
#A102 INTEGERS 21 (2021)

VALUES OF WEIGHTED DAVENPORT CONSTANTS

Rene Ardila
Department of Mathematics, Grand Valley State University, Allendale, Michigan

ardilar@gvsu.edu

Christine Caples
Department of Mathematics, Southern New Hampshire University,

Manchester, New Hampshire
c.caples@snhu.edu

Helen G. Grundman
Department of Mathematics, Bryn Mawr College, Bryn Mawr, Pennsylvania

grundman@brynmawr.edu

Laura L. Hall-Seelig
Department of Mathematics, Merrimack College, North Andover, Massachusetts

hallseeligl@merrimack.edu

Jill E. Jordan
Department of Mathematics, Houghton College, Houghton, New York

jill.jordan@houghton.edu

Karen T. Kohl
School of Mathematics and Natural Sciences, University of Southern Mississippi,

Long Beach, Mississippi
karen.kohl@usm.edu

Thomas P. Wakefield
Department of Mathematics and Statistics, Youngstown State University,

Youngstown, Ohio
tpwakefield@ysu.edu

Received: 1/5/21, Revised: 8/6/21, Accepted: 10/14/21, Published: 10/25/21

Abstract

For any set A ⊆ Z and finite abelian group G, the weighted Davenport constant of
G with weight A, DA(G), is the smallest positive integer s such that every sequence
over G of length s contains an A-weighted zero-sum subsequence. In this work, we
consider weights of the form A = {1, 2, . . . , r} with various finite abelian groups.
We first establish upper and lower bounds for DA(G) with G an arbitrary finite
abelian group, and we then determine the values of DA(G) for restricted sets of
abelian groups of rank two and finite elementary abelian p-groups.
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1. Introduction

Zero-sum sequences have been a focus of study for over 50 years. (See, for exam-

ple, [15].) The original motivation for this study concerned applications to questions

in the area of nonunique factorization, but additional applications have been devel-

oped, including to problems in Ramsey theory, coding theory, and algebraic number

theory. For historical overviews of the subject, see [6, 9].

The Davenport constant, D(G), of a group G is of broad interest and has been

determined for a wide range of groups. Of particular interest here are the following

two theorems, giving the values of the Davenport constants for all groups that are

the direct sums of two finite cyclic groups, Zh ⊕ Zk, where h | k, and for all finite

abelian p-groups.

Theorem 1 (Olson [14]). Let h, k ∈ Z+ with h | k. Then D(Zh⊕Zk) = h+ k− 1.

Theorem 2 (Olson [13]). Let p be prime and m ∈ Z+. For 1 ≤ i ≤ m, let ei ∈ Z+.

Then D(Zpe1 ⊕ Zpe2 ⊕ · · · ⊕ Zpem ) = 1 +
∑m

i=1(pei − 1).

In this paper, we study a variation of D(G) called the weighted Davenport con-

stant, DA(G), where A is a nonempty subset of Z. For a group of exponent n

(avoiding the trivial case of 0 ∈ A), it suffices to assume that A ⊆ {1, 2, . . . , n− 1}.
For n ≥ 2, the sets A for which the values of DA(Zn) have been determined in-

clude: each one-element subset of Z; {−1, 1}; {1, 2, . . . , n− 1}; the set of quadratic

residues (or nonresidues) modulo n; the set of primitive elements in Zn; the set of

squares of units in Zn; and, for 1 ≤ r ≤ n− 1, {1, 2, . . . , r} [1, 2, 4, 7, 11, 16]. Less

is known about the values of weighted Davenport constants for other groups. We

refer interested readers to [3, 5, 8, 10, 16].

The result most relevant to this work is given by the following theorem.

Theorem 3 (Adhikari, David, Urroz [4]). Let A = {1, 2, . . . , r}, where 1 < r < n.

Then DA(Zn) = dnr e.

In this work, we generalize Theorem 3 to additional abelian groups, in some cases

restricting the values of r. In Section 2, we define terminology and notation used

throughout this work. In Section 3, we present theorems providing initial upper

and lower bounds for the weighted Davenport constant of arbitrary finite abelian

groups. In Section 4, we specialize to groups of rank two, and in Section 5, we

consider finite elementary abelian p-groups.

2. Preliminaries

Let G be an additive finite abelian group. A sequence over G is a finite list of ele-

ments of the group G, with repetitions allowed. As is standard, we write sequences
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using multiplicative notation. So, given n ∈ Z+ and gi ∈ G, for 1 ≤ i ≤ n, we have

a sequence of length n,

S = g1g2 · · · gn =

n∏
i=1

gi.

Since all groups considered in this work are abelian, the order of the terms does not

impact the properties being studied. So, as is standard, we define sequences to be

unordered. For example, g1g2g3 and g2g1g3 represent the same sequence. A subse-

quence of a sequence S is a sequence determined by any subset J ⊆ {1, 2, . . . , n},

T =
∏
i∈J

gi.

A zero-sum sequence is a nonempty sequence over G whose terms sum to the

zero in the group G. For any set A ⊆ Z, an A-weighted zero-sum sequence is a

nonempty sequence over G, g1g2 · · · gn, for which there are corresponding elements

ai ∈ A such that
∑n

i=1 aigi = 0.

The Davenport constant of a group G, D(G), is defined to be the smallest pos-

itive integer s such that every sequence over G of length s contains a zero-sum

subsequence. For a set A ⊆ Z, the weighted Davenport constant of G with weight A,

DA(G), is the smallest positive integer s such that every sequence over G of length

s contains an A-weighted zero-sum subsequence.

It is immediate from the definitions that if A = {1}, then DA(G) = D(G), and

that if A contains any multiple of the exponent of G, then DA(G) = 1.

3. General Theorems

In this section, we present two theorems that apply broadly to weighted Daven-

port constants of finite abelian groups. These theorems will be useful throughout

Sections 4 and 5.

Theorem 4 provides a lower bound for the weighted Davenport constants of a

group G with weight A = {1, 2, . . . , r} for a positive integer r.

Theorem 4. Let G be a finite abelian group, Zn1
⊕ Zn2

⊕ · · · ⊕ Znm
, with m ≥ 1

and, for each i, ni ≥ 2. Let r ∈ Z+ and A = {1, 2, . . . , r}. Then

DA(G) >

m∑
i=1

(⌈ni

r

⌉
− 1
)
.

Proof. By [12, Lemma 3.7], we have

DA(G) ≥ DA(Zn1
) + DA(Zn2

⊕ · · · ⊕ Znm
)− 1.

The theorem then follows from Theorem 3 and a simple induction argument.
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Theorem 5 presents an upper bound for the weighted Davenport constant of a

group G with the same weight A.

Theorem 5. Let G be a finite abelian group and let A = {1, 2, . . . , r} where r ∈ Z+.

Then

DA(G) ≤
⌈
D(G)

r

⌉
.

Proof. Let S = g1g2 · · · gt be an arbitrary sequence over G of length

t =

⌈
D(G)

r

⌉
.

We show that S has an A-weighted zero-sum subsequence.

Since Sr = gr1g
r
2 · · · grt is of length

rt = r

⌈
D(G)

r

⌉
≥ D(G),

Sr has a zero-sum subsequence, say T ′ = gf11 gf22 · · · g
ft
t , where, for each i, 0 ≤ fi ≤ r,

and at least one fi is nonzero.

Taking the sum of the terms of T ′ yields
∑t

i=1 figi = 0. Since, for each i,

fi ∈ A ∪ {0}, this means that the sequence

T =
∏

1≤i≤t
fi 6=0

gi

is an A-weighted zero-sum subsequence of S. Hence the sequence S has an A-

weighted zero-sum subsequence, as required, and therefore

DA(G) ≤
⌈
D(G)

r

⌉
.

4. Finite Abelian Groups of Rank Two

In this section, we fix h and k ∈ Z+ with h | k, and consider groups of the form

G ∼= Zh⊕Zk. We determine the A-weighted Davenport constant of Zh⊕Zk with A =

{1, 2, . . . , r}, under various restrictions on h, k, and r. In particular, in Theorem 7,

we determine DA(G) for all such G with h 6= k, and r ∈ Z+ less than each prime

dividing k. At the end of the section, we consider the special case in which h = k.
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Beginning with Theorem 1 and applying the bounds from Theorems 4 and 5, we

have, for any r ∈ Z+,⌈
h

r

⌉
+

⌈
k

r

⌉
− 2 < DA(Zh ⊕ Zk) ≤

⌈
h + k − 1

r

⌉
. (1)

Using these bounds, we show that there are only two possible values for DA(Zh⊕Zk).

Theorem 6. Let h, k ∈ Z+ with h ≥ 2 and h | k. Let A = {1, 2, . . . , r} where

r ∈ Z+. Then

DA(Zh ⊕ Zk) ∈
{⌈

h

r

⌉
+

⌈
k

r

⌉
− 1,

⌈
h

r

⌉
+

⌈
k

r

⌉}
.

Proof. Using Inequality (1), it suffices to prove that⌈
h + k − 1

r

⌉
≤
⌈
h

r

⌉
+

⌈
k

r

⌉
.

If r = 1, the result is trivial. So we assume that r ≥ 2.

If r | h, then r | k, and⌈
h + k − 1

r

⌉
=

h

r
+

k

r
=

⌈
h

r

⌉
+

⌈
k

r

⌉
.

If r | k and r - h, then⌈
h + k − 1

r

⌉
=

k

r
+

⌈
h− 1

r

⌉
≤
⌈
h

r

⌉
+

⌈
k

r

⌉
.

Thus, we may assume that r - k, and so r - h. Let h = h1r+h2 and k = k1r+k2,

where h1, h2, k1, k2 ∈ Z≥0, and 1 ≤ h2 ≤ r − 1 and 1 ≤ k2 ≤ r − 1. Then⌈
h + k − 1

r

⌉
= h1 + k1 +

⌈
h2 + k2 − 1

r

⌉
≤ h1 + k1 +

⌈
2r − 3

r

⌉
≤ h1 + k1 + 2 =

⌈
h

r

⌉
+

⌈
k

r

⌉
,

as desired.

In the following lemma, we determine the value of DA(Zh ⊕ Zk) under some

specific assumptions on h, k, and r. In Theorem 7, we remove these assumptions

and instead require that h 6= k and that r is less than the smallest prime dividing

k.

Lemma 1. Let h, k ∈ Z+ with h ≥ 2 and h | k. Let A = {1, 2, . . . , r} where r - k.

Let h = h1r + h2 and k = k1r + k2 with 1 ≤ h2 ≤ r − 1 and 1 ≤ k2 ≤ r − 1. If

h2 + k2 ≤ r + 1, then

DA(Zh ⊕ Zk) =

⌈
h + k − 1

r

⌉
=

⌈
h

r

⌉
+

⌈
k

r

⌉
− 1.



INTEGERS: 21 (2021) 6

Proof. Since h2 + k2 ≤ r + 1,

DA(Zh ⊕ Zk) ≤
⌈
h + k − 1

r

⌉
= h1 + k1 +

⌈
h2 + k2 − 1

r

⌉
= h1 + k1 + 1 =

⌈
h

r

⌉
+

⌈
k

r

⌉
− 1.

The lemma now follows from Theorem 6.

We use Lemma 1 to prove the following theorem, which applies to all groups of

the form Zh ⊕ Zk with h | k and h 6= k.

Theorem 7. Let h, k ∈ Z+ with h ≥ 2, h | k, and h 6= k. Let A = {1, 2, . . . , r},
with r ∈ Z+ less than each prime dividing k. Then

DA(Zh ⊕ Zk) =

⌈
h + k − 1

r

⌉
.

Proof. The case where r = 1 is given in Theorem 1, so we may assume that r ≥ 2.

Let h = h1r + h2 and k = k1r + k2, where h1, h2, k1, k2 ∈ Z≥0 and, since r - k,

1 ≤ h2 ≤ r − 1, 1 ≤ k2 ≤ r − 1. The case in which h2 + k2 ≤ r + 1 is given in

Lemma 1.

For the case h2 + k2 ≥ r + 2, we have⌈
h + k − 1

r

⌉
= h1 + k1 +

⌈
h2 + k2 − 1

r

⌉
= h1 + k1 + 2.

By Inequality (1), it suffices to show that there exists a sequence of length h1+k1+1

with no A-weighted zero-sum subsequence.

Let d = h2 +k2 ≥ r+2. Since r is relatively prime to h, there exists some s ∈ Z+

satisfying sh ≡ 1 (mod r) and 1 ≤ s ≤ r − 1. Note that, since h 6= k and h | k,

k ≥ (r+1)h, and so h+k−sh−d+1 ≥ (r−s+2)h−d+1 ≥ 3h−2(r−1)+1 > 0.

Set

S = (1, 0)(1, 1)
h+k−sh−d+1

r (0, 1)
sh−1

r .

Then S is a sequence of length 1 + h+k−d
r = h1 + k1 + 1.

Suppose that S has an A-weighted zero-sum subsequence. Then Sr contains a

zero-sum subsequence, say,

T = (1, 0)a(1, 1)b(0, 1)c,

where a ≤ r, b ≤ h + k − sh− d + 1, c ≤ sh− 1, and not all of a, b, and c are zero.

These bounds imply that, since T is a zero-sum subsequence, b + c = k and

a + b ≡ 0 (mod h). From the former, b ≥ k − sh + 1 and, therefore, k − sh + 1 ≤
a + b ≤ r + h + k − sh− d + 1. Dividing this by h, we find that

k

h
− s +

1

h
≤ a + b

h
≤ 1 +

k

h
− s +

r − d + 1

h
≤ k

h
− s +

h− 1

h
,
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since d ≥ r + 2. This is a contradiction, since a + b is a multiple of h, but there is

no integer between the two bounds. Hence, DA(Zh ⊕ Zk) > h1 + k1 + 1, and so

DA(Zh ⊕ Zk) =

⌈
h + k − 1

r

⌉
,

as desired.

We now focus on the special case where h = k. From Theorem 6, we have that

DA(Zh ⊕ Zh) ∈
{

2

⌈
h

r

⌉
− 1, 2

⌈
h

r

⌉}
,

and from Lemma 1, we have the following.

Corollary 1. Let h ≥ 2 and A = {1, 2, . . . , r} where r - h. Let h = h1r + h2 with

1 ≤ h2 ≤ r − 1. If 2h2 ≤ r + 1, then

DA(Zh ⊕ Zh) = 2

⌈
h

r

⌉
− 1.

Although we have been unable to extend Corollary 1 to cover the case where

2h2 ≥ r + 2, we have implemented a Sage computer program to examine many

examples with h < 40. The program checks all possible forms of sequences in order

to verify the value of DA(Zh ⊕ Zh) for many, but certainly not all, such examples.

Supported by these results, we offer the following conjecture.

Conjecture 1. Let h ≥ 2 and A = {1, 2, . . . , r} where r - h. Then

DA(Zh ⊕ Zh) = 2

⌈
h

r

⌉
− 1.

5. Finite Elementary Abelian p-Groups

We now consider the case of finite abelian p-groups and, in particular, finite elemen-

tary abelian p-groups. We note some overlap between the following and relevant

results in [16]. In particular, the upper bound in Inequality (2) could instead be

derived from [16, Theorem 1], and [16, Corollary 1.2(a)(f)] are special cases of The-

orem 8, below, as described in Corollary 3. (We note that [16, Corollary 1.2(g)] is

incorrect without the hypotheses of Theorem 8.)

By Theorems 2, 4, and 5, we have that for

G = Zpe1 ⊕ Zpe2 ⊕ · · · ⊕ Zpem ,
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with m and ei ∈ Z+,

m∑
i=1

(⌈
pei

r

⌉
− 1

)
< DA(G) ≤

⌈
1 +

∑m
i=1(pei − 1)

r

⌉
. (2)

For finite elementary abelian p-groups, we have the following corollary.

Corollary 2. Let p be a prime, let

G =

m⊕
i=1

Zp,

with m ∈ Z+, and let A = {1, 2, . . . , r}, with r ∈ Z+. Then

m
(⌈p

r

⌉
− 1
)
< DA(G) ≤

⌈
1 + m(p− 1)

r

⌉
.

Clearly, when the upper bound in Corollary 2 is one more than the lower bound,

the value of the weighted Davenport constant is determined. This leads to the

following.

Theorem 8. Let p be a prime, let

G =

m⊕
i=1

Zp,

with m ∈ Z+, and let A = {1, 2, . . . , r}, with r ∈ Z+. Let p1, p2 ∈ Z with 0 ≤ p2 ≤
r − 1 and p = p1r + p2. If m(p2 − 1) ≤ r − 1, then

DA(G) = 1 + m
(⌈p

r

⌉
− 1
)
.

Proof. If r = 1, then the result is immediate from Theorem 2. If r ≥ p, then p ∈ A,

and so DA(G) = 1, proving the result. Thus, we can assume that 1 < r < p and,

therefore, p1 ≥ 1. Since p is prime, it follows that p2 ≥ 1.

Assume that m(p2 − 1) ≤ r − 1. Using Corollary 2, we have

DA(G) ≤
⌈

1 + m(p− 1)

r

⌉
= mp1 +

⌈
mp2 −m + 1

r

⌉
= mp1 + 1

= m
(⌈p

r

⌉
− 1
)

+ 1 < DA(G) + 1.

Hence, since each expression is an integer, the initial inequality is an equality,

completing the proof.

The following is immediate.
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Corollary 3. Let p be a prime, let

G =

m⊕
i=1

Zp,

with m ∈ Z+, and let A = {1, 2, . . . , r}, with r ∈ Z+.

1. If r = p− 1, then DA(G) = 1 + m.

2. If r = (p− 1)/2, then DA(G) = 1 + 2m.

3. If p ≡ 1 (mod r), then DA(G) = 1 + m(p− 1)/r.

Although we have completely determined DA(G) for many cases of finite elemen-

tary abelian p-groups, there remains the case m(p2 − 1) ≥ r for future study. The

search for a general formula continues.

Open Problem. Let p be a prime, let

G =

m⊕
i=1

Zp,

with m ∈ Z+, and let A = {1, 2, . . . , r}, with r ∈ Z+. Is there a general formula for

DA(G) that holds in all cases, including when m(p2 − 1) ≥ r?
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