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Abstract

We construct polar harmonic Maaß forms of non-positive integral weight utilizing

a technique based on holomorphic projection. This generalizes recent work due

to Mertens, Ono, Rolen, and due to Males, Rolen, and the author to higher even

dimensions, except for dimension 2. We provide explicit examples in dimension 4,

6, 8, and 10.

1. Introduction - One-dimensional Case

In a recent paper [2], Mertens, Ono, and Rolen defined and investigated a new type

of mock modular form, whose coefficients are given by a small divisor function. We

summarize their approach. As usual, we let τ = u + iv ∈ H and q := e2πiτ . Let

P`
(
n
d , d
)
∈ Q[X,Y ], and ψ, χ be Dirichlet characters of moduli Mψ, Mχ respec-

tively. We denote by χ−4 the unique odd Dirichlet character of modulus 4, and we

define

Dn :=
{
d | n : 1 ≤ d ≤ n

d
and d ≡ n

d
(mod 2)

}
,

σsm
` (n) :=

∑
d∈Dn

χ

( n
d − d

2

)
ψ

( n
d + d

2

)
P`

(n
d
, d
)
.

Additionally, we require Shimura’s theta-function

θψ(τ) :=
1

2

∑
n∈Z

ψ(n)nλψqn
2

, λψ :=
1− ψ(−1)

2
,

and recall that

θψ ∈

{
M 1

2
(Γ0(4M2

ψ), ψ) if λψ = 0,

S 3
2
(Γ0(4M2

ψ), ψ · χ−4) if λψ = 1.
(1)
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Furthermore, we recall the definition of a harmonic Maaß form1.

Definition 1.1. Let k ∈ 1
2Z, and choose N ∈ N such that 4 | N whenever k 6∈ Z.

Let φ be a Dirichlet character of modulus N .

(i) A weight k harmonic Maaß form on a subgroup Γ0(N) with Nebentypus φ is

any smooth function f : H→ C satisfying the following three properties:

(a) For all γ =
(
a b
c d

)
∈ Γ0(N) and all τ ∈ H we have

f(τ) = (f |kγ) (τ) :=

{
φ(d)−1(cτ + d)−kf(γτ) if k ∈ Z,
φ(d)−1

(
c
d

)
ε2kd (cτ + d)−kf(γτ) if k ∈ 1

2 + Z,

where
(
c
d

)
denotes the extended Legendre symbol, and

εd :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

for odd integers d.

(b) The function f is harmonic with respect to the weight k hyperbolic Lapla-

cian on H, especially

0 = ∆kf :=

(
−v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

))
f.

(c) The function f has at most linear exponential growth at all cusps.

(ii) A polar harmonic Maaß form is a harmonic Maaß form with isolated poles on

the upper half plane.

Then the main result of [2] reads as follows.

Theorem 1.2 ([2, Theorem 1.1]). Suppose that ψ = χ 6= 1, and that P2

(
n
d , d
)

= d.

Denote the corresponding small divisor function by σsm
1 , and by E2 the Eisenstein

series

E2(τ) := 1− 24
∑
n≥1

(∑
d|n

d
)
qn.

Define

E+(τ) :=
1

θψ(τ)

αψE2(τ) +
∑
n≥1

σsm
1 (n)qn

 ,

E−(τ) := (−1)λψ
(2π)λψ−

1
2 i

8Γ
(
1
2 + λψ

) ∫ i∞

−τ

θψ(w)

(−i(w + τ))
3
2−λψ

dw,

1Be aware that there is no overall convention which terminology encodes which growth condi-
tion.
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where αψ is an implicit constant depending only on ψ to ensure a certain growth

condition. Then the function E+ + E− is a polar harmonic Maaß form of weight
3
2 − λψ on Γ0

(
4M2

ψ

)
with Nebentypus ψ · χλψ−4.

In analogy to the classical divisor sums σk(n), Mertens, Ono, and Rolen called

their function E+ a mock modular Eisenstein series with Nebentypus. Furthermore,

they related their result to partition functions for special choices of ψ, and proved

a p-adic property of E+, compare [2, Corollary 1.3, Theorem 1.4].

In [1], Males, Rolen, and the author discovered another example of a polar har-

monic Maaß form adapting the construction from [2].

Theorem 1.3 ([1, Theorem 1.1, Theorem 1.3]). Suppose that ψ is odd, χ is even,

and that P2

(
n
d , d
)

= d2. Denote the corresponding small divisor function by σsm
2 ,

and define

F+(τ) :=
1

θψ(τ)
·

{∑
n≥1 σ

sm
2 (n)qn if χ 6= 1,

1
2

∑
n≥1 ψ(n)n2qn

2

+
∑
n≥1 σ

sm
2 (n)qn if χ = 1,

F−(τ) :=
i

π
√

2

∫ i∞

−τ

θχ(w)

(−i(w + τ))
3
2

dw.

(i) If χ 6= 1 then the function F+ +F− is a polar harmonic Maaß form of weight
3
2 on Γ0

(
4M2

χ

)
∩ Γ0

(
4M2

ψ

)
with Nebentypus χ · (ψ · χ−4)

−1
.

(ii) If χ = 1 then the function F+ +F− is a polar harmonic Maaß form of weight
3
2 on Γ0

(
4M2

ψ

)
with Nebentypus (ψ · χ−4)

−1
.

Moreover, if ψ = χ−4, χ = 1 , Males, Rolen and the author related F+ to Hur-

witz class numbers, and proved a p-adic property of F+ in both cases of χ as well,

compare [1, Corollary 1.6, Theorem 1.8].

The proof of Theorem 1.2 and 1.3 is performed in three main steps. To describe

them, we let

Γ(s, z) :=

∫ ∞
z

ts−1e−tdt,

be the incomplete Gamma function, which is defined for Re(s) > 0 and z ∈ C. It

can be analytically continued in s via the functional equation

Γ(s+ 1, z) = sΓ(s, z) + zse−z,

and has the asymptotic behavior

Γ(s, v) ∼ vs−1e−v, |v| → ∞



INTEGERS: 21 (2021) 4

for v ∈ R. In addition, let

ξκ := 2ivκ
∂

∂τ
= ivκ

(
∂

∂u
+ i

∂

∂v

)
be the Bruinier–Funke operator of weight κ, and

πκf(τ) :=
(κ− 1)(2i)κ

4π

∫
H

f (x+ iy) yk

(τ − x+ iy)
κ
dxdy

y2
,

be the weight κ holomorphic projection operator, whenever f is translation invariant,

and the integral converges absolutely.

Moreover, we let

g(τ) :=
∑
n≥1

β (n) qn, f+(τ) :=
1

g(τ)

∑
n≥1

σsm
` (n)qn,

f−(τ) :=
∑
m≥1

α (m)mkf−1Γ (1− kf , 4πmv) q−m, f(τ) := (f+ + f−)(τ).

Then we proceed as follows.

(I) Show that

πκ (fg) (τ) = 0.

To this end, we rewrite the definition of the given non-holomorphic part (see

[1, Lemma 4.1] for instance), and next we utilize the following result. Here and

throughout, P(a,b)
r denotes the Jacobi polynomial of degree r and parameter

a, b, which we introduce in Section 4.1.

Proposition 1.4 ([1, Proposition 1.7, Corollary 4.2]). Let kf ∈ R \ N, kg ∈
R \ (−N), such that κ := kf + kg ∈ Z≥2. Let α(m), β(n) be two complex

sequences, and define the functions f , g as above. Suppose that

(a) the function (fg)(r + iv) grows at most polynomially as v ↘ 0, where

r ∈ Q, and that

(b) the function (fg)(iv) grows at most polynomially as v ↗∞.

Then the weight κ holomorphic projection of f−g is given by

πκ
(
f−g

)
(τ) = −Γ(1− kf )

∑
m≥1

∑
n−m≥1

α (m)β (n)

×
(
nkf−1P(1−kf ,1−κ)

κ−2

(
1− 2

m

n

)
−mkf−1

)
qn−m.

Furthermore, it holds that πκ (f+g) (τ) = (f+g) (τ).
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In addition, the holomorphic part f+g has to be rewritten as well, see the

proof of Theorem 1.2 in [1, Section 4].

(II) We compute

ξκ (fg) (τ) = −(4π)1−kf vkg

∑
m≥1

α(m)qm

 g(τ),

and choose the coefficients α (m), β (n), such that this function is modular of

weight 2− κ.

(III) Conclude that fg is modular of weight κ by the following result.

Proposition 1.5 ([2, Proposition 2.3]). Let h : H → C be a translation in-

variant function such that |h(τ)|vδ is bounded on H for some δ > 0. If the

weight k holomorphic projection of h vanishes identically for some k > δ + 1

and ξkh is modular of weight 2− k for some subgroup Γ < SL2(Z), then h is

modular of weight k for Γ.

The subtle growth conditions are required to include the case π2, and are

clearly satisfied if we deal with higher weight holomorphic projections, in

which case the integral defining πk converges absolutely.

Lastly, verify harmonicity and the growth property towards the cusps required

by the definition of a harmonic Maaß form.

Finally, we mention one remark from [1, p. 5], which states that there are more

choices of half integral parameters kf , kg, which lead to other choices of polynomials

P`
(
n
d , d
)

in the definition of σsm
` , such that step (I) above works.

We refer to the first two sections of [1] for more details, and for overall prelimi-

naries introducing the aforementioned objects together with their key properties.

2. Statement of the Result

We define the function f` in equation (2) based on the objects2 introduced at the

beginning of Section 3. We apply the outlined steps from Section 1 to f`, which

leads to several intermediate results during Section 3. Combining these results, we

arrive at the following theorem.

2In short, we choose ` first, which leads to the weights kf` , and κ. In turn, this defines the
polynomial P` via Corollay 3.2, which yields σsm

` eventually.
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Theorem 2.1. Let ψ be an odd Dirichlet character, and χ be an even and non-

trivial Dirichlet character. Let ` ∈ 2N + 2. Define P` as indicated in Corollay 3.2,

obtaining the corresponding small divisor function σsm
` . Then the resulting function

f` is a polar harmonic Maaß form of weight 2− `
2 ∈ −N0 on Γ0(4M2

χ) ∩ Γ0(4M2
ψ)

with Nebentypus χ ·(ψ · χ−4)
−1

. Its shadow is given by a non-zero constant multiple

of θ`χ.

In other words, the technique presented in [1], [2] applies straightforward in

higher even dimensions, except for dimension two. We plan to find and investigate

applications of f` to other areas of number theory, such as combinatorics, as in the

one–dimensional case [2, Corollary 1.3].

3. Multidimensional Case

We fix ` ∈ N throughout. Let ~n = (n1, . . . , n`) ∈ N`. We recall the usual multi-index

conventions

~n! := n1n2 · · ·n`, |~n| := n1 + . . .+ n`, ‖~n‖ :=
√
n21 + . . .+ n2` .

We let ψ 6= 1, and consider

θψ(τ)` =
∑
~n∈N`

ψ (~n!) (~n!)
λψ q‖~n‖

2

.

Moreover, we relax our assumption to P` ∈ Q(X,Y ), and we let

D~n :=
`×
j=1

Dnj

=

{
~d ∈ N` : dj | nj , 1 ≤ dj ≤

nj
dj

, and dj ≡
nj
dj

(mod 2) ∀ 1 ≤ j ≤ `
}

σsm
` (~n) :=

∑
~d∈D~n

∏̀
j=1

χ

( nj
dj
− dj
2

)
ψ

( nj
dj

+ dj

2

)( nj
dj
− dj
2

)λχ ( nj
dj

+ dj

2

)λψ
× P`

(
‖(nj/dj)1≤j≤`‖

2, ‖~d‖2
)
.

Consequently,

f+` (τ) :=
1

θψ(τ)`

∑
~n∈N`

σsm
` (~n) q|~n|,

f−` (τ) :=
1

Γ (1− kf`)
∑
~m∈N`

χ (~m!) (~m!)
λχ ‖~m‖2(kf`−1)Γ(1− kf` , 4π‖~m‖2v)q−‖~m‖

2

,

f`(τ) := (f+` + f−` )(τ). (2)
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We insert this setting into the constructive method described in the first section,

and devote a subsection to each step.

3.1. First Step

We verify that the first step continues to hold due to exactly the same proofs as in

[1, Section 3]. We have to be careful regarding the summation conditions, which

are determined one step after the application of the Lipschitz summantion formula.

Explicitly, we obtain

πκ
(
f−` θ

`
ψ

)
(τ) = −

∑
r≥1

∑
~m,~n∈N`

‖~n‖2−‖~m‖2=r

χ (~m!) (~m!)
λχ ψ (~n!) (~n!)

λψ

×
(
‖~n‖2(kf`−1)P(1−kf` ,1−κ)

κ−2

(
1− 2

‖~m‖2

‖~n‖2

)
− ‖~m‖2(kf`−1)

)
qr.

To match this expression with f+` g, we rewrite the small divisor function. We

substitute

~a :=

( n1

d1
+ d1

2
, . . . ,

n`
d`

+ d`

2

)
, ~b :=

( n1

d1
− d1
2

, . . . ,

n`
d`
− d`
2

)
,

from which we deduce

~d = ~a−~b, ~a+~b = (nj/dj)1≤j≤` , |n| = ‖~a‖2 − ‖~b‖2.

Thus,

f+` θ
`
ψ(τ) =

∑
~b∈N`

∑
~a−~b∈N`

χ
(
~b!
)(
~b!
)λχ

ψ (~a!) (~a!)
λψ P`

(
‖~a+~b‖, ‖~a−~b‖

)
q‖~a‖

2−‖~b‖2 .

We transform the summation condition.

Lemma 3.1. We have

f+` θ
`
ψ(τ) =

∑
r≥1

∑
~m,~n∈N`

‖~n‖2−‖~m‖2=r

χ (~m!) (~m!)
λχ ψ (~n!) (~n!)

λψ P` (‖~m+ ~n‖, ‖~m− ~n‖) qr.

Proof. Note that if ~a−~b ∈ N`, then

‖~a‖2 − ‖~b‖2 =
∑̀
j=1

(aj + bj)(aj − bj) ≥ 1.

Conversely, suppose ‖~a‖2 − ‖~b‖2 ≥ 1. Recall that nj = (aj + bj)(aj − bj) ∈ N
for every 1 ≤ j ≤ ` by definition of f+, and aj + bj is always positive. Thus,

(aj − bj) ≥ 1 for every 1 ≤ j ≤ `, which proves the lemma.
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Hence, we achieve the following result by virtue of Proposition 1.4.

Corollary 3.2. If P` is defined by the condition

‖~b‖2(kf`−1)P(1−kf` ,1−κ)
κ−2

(
1− 2

‖~a‖2

‖~b‖2

)
− ‖~a‖2(kf`−1) = P`

(
‖~a+~b‖, ‖~a−~b‖

)
,

then we have πκ

(
f`θ

`
ψ

)
(τ) = 0.

3.2. Second Step

We summarize the result of a standard calcualtion.

Lemma 3.3. We have

ξκ
(
f`θ

`
ψ

)
(τ) = − (4π)1−kf`

Γ (1− kf`)
v
k
θ`
ψ θχ(τ)`

|θψ(τ)|2`

θψ(τ)`

away from the zeros of θψ.

Proof. By definition and linearity of ξκ, it holds that

ξκ
(
f−` θ

`
ψ

)
(τ) = (ξκf

−
` )(τ) · θψ(τ)` + f−` (τ)

(
ξκθ

`
ψ

)
(τ) = (ξκf

−
` )(τ) · θψ(τ)`,

where the last step uses that θ`ψ is holomorphic. Next, one computes3

(ξκf
−
` )(τ) = − (4π)1−kf`

Γ (1− kf`)
v
k
θ`
ψ

∑
~m∈N`

χ (~m!) (~m!)
λχ q‖~m‖

2

,

from which we infer the claim.

Combining the previous result with the modularity of Shimura’s theta function

(see equation (1)), and the fact that

Im (γτ) =
v

|cτ + d|2

for every γ =
(
a b
c d

)
∈ SL2(Z) and every τ ∈ H, we obtain the following corollary.

Corollary 3.4. If χ 6= 1 then ξκ

(
f`θ

`
ψ

)
is modular of weight

`

(
1

2
+ λχ

)
− `
(

1

2
+ λψ

)
on Γ0(4M2

χ) ∩ Γ0(4M2
ψ) with Nebentypus χ · (ψ · χ−4)

−1
.

Thus, we stipulate ψ to be odd, and χ to be even and non-trivial, getting

κ = 2− (−`) ∈ Z≥2, kf` = 2− `

2
,

as desired.
3Compare the proof of [1, Lemma 2.12] for some intermediate steps.
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3.3. Third Step

We verify the two remaining conditions of a polar harmonic Maaß form.

Lemma 3.5. Let τ ∈ H with θψ(τ) 6= 0. Then, the function f` = f+` + f−` satisfies

0 = ∆kf`
f`,

and has the required growth property of a polar harmonic Maaß form.

Proof. The first assertion follows by construction of f`. Since θ`ψ is of exponential

decay towards all cusps, the function f+` admits at most linear exponential growth

towards all cusps. In particular, the cusp i∞ is a removable singularity of f+, be-

cause both numerator and denominator vanish at i∞ of order `. In addition, the

function f−` decays exponentially towards i∞, since the incomplete Gamma func-

tion does (and it dominates the powers of q). The transformation behaviour of θχ
under the full modular group SL2(Z) implies that f−` is of at most moderate growth

towards all cusps. Indeed, choosing suitable scaling matrices yields additional fac-

tors of polynomial growth inside the Fourier expansion of f−` . This establishes the

second assertion.

3.4. Conclusion

We justify the application of Proposition 1.4, which proves Theorem 2.1.

Proof of Theorem 2.1. By definition, the Fourier coefficients of θ`ψf
+
` expanded at

i∞ are of moderate growth, whence the growth of θ`ψf
+
` towards any cusp has

to be moderate. Consequently, the growth of θ`ψf` towards any cusp is moderate

according to the proof of Lemma 3.5. Thus, the assumptions in Proposition 1.4 are

satisfied by θ`ψf`. Performing the outlined steps concludes the proof of Theorem

2.1.

4. Numerical Examples

4.1. An Interlude on Jacobi Polynomials

The Jacobi polynomials P(a,b)
r admit a representation in terms of of Gauß’ hyper-

geometric function 2F1, namely

P(a,b)
r (z) =

Γ(a+ r + 1)

r! Γ(a+ 1)
2F1

(
−r, a+ b+ r + 1, a+ 1,

1− z
2

)
,

for any r ∈ N. This yields many identities between Jacobi polynomials of “neigh-

boring” degree r and parameters a, b, that is r ∈ {r−1, r, r+1} and analogously for

a, b. For instance, one could use Gauß contiguous relations to obtain such identities.
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In particular, this leads to a recursive characterization of the Jacobi polynomials.

More precisely, we have

P(a,b)
0 (z) = 1, P(a,b)

1 (z) =
1

2
(a− b+ (a+ b+ 2)z) ,

c1(j)P(a,b)
j+1 (z) = (c2(j) + c3(j)z)P(a,b)

j (z)− c4(j)P(a,b)
j−1 (z),

where

c1(j) = 2(j + 1)(j + a+ b+ 1)(2j + a+ b), c2(j) = (2j + a+ b+ 1)
(
a2 − b2

)
,

c3(j) = (2j + a+ b)(2j + a+ b+ 1)(2j + a+ b+ 2),

c4(j) = 2(j + a)(j + b)(2j + a+ b+ 2).

4.2. Explicit Examples

Note that the parallelogram law and the fact |n| = ‖~a+~b‖‖~a−~b‖ yield

‖~a‖2 =
‖~a+~b‖2 + ‖~a−~b‖2

4
+
‖~a+~b‖‖~a−~b‖

2
,

‖~b‖2 =
‖~a+~b‖2 + ‖~a−~b‖2

4
− ‖~a+~b‖‖~a−~b‖

2
.

The case ` = 2 has to be excluded since kf` 6= 1.

4.2.1. Higher Even Dimensions

On one hand, if ` = 4 for instance, we have

κ = 6, kf4 = 0,
P(1,−5)
4

(
1− 2‖~a‖

2

‖~b‖2

)
‖~b‖2

− 1

‖~a‖2
=

(
‖~a‖2 − ‖~b‖2

)5
‖~a‖2‖~b‖10

,

and thus, we choose the function P4 as

P4

(
‖~a+~b‖, ‖~a−~b‖

)
=

‖~a−~b‖5‖~a+~b‖5(
‖~a+~b‖2+‖~a−~b‖2

4 + ‖~a+~b‖‖~a−~b‖
2

)(
‖~a+~b‖2+‖~a−~b‖2

4 − ‖~a+~b‖‖~a−~b‖2

)5 .
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Similarly, we compute (with x := ‖~a‖, y := ‖~b‖)

y−4 P(2,−7)
6

(
1− 2

x2

y2

)
− x−4 =

(
x2 − y2

)7
x4y16

(
7x2 + y2

)
,

y−6 P(3,−9)
8

(
1− 2

x2

y2

)
− x−6 =

(
x2 − y2

)9
x6y22

(
45x4 + 9x2y2 + y4

)
,

y−8 P(4,−11)
10

(
1− 2

x2

y2

)
− x−8 =

(
x2 − y2

)11
x8y28

(
286x6 + 66x4y2 + 11x2y4 + y6

)
,

from which we read off the corresponding definitions of P`.

Because of the aforementioned recursive nature of the Jacobi polynomials, the

indicated pattern continues to hold for every even dimension ` ∈ 2N+2 by induction.

4.2.2. Higher Odd Dimensions

On the other hand, the case of dimension ` ∈ 2Z≥2 − 1 produces more complicated

functions P`. For example, if ` = 3 we have

κ = 5, kf3 =
1

2
,

P
( 1

2
,−4)

3

(
1−2
‖~a‖2

‖~b‖2

)
‖~b‖

− 1
‖~a‖=−

(‖~a‖−‖~b‖)4(5‖~a‖3+20‖~a‖2‖~b‖+29‖~a‖‖~b‖2+16‖~b‖3)
16‖~a‖‖~b‖7

,

and if ` = 5, we have

κ = 7, kf5 = −1

2
,

P
( 3

2
,−6)

5

(
1−2
‖~a‖2

‖~b‖2

)
‖~b‖3

− 1
‖~a‖3

=
−693‖~a‖13+4095‖~a‖11‖~b‖2−10010‖~a‖9‖~b‖4+12870‖~a‖7‖~b‖6−9009‖~a‖5‖~b‖8+3003‖~a‖3‖~b‖10−256‖~b‖13

256‖~a‖3‖~b‖13
.

We observe that we are left with odd powers of ‖~a‖, ‖~b‖ in both odd-dimensional

cases. If we keep the dependence of P` on ‖~a ± ~b‖, which ultimately justifies the

terminology “divisor function”, then odd powers obstruct a definition of P` via the

parallelogram law in these cases of `. Once more, an inductive argument via the

recursive characterization of the Jacobi polynomials extends this phenomenon to

all odd dimensions ` ∈ 2N + 1.
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