{n+1}q_n + \epsilon_{n+1}q_{n-1}|q_n}. \end{aligned}$$

If $\epsilon_{n+1} = 1$, then $x_{n+1}q_n + \epsilon_{n+1}q_{n-1} > q_n$. If $\epsilon_{n+1} = -1$, then $a_{n+1} \ge 4$ so that $x_{n+1} \ge 3$, and hence $x_{n+1}q_n + \epsilon_{n+1}q_{n-1} > q_n$. Thus, we get $|\alpha - p_n/q_n| < 2^l/q_n^2$. \Box

Using Corollary 2.4, we have the following corollary of Lemma 2.6.

Corollary 2.7. If α is an irrational number, then there are infinitely many $p/q \in \mathcal{X}_{2^l}$ such that $|\alpha - p/q| < 2^l/q^2$.

3. Periodic \mathcal{F}_{2^l} -continued Fractions

An $\mathcal{F}_{2^{l}}$ -continued fraction is called *periodic* of *period length* $m \geq 1$ with an *initial block of length* $n \geq 1$ if $y_n \neq y_{n+r}$, for $r \geq 1$, but $y_{n+i} = y_{(n+km)+i}$, that is,

 $\epsilon_{n+i} = \epsilon_{(n+km)+i}$ and $a_{n+i} = a_{(n+km)+i}$,

for $1 \leq i \leq m$ and $k \geq 0$. A periodic continued fraction having no initial term is called *purely periodic*. In this section, we discuss that a periodic \mathcal{F}_{2^l} -continued fraction reaches to a quadratic surd and vice versa. Recall that a *quadratic surd* is a solution of a quadratic equation $Ax^2 + Bx + C = 0$ with integer coefficients $A \neq 0, B$, and C such that the discriminant $D = B^2 - 4AC$ is not a perfect square. Here, we record an observation which we will use further.

Lemma 3.1. A real number α is a quadratic surd if and only if $s\alpha + t$ is a quadratic surd, where $0 \neq s \in \mathbb{Q}$ and $t \in \mathbb{Q}$.

Lemma 3.2. Suppose α is an irrational number and y_i is the *i*-th fin of the \mathcal{F}_{2^l} continued fraction expansion of α . If $y_k = y_r$ for some k, r with r > k, then $y_{k+j} = y_{r+j}$ for each $j \ge 1$. In particular, the continued fraction is periodic.

Proof. By the fourth statement of Proposition 2.1, $y_{k+1} = \frac{1}{|y_k|} - a_k$, where a_k is the nearest even integer to $1/|y_k|$. Thus, we get that the statement is true for j = 1. Now suppose $y_{k+j-1} = y_{r+j-1}$. Using the fact that y_i is an irrational for each $i \ge 1$, we get $a_{k+j-1} = a_{r+j-1}$ and by the induction hypothesis, we have $y_{k+j} = y_{r+j}$ for each $j \ge 1$. We can find the smallest n such that $y_{n+1} = y_{s+1}$ for some s > n (then $1 \le n < k$), and choose the smallest m > n such that $y_{n+1} = y_{m+1}$. Thus, the continued fraction is periodic of the length m with an initial block of length n.

Theorem 3.3. Suppose α is an irrational number. The \mathcal{F}_{2^l} -continued fraction of α is periodic if and only if α is a quadratic surd.

Proof. Suppose the \mathcal{F}_{2^l} -continued fraction of α is periodic and given by

$$x = \frac{1}{0+} \frac{2^{\iota}}{b+} \frac{\epsilon_1}{a_1+} \cdots \frac{\epsilon_n}{a_n+} \frac{\epsilon_{n+1}}{a_{n+1}+} \cdots \frac{\epsilon_{n+m}}{a_{n+m}+} \frac{\epsilon_{n+1}}{a_{n+1}+} \cdots \frac{\epsilon_{n+m}}{a_{n+m}+} \frac{\epsilon_{n+1}}{a_{n+1}+} \cdots,$$

where $n \ge 0$ and $m \ge 1$. Let P_i/Q_i denote the *i*-th convergent and y_i be the *i*-th fin of the continued fraction. Then $y_{n+1} = y_{(n+mk)+1}$, for $k \ge 0$. Using Proposition

2.2, we have $y_{i+1} = \frac{P_i - \alpha Q_i}{\alpha Q_{i-1} - P_{i-1}}$ so that $P_i = \alpha Q_i$

$$\frac{P_n - \alpha Q_n}{\alpha Q_{n-1} - P_{n-1}} = \frac{P_{n+m} - \alpha Q_{n+m}}{\alpha Q_{(n+m)-1} - P_{(n+m)-1}}$$

which gives that α is a root of the quadratic polynomial $Rx^2 + Sx + T$, where $R = Q_{n-1}Q_{n+m} - Q_{n+m-1}Q_n$, $S = (Q_nP_{n+m-1} - P_{n+m}Q_{n-1} + P_nQ_{n+m-1} - P_{n-1}Q_{n+m})$ and $T = P_nP_{n+m-1} + P_{n-1}P_{n+m}$. By assumption, α is an irrational, and hence it is a quadratic surd. For the converse part, we assume that α is a quadratic surd. By Lemma 3.1, $y_1 = 2^l \alpha - b$ is also a quadratic surd. Thus, there exist $0 \neq R_0 \in \mathbb{Z}$ and $S_0, T_0 \in \mathbb{Z}$ such that

$$R_0 y_1^2 + S_0 y_1 + T_0 = 0.$$

The \mathcal{F}_{2^l} -continued fraction of α is given by

$$\alpha = \frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1+} \frac{\epsilon_2}{a_2+} \cdots \frac{\epsilon_n}{a_n+} \cdots$$

Let y_k be the fin at the k-th stage for $k \ge 1$, and A_k/B_k denotes the k-th convergent of the semi-regular continued fraction of y_1 . For $k \ge 1$,

$$y_1 = \frac{A_k + y_{k+1}A_{k-1}}{B_k + y_{k+1}B_{k-1}}.$$

Then, we have

$$R_k y_{k+1}^2 + S_k y_{k+1} + T_k = 0,$$

where

$$R_{k+1} = R_0 A_{k-1}^2 + S_0 A_{k-1} B_{k-1} + T_0 B_{k-1}^2,$$

$$S_{k+1} = 2A_k A_{k-1} R_0 + (A_k B_{k-1} + B_k A_{k-1}) S_0 + 2B_k B_{k-1} T_0,$$

$$T_{k+1} = R_0 A_k^2 + S_0 A_k B_k + T_0 B_k^2,$$

and the discriminant remains unchanged for each k. Note that $R_{k+1} = T_k$. If T_k and T_{k+1} are bounded, then R_k and S_k are also bounded as the discriminant is bounded. Again, note that $P_k = bB_k + A_k$ and $Q_k = 2^l B_k$. By Corollary 2.4, the cardinality of the set

 $K_{\alpha} = \{k \in \mathbb{N} \mid \epsilon_{k+1}/a_{k+1} \neq -1/2 \text{ in the } \mathcal{F}_{2^{l}}\text{-continued fraction of } \alpha\}$

is infinite. Let $k^* \in K_{\alpha}$, then by Lemma 2.6

$$|B_{k^*}y_1 - A_k| < \frac{1}{B_{k^*}}.$$

We can write $A_{k^*} = B_{k^*}y_1 + \frac{\delta}{B_{k^*}}$, for some δ with $|\delta| < 1$. Using this value, we get

$$|T_{k^*+1}| < |2R_0y_1| + |S_0| + |R_0|,$$

and hence T_{k^*+1} is bounded. Now we claim that T_{k^*} is also bounded for $k^* \in K_{\alpha}$. If $\epsilon_{k^*}/a_{k^*} \neq -1/2$, then $k^* - 1 \in K_{\alpha}$ and we are done. So let $\epsilon_{k^*}/a_{k^*} = -1/2$. If $y_{k^*+1} > 0$, then $x_{k^*} > 2$, and

$$|B_{k^*-1}y - A_{k^*-1}| = \frac{1}{|B_{k^*-1} + y_{k^*}B_{k^*-2}|} = \frac{1}{|x_{k^*}B_{k^*-1} - B_{k^*-2}|} < \frac{1}{|B_{k^*-1}} = \frac{1}{|B_{k^*-1} - B_{k^*-2}|} =$$

Now suppose $y_{k^*+1} < 0$. Then $a_{k^*+1} \ge 4$ so that $x_{k^*+1} > 3$ and equivalently $|y_{k^*+1}| < 1/3$. We know that $1/|y_{k^*}| - 2 = y_{k^*+1}$ and $|y_{k^*+1}| < 1$, and therefore $5/3 < 1/|y_{k^*}| < 7/3$. Using this inequality, we get

$$|B_{k^*-1}y - A_{k^*-1}| = \frac{1}{|B_{k^*-1}x_{k^*} - B_{k^*-2}|} < \frac{3}{2B_{k^*-1}}$$

We apply the same method to get the boundedness of T_{k^*} as in the case of T_{k^*+1} , for each $k^* \in K_{\alpha}$. Thus, we get $R_{k+1}, S_{k+1}, T_{k+1}$ are bounded for infinitely many k, that is, for all $k \in K_{\alpha}$ and the discriminant remains unchanged. But there are only finitely many polynomials with a given discriminant and bounded coefficients. Thus, the sequence y_{k+1} with $k \in K_{\alpha}$ has entries from a finite set. Thus, there exist integers $r, s \in \mathbb{N}$ with r < s such that $y_{r+1} = y_{s+1}$. The result is achieved by Lemma 3.2.

Here, we state a result on the periodicity of the continued fractions with even partial quotients (see [3]) as a corollary of Theorem 3.3.

Corollary 3.4. The continued fraction of an irrational number β with even partial quotient is periodic if and only if β is a quadratic surd.

Theorem 3.5. Suppose $l \ge 1$ and α is a quadratic surd with $0 < \alpha < 1/2^{l-1}$. The \mathcal{F}_{2^l} -continued fraction of α is purely periodic if and only if $\overline{\alpha} < 0$.

Proof. Suppose α is a quadratic surd with $0 < \alpha < 1/2^{l-1}$, and then b = 1. Let $\bar{\alpha} < 0$. Suppose the \mathcal{F}_{2^l} -continued fraction of α is not purely periodic and it is given by

$$\alpha = \frac{1}{0+} \frac{2^l}{1+} \frac{\epsilon_1}{a_1+} \cdots \frac{\epsilon_m}{a_n+} \frac{\epsilon_{n+1}}{a_{n+1}+} \cdots \frac{\epsilon_{n+m}}{a_{n+m}+} \frac{\epsilon_{n+1}}{a_{n+1}+} \frac{\epsilon_{n+2}}{a_{n+2}+} \cdots \frac{\epsilon_{n+m}}{a_{n+m}+} \cdots,$$

where $n \ge 1, m \ge 1$ with $y_n \ne y_{n+m}$ and $y_{n+i} = y_{n+m+i}$ for $i \ge 1$. Let P_i/Q_i be the *i*-th convergent. Then, for $i \ge 0$,

$$\bar{\alpha} = \frac{1}{0+} \frac{2^l}{1+} \frac{\epsilon_1}{a_1+} \cdots \frac{\epsilon_i}{a_i + \overline{y_{i+1}}} = \frac{P_i + \overline{y_{i+1}}P_{i-1}}{Q_i + \overline{y_{i+1}}Q_{i-1}},$$

and

$$\overline{y_{i+1}} = \frac{P_i - Q_i \bar{\alpha}}{Q_{i-1}\bar{\alpha} - P_{i-1}}.$$

We know that $P_i > 0$, (since, $\alpha > 0$) which gives that $\overline{y_{i+1}} < 0$ for $i \ge 0$. Further, we claim that $\overline{y_{i+1}} < -1$. Note that $P_i \ge P_{i-1}$. Suppose $-1 < \overline{y_{i+1}} < 0$, then $-1 < \frac{P_i - Q_i \bar{\alpha}}{Q_{i-1} \bar{\alpha} - P_{i-1}} < 0$, but $P_{i-1} > 0$, $Q_i > Q_{i-1}$ and $\bar{\alpha} < 0$ give that $P_{i-1} > P_i$, which is not possible. Thus, $\overline{y_{i+1}} < -1$ for $i \ge 0$. Since, $\overline{y_{n+1}} = \overline{y_{n+m+1}}$, we get

$$\frac{\epsilon_n}{y_n} - \frac{\epsilon_{n+m}}{y_{n+m}} = a_{n+m} - a_n.$$
(3.1)

We split the discussion into two cases. First, suppose $a_{n+m} \neq a_n$. Note that $\overline{y_n} < -1$ and $\overline{y_{n+m}} < -1$, then

$$-2 < \frac{\epsilon_n}{y_n} - \frac{\epsilon_{n+m}}{y_{n+m}} < 2.$$

The R.H.S. of (3.1) is an even integer, we get $\frac{\epsilon_n}{y_n} = \frac{\epsilon_{n+m}}{y_{n+m}}$, equivalently, $a_n = a_{n+m}$ which is a contradiction. Now suppose $a_n = a_{n+m}$, then $\epsilon_n \neq \epsilon_{n+m}$. Again, by Equation (3.1)

$$\frac{\epsilon_n}{\overline{y_n}} = \frac{\epsilon_{n+m}}{\overline{y_{n+m}}}$$

which implies that $\overline{y_n}$ and $\overline{y_{n+m}}$ have different signs which is a contradiction.

Now for the converse part, we assume that α with $0 < \alpha < 1/2^{l-1}$ has a purely periodic continued fraction. By Theorem 3.3, we know that α is a quadratic surd with b = 1. Then there exists a positive integer m such that $2^{l}\alpha - 1 = y_{m+1}$ with

$$\alpha = \frac{P_m + y_{m+1}P_{m-1}}{Q_m + y_{m+1}Q_{m-1}},$$

and so $2^{l}Q_{m-1}\alpha^{2} + (Q_{m} - Q_{m-1} - 2^{l}P_{m-1})\alpha + (P_{m-1} - P_{m}) = 0$. We know that $(P_{m-1} - P_{m}) < 0$, and hence $\bar{\alpha}$ is negative.

Let D be a positive integer which is not a perfect square, then the irrational conjugate of \sqrt{D} is negative. Hence, we have the following corollary.

Corollary 3.6. If D is a non-square positive integer, then the \mathcal{F}_{2^l} -continued fraction of \sqrt{D} is purely periodic.

Again we go back to continued fractions with even partial quotients. The following lemma states a relation between periodic \mathcal{F}_{2^l} -continued fractions and continued fractions with even partial quotients.

Lemma 3.7. Let $\beta > 1$ be a quadratic surd. Then β has the purely periodic continued fraction with even partial quotient if and only if the \mathcal{F}_{2^l} -continued fraction of $\frac{1+\beta}{2^l\beta}$ is purely periodic.

Using Lemma 3.7, we state a result from [3] as a corollary of Theorem 3.5.

Corollary 3.8. A quadratic surd $\beta > 1$ has a purely periodic continued fraction with even partial quotient if and only if $-1 < \overline{\beta} < 0$.

The following proposition record a pattern of partial numerator ϵ_i and denominator a_i in the \mathcal{F}_{2^l} -continued fraction expansion of \sqrt{D} .

Proposition 3.9. Suppose D is a non-square positive integer and m is the period length of the \mathcal{F}_{2^l} -continued fraction of \sqrt{D} . If m = 1, then $a_1 = 2b$ with $\epsilon_1 = -1 = 4^l D - b^2$ and if m > 1, then $\epsilon_{1+i} = \epsilon_{m-i}$ and $a_i = a_{m-i}$ for an integer i, $1 \le i \le m/2$.

Proof. Suppose m = 1. Then $y_1 = 2^l \sqrt{D} - b$ so that

$$\sqrt{D} = \frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1 + (2^l \sqrt{D} - b)}$$

Thus, \sqrt{D} is a root of the polynomial

$$4^{l}x^{2} + 2^{l}(a_{1} - 2b)x + (b^{2} - a_{1}b - \epsilon_{1}).$$

Hence, $a_1 - 2b = 0$, equivalently, $a_1 = 2b$ and $(b^2 - a_1b - \epsilon_1) \equiv 0 \mod 4$. Using these values, we get $\epsilon_1 = -1 = 4^l D - b^2$. Now, suppose m > 1. Then

$$2^{l}\sqrt{D} - b = \frac{\epsilon_1}{a_1 + \frac{\epsilon_2}{a_2 + \cdots}} \cdots \frac{\epsilon_m}{a_m + (2^{l}\sqrt{D} - b)}.$$
(3.2)

If y_i denote the fin at the *i*-th stage, then

$$2^l \sqrt{D} - b = y_1 = \frac{\epsilon_1}{a_1 + y_2}, \ y_2 = \frac{\epsilon_2}{a_2 + y_3}, \dots, \ y_m = \frac{\epsilon_m}{a_m + y_1}.$$

For $i \geq 1$, the number x_i is given by

$$x_i = \frac{\epsilon_i}{y_i} = a_i + \frac{\epsilon_{i+1}}{a_{i+1}} \frac{\epsilon_{i+2}}{a_{i+2}} \cdots$$

Then

$$x_1 = a_1 + \frac{\epsilon_2}{x_2}, \ x_2 = a_2 + \frac{\epsilon_3}{x_3}, \dots, \ x_m = a_m + \frac{\epsilon_1}{x_1},$$

equivalently,

$$\frac{-\epsilon_2}{\overline{x_2}} = a_1 - \overline{x_1}, \ \frac{-\epsilon_3}{\overline{x_3}} = a_2 - \overline{x_2}, \ \dots, \frac{-\epsilon_1}{\overline{x_1}} = a_m - \overline{x_m}.$$

Thus,

$$\frac{-\epsilon_1}{\overline{x_1}} = a_m + \frac{\epsilon_m}{a_{m-1}+} \frac{\epsilon_{m-1}}{a_{m-2}+} \cdots \frac{\epsilon_2}{a_1 - \overline{x_1}}.$$
(3.3)

Note that $\frac{-\epsilon_1}{\overline{x_1}} = 2^l \sqrt{D} + b$, or say, $\frac{-\epsilon_1}{\overline{x_1}} - 2b = 2\sqrt{D} - b$. Using Equations (3.2) and (3.3), we get $a_m = 2b, \epsilon_m = \epsilon_1$. Further, using the fact that every irrational has a unique \mathcal{F}_{2^l} -continued fraction, we get

$$\epsilon_{1+i} = \epsilon_{m-i}$$
 and $a_i = a_{m-i}$

for an integer i with $1 \le i \le m/2$.

4. Pell Equation

In this section, D denotes a positive integer which is not a perfect square. By Corollary 3.6, the \mathcal{F}_{2^l} -continued fraction is purely periodic. For $i \ge 0$, P_i/Q_i denotes the *i*-th convergent of the \mathcal{F}_{2^l} -continued fraction of \sqrt{D} . The following theorem states that certain \mathcal{F}_{2^l} -convergents of \sqrt{D} serve as a solution to $X^2 - DY^2 = 1$.

Theorem 4.1. Suppose the \mathcal{F}_{2^l} -continued fraction of \sqrt{D} is periodic of period length m. If m = 1, then each P_i/Q_i is a solution to the Pell equation $X^2 - DY^2 = 1$ for $i \ge 0$. If m > 1, then P_{mk-1}/Q_{mk-1} is a solution to the Pell equation $X^2 - DY^2 = 1$ for every $k \ge 1$.

Proof. Suppose the \mathcal{F}_{2^l} -continued fraction expansion of \sqrt{D} is given by

$$\sqrt{D} = \frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1+} \cdots \frac{\epsilon_m}{a_m+} \frac{\epsilon_1}{a_1+} \cdots \frac{\epsilon_m}{a_m+} \frac{\epsilon_1}{a_1+} \cdots$$

If m = 1, then by Proposition 3.9, $P_0^2 - DQ_0^2 = -\epsilon_1 = 1$. Further, we can write

$$\sqrt{D} = \frac{1}{0+} \frac{2^l}{b+} \frac{\epsilon_1}{a_1 + (2^l \sqrt{D} - b)} \text{ or } \sqrt{D} = \frac{P_1 + (2^l \sqrt{D} - b)P_0}{Q_1 + (2^l \sqrt{D} - b)Q_0}$$

On comparing rational and irrational parts, we get

$$P_1 = b^2 + 4^l D$$
, and $Q_1 = 2^{l+1} b$

so that $P_1^2 - DQ_1^2 = (b^2 - 4^l D)^2 = (P_0^2 - DQ_0^2)^2 = \epsilon_1^2$. Now suppose the result is true up to some i > 1, that is, $P_i^2 - DQ_i^2 = 1$. Again,

$$\sqrt{D} = \frac{P_{i+1} + (2^l \sqrt{D} - b)P_i}{Q_{i+1} + (2^l \sqrt{D} - b)Q_i}$$

On comparing rational and irrational part, we get $P_{i+1} = bP_i + 2^l DQ_i$ and $Q_{i+1} = bQ_i + 2^l P_i$ so that

$$P_{i+1}^2 - DQ_{i+1}^2 = (P_i^2 - DQ_i^2)(b^2 - 4^l D) = 1.$$

Now suppose m > 1. Then for $k \ge 1$,

$$\sqrt{D} = \frac{P_{mk} + (2^l \sqrt{D} - b) P_{mk-1}}{Q_{mk} + (2^l \sqrt{D} - b) Q_{mk-1}}.$$

We get $Q_{mk} = bQ_{mk-1} + 2^l P_{mk-1}$ and $P_{mk} = 2^l DQ_{mk-1} + bP_{mk-1}$ so that

$$\pm 2^{l} = Q_{mk}P_{mk-1} - P_{mk}Q_{mk-1} = 2^{l}(P_{mk-1}^{2} - DQ_{mk-1}^{2}).$$
(4.1)

Applying this modulo 4, one can see that $P_{mk-1}^2 - DQ_{mk-1}^2 = 1$ for each $k \ge 1$. \Box

Lemma 4.2. Suppose $l \ge 1$, and $0 < K \le 2^{l-1}$. If $r/2^l s \in \mathcal{X}_{2^l}$ is such that

$$|2^l s\alpha - r| < \frac{K}{2^l s},$$

then $r/2^l s$ is an \mathcal{F}_{2^l} -convergent of α .

Proof. Suppose $p/2^l q \in \mathcal{X}_{2^l}$ with $0 < q \leq s$ and $|2^l q \alpha - p| < |2^l s \alpha - r|$. Then

$$|2^l q\alpha - p| < \frac{K}{2^l s}$$

We have

$$\frac{1}{2^l q s} \le \left|\frac{p}{2^l q} - \frac{r}{2^l s}\right| \le \left|\alpha - \frac{p}{2^l q}\right| + \left|\alpha - \frac{r}{2^l s}\right| < \frac{K}{4^l s q} + \frac{K}{4^l s^2}.$$

Thus, $q > s\left(\frac{2^l}{K} - 1\right)$. By assumption $0 < K < 2^{l-1}$, and so $q > s\left(\frac{2^l}{K} - 1\right) \ge s$, which yields a contradiction. Thus, for $p/2^l q \in \mathcal{X}_{2^l}$ with $0 < q \le s$ and $|2^l q \alpha - p| \ge |2^l s \alpha - r|$ so that $r/2^l s$ is a best approximation of α by an element of \mathcal{X}_{2^l} , and hence an \mathcal{F}_{2^l} -convergent of α .

Theorem 4.3. Let D be a positive integer which is not a perfect square. If $(X, Y) \in \mathbb{Z} \times \mathbb{Z}$ is a solution of the Pell equation $X^2 - DY^2 = 1$ with $Y \in 2^l \mathbb{Z}$. Then X/Y is an \mathcal{F}_{2^l} -convergent of \sqrt{D} .

Proof. Suppose $(P, 2^l Q)$ is a solution to $X^2 - DY^2 = 1$, then

$$\begin{aligned} P^2 - D2^{2l}Q^2 &= 1\\ (P - 2^lQ\sqrt{D})(P + 2^lQ\sqrt{D}) &= 1\\ (P - 2^lQ\sqrt{D})^2 + (P - 2^lQ\sqrt{D})2^{l+1}Q\sqrt{D} &= 1\\ (P - 2^lQ\sqrt{D})2^lQ &< \frac{1}{2\sqrt{D}}. \end{aligned}$$

Note that $P - 2^l Q \sqrt{D} > 0$. By Lemma 4.2, we get that $P/2^l Q$ is an \mathcal{F}_{2^l} -convergent of \sqrt{D} (since, $1/2\sqrt{D} < 1$).

Lemma 4.4. If P_i/Q_i denotes the *i*-th convergent of the \mathcal{F}_{2^i} -continued fraction of \sqrt{D} , then

- 1. $P_i^2 DQ_i^2 = P_{km+i}^2 DQ_{mk+i}^2$, for $0 \le i \le (m-1)$;
- 2. $P_i^2 DQ_i^2 = 1$ if and only if i = mk 1, for some $k \in \mathbb{N}$;
- 3. $|P_i^2 DQ_i^2| = |P_{m-(i+2)}^2 DQ_{m-(i+2)}^2|, \text{ for } 0 \le i \le \lfloor \frac{m}{2} \rfloor 1.$

Proof. Suppose $i \ge 0$. The i + 1-th fin is given by

$$y_{i+1} = \frac{\sqrt{DQ_i - P_i}}{P_{i-1} - \sqrt{DQ_{i-1}}}$$

We can write y_{i+1} in the following way:

$$y_{i+1} = \frac{M_{i+1} + 2^l \sqrt{D}}{N_{i+1}},$$

where $M_{i+1} = \pm (P_i P_{i-1} - DQ_i Q_{i-1})$ and $N_{i+1} = \pm (P_{i-1}^2 - DQ_{i-1}^2)$. Since, the continued fraction of \sqrt{D} is purely periodic of length $m, y_i = y_{km+i}$, for $1 \le i \le m$ and $k \ge 0$. On comparing the rational and irrational parts, we get that

$$M_i = M_{mk+i}$$
 and $N_i = N_{mk+i}$.

Thus, $P_{i-1}^2 - DQ_{i-1}^2 = P_{mk+(i-1)}^2 - DQ_{mk+(i-1)}^2$, for $1 \le i \le m$ and $k \ge 0$, and we get the first statement. Now suppose $P_i^2 - DQ_i^2 = 1$ so that $N_{i+2} = 1$. Then

$$|y_{i+2}| = |M_{i+2} + 2^l \sqrt{D}| < 1,$$

and hence $-M_{i+2} - 1 < 2^l \sqrt{D} < -M_{i+2} + 1$. Observe that M_i is an odd integer for each *i*. Thus, the above inequality gives that $M_{i+2} = -b$ so that

$$y_{i+2} = 2^l \sqrt{D} - b = y_{mk+1},$$

for $k \ge 0$. Thus, we get i + 2 = mk + 1, equivalently, i = mk - 1. The converse statement is clear from the proof of Theorem 4.1. For the third statement, recall that

$$y_{m-(i+1)} = \frac{\epsilon_{i+2}(P_i + \sqrt{DQ_i})}{P_{i+1} + \sqrt{DQ_{i+1}}}.$$

Now we can write

$$P_{m-(i+2)}^2 - DQ_{m-(i+2)}^2 = (P_{m-(i+2)} + \frac{\epsilon_{i+2}(P_i + \sqrt{D}Q_i)}{P_{i+1} + \sqrt{D}Q_{i+1}}Q_{m-(i+2)})A,$$

where $A = (P_{m-(i+2)} + \sqrt{D}Q_{m-(i+2)})$ and $0 \le i \le \lfloor \frac{m}{2} \rfloor - 1$. Using the value of $y_{m-(i+1)}$ and comparing the rational and irrational terms, we get

$$B(Q_{m-(i+2)}P_{i+1} + Q_{m-(i+3)}P_i) = \pm \epsilon_{i+2}(P_iP_{m-(i+2)} + DQ_iQ_{m-(i+2)})(4.2)$$

$$B(Q_{m-(i+2)}Q_{i+1} + Q_{m-(i+3)}Q_i) = \pm \epsilon_{i+2}(P_iQ_{m-(i+2)} + DQ_iP_{m-(i+2)})(4.3)$$

where $B = (P_{m-(i+2)}^2 - DQ_{m-(i+2)}^2)$. By Equation (4.2) and (4.3),

$$P_{m-(i+2)}^2 - DQ_{m-(i+2)}^2 = \epsilon_{i+2}(P_i^2 - DQ_i^2),$$

and hence

$$|P_{m-(i+2)}^2 - DQ_{m-(i+2)}^2| = |(P_i^2 - DQ_i^2)|.$$

Combining the results of Theorems 4.1, 4.3 and Lemma 4.4, we obtain our main result which can be stated as follows.

Theorem 4.5. If D is a positive integer which is not a perfect square, then

- 1. the Pell equation $X^2 DY^2 = 1$ is always solvable in $\mathbb{Z} \times 2^l \mathbb{Z}$;
- 2. the solution set of $X^2 DY^2 = 1$ is given by

$$\{(P_{mk-1}, Q_{mk-1}) \mid k \in \mathbb{N}\},\$$

where $\frac{P_{mk-1}}{Q_{mk-1}}$ is the (mk-1)-th convergent of the \mathcal{F}_{2^l} -continued fraction of \sqrt{D} with period m.

References

- H. W. Lenstra Jr., Solving the Pell equation, Notices Amer. Math. Soc. 49(2) (2002), 182-192.
- [2] H. W. Lenstra Jr., Solving the Pell equation, Algorithmic Number Theory 44 (2008), 1-24.
- [3] C. Kraaikamp and A. Lopes, The theta Group and the Continued Fraction Expansion with Even Partial Quotients, *Geom. Dedicata* 59 (1996), 293-333.
- [4] S. Kushwaha, Thesis: A Study of Continued Fractions arising from Subgraphs of the Farey Graph, Indian Institute of Technology Delhi, 2017.
- [5] J. L. Lagrange, Additions Aux Éléments d'algébre d'Euler, vol VII, 1938.
- [6] O. Perron, Die Lehre von den Kettenbrüchen, vol I, Springer Fachmedien Wiesbaden GmbH, 1977.
- [7] A. M. Rockett and P. Szusz, *Continued Fractions*, World Scientific Publishing Co. Pte. Ltd., 1992.
- [8] R. Sarma, S. Kushwaha, and, R. Krishnan, Continued Fractions Arising from *F*_{1,2}, J. Number Theory 154 (2015), 179-200.
- [9] F. Schweiger, Continued Fractions with Odd and Even Partial Quotients, Arbeits Berichte Math. Institut Universität Salzburg 4 (1982), 59-70.
- [10] F. Schweiger, On the Approximation by Continued Fractions with Odd and Even Partial Quotients, Arbeits Berichte Math. Institut Universität Salzburg 1(2) (1984), 105-114.
- [11] M. F. Wyman and B. F. Wyman, An essay on continued fractions, Leonhard Euler, Math. Systems Theory 18 (1985), 295-328.