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Abstract

H. Furstenberg and E. Glasner proved that for an arbitrary k ∈ N, any piecewise
syndetic set of integers contains a k-term arithmetic progression and the collection
of such progressions is itself piecewise syndetic in Z. The above result was extended
for arbitrary semigroups by V. Bergelson and N. Hindman, using the algebra of the
Stone-Čech compactification of discrete semigroups. In a recent work, N. Hindman
and D. Strauss proved a more general result on the set of natural numbers. They
provide an abundance of various types of large sets in correspondence to each image
partition regular matrix. Recently they have further extended those results in more
abstract settings. In these works they have used the complex machinery of the
algebra of the Stone-Čech compactification of discrete semigroups. In this work we
will investigate the abundance of the arithmetic progressions in quasi-central sets,
J-sets and C-sets in an elementary way.

1. Introduction

A subset S of Z is called syndetic if there exists r ∈ N such that
⋃r

i=1(S−i) = Z, and

is called thick if it contains arbitrarily large intervals. Sets which can be expressed

as the intersection of thick and syndetic sets are called piecewise syndetic. Let

(S,+) be a semigroup. For any A ⊆ S and t ∈ S, let −t + A denote the set

{s ∈ S : t + s ∈ A}. Now we can state the definitions of large sets for general

semigroups. For a countable semigroup (S,+), a set A ⊆ S is called syndetic in

(S,+) if there exists a finite set F ⊂ S such that
⋃

t∈F −t + A = S, and is called
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thick if for every finite set E ⊂ S, there exists an element x ∈ S such that E+x ⊂ A.

A set A ⊆ S is a piecewise syndetic set if there exists a finite set F ⊂ S such that⋃
t∈F −t + A is thick in S [8, Definition 4.38, page 101]. It can be proved that a

piecewise syndetic set can be interpreted as the intersection of a thick set and a

syndetic set [8, Theorem 4.49, page 105].

One of the famous Ramsey theoretic results is van der Waerden’s Theorem [11],

which states that at least one cell of any finite partition {C1, C2, . . . , Cr} of N, con-

tains arithmetic progressions of arbitrary length. Since arithmetic progressions are

invariant under shifts, it follows that every piecewise syndetic set contains arbitrar-

ily long arithmetic progressions. The following theorem was proved algebraically by

H. Furstenberg and E. Glasner in [6], and combinatorially by M. Beigelböck in [1].

Theorem 1.1. Let k ∈ N and assume that S ⊆ Z is piecewise syndetic. Then

{(a, d) : {a, a+ d, . . . , a+ kd} ⊂ S} is piecewise syndetic in Z2.

The technique of the above theorem can be lifted easily to the set of natural

numbers N to prove the following theorem; hence we omit the proof.

Theorem 1.2. Let k ∈ N and assume that S ⊆ N is piecewise syndetic. Then

{(a, d) : {a, a+ d, . . . , a+ kd} ⊂ S} is piecewise syndetic in N2.

In [9], N. Hindman and D. Strauss recently showed that if A is an u× v matrix

on N which is image partition regular over N, and Ψ is a large subset of N, then

the set {x ∈ Nv : Ax ∈ Cu}, where C is a Ψ-set, is itself a Ψ set in Nv. In [10],

they have the above result over countable commutative semigroups. Their proof is

completely algebraic in nature. In this article, we consider the study of arithmetic

progressions and this is the case in which A is a (l + 1)× 2 matrix.

Let us now recall some prerequisites of the algebra of the Stone-Čech compacti-

fication of discrete semigroups. For details, the readers are invited to read [8].

Let (S, ·) be a discrete semigroup and βS be the set of ultrafilters on S, identifying

the principal ultrafilters with the points of S and thus pretending that S ⊆ βS.

Given A ⊆ S let us define

A = {p ∈ βS : A ∈ p}.

Then the set {A : A ⊆ S} is a basis for a topology on βS. The operation · on S

can be extended to the Stone-Čech compactification βS of S so that (βS, ·) is a

compact right topological semigroup (meaning that for any p ∈ βS, the function

ρp : βS → βS defined by ρp(q) = q · p, is continuous) with S contained in its

topological center (meaning that for any x ∈ S, the function λx : βS → βS defined

by λx(q) = x · q, is continuous). Given p, q ∈ βS and A ⊆ S, A ∈ p · q if and only

if {x ∈ S : x−1A ∈ q} ∈ p, where x−1A = {y ∈ S : x · y ∈ A}. Also note that every

compact right topological semigroup contains idempotent elements.
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A nonempty subset I of a semigroup (S, ·) is called a left ideal of S if S · I ⊂ I,

a right ideal of S if I · S ⊂ I, and a two-sided ideal (or simply an ideal) of S if it

is both a left and right ideal. A minimal left ideal is the left ideal that does not

contain any proper left ideal. Similarly, we can define minimal right ideals and the

smallest ideal.

Any compact Hausdorff right topological semigroup (S, ·) has the smallest two-

sided ideal

K(S) =
⋃
{L : L is a minimal left ideal of S}

=
⋃
{R : R is a minimal right ideal of S}.

Given a minimal left ideal L and a minimal right ideal R, L ∩ R is a group,

and in particular contains an idempotent. An idempotent in K(S) is called a

minimal idempotent. If p and q are idempotents in S, we write p ≤ q if and only if

p · q = q · p = p. An idempotent is minimal with respect to this relation if and only

if it is a member of the smallest ideal.

Definition 1.3. A set A ⊆ S in a semigroup (S, ·) is said to be an IP-set if and

only if there exists an infinite set X such that all the finite products of distinct

elements from X belong to A, where the product is taken in an increasing order of

indices.

It can be proved that A is IP-set if and only if A belongs to some idempotent of

βS. A set E ⊂ S is called an IP?-set if and only if it meets non-trivially with every

IP-set. One can show that E is an IP?-set if and only if E is contained in every

idempotent in βS.

The notion of central set was introduced by H. Furstenberg in [5] in terms of

topological dynamics and the definition makes sense in any semigroup. In [2], that

definition was shown to be equivalent to a much simpler algebraic characterization.

It is this algebraic characterization which we take as the definition for all semigroups.

Definition 1.4. Let (S, ·) be a semigroup and let A ⊆ S. Then A is central if and

only if there is some minimal idempotent p ∈ βS with p ∈ A.

Note that, the two-sided ideal K(βS) is not closed in βS and any member of the

idempotents in the closure of K(βS), say cl(K(βS), is called quasi-central set.

Definition 1.5 ([7]). Let (S, ·) be a semigroup and let A ⊆ S. Then A is quasi-

central if and only if there is some idempotent p ∈ cl(K(βS)) with p ∈ A.

For countable commutative semigroups, quasi-central sets have a nice combina-

torial characterization as follows.

Theorem 1.6 ([7]). For a countable semigroup (S, ·), A ⊆ S is quasi-central if and

only if there is a decreasing sequence 〈Cn〉∞n=1 of subsets of A such that,



INTEGERS: 21 (2021) 4

(1) for each n ∈ N, and each x ∈ Cn, there exists m ∈ N such that Cm ⊆ x−1Cn

and

(2) for each n ∈ N, Cn is piecewise syndetic.

The importance of the quasi-central sets is that, they are very close to central

sets and they enjoy a close combinatorial property of those central sets. For any

set X, define Pf (X) = {A ⊆ X : |A| <∞}. The following theorem is called the

Central Sets Theorem for countable commutative semigroups.

Theorem 1.7 ([8, Theorem 14.11]). Let (S,+) be a discrete commutative semi-

group. Let A be a central set in S, and for each l ∈ N, let 〈yl,n〉∞n=1 be a sequence

in S. There exist a sequence 〈an〉∞n=1 in S and a sequence 〈Hn〉∞n=1 in Pf (N) such

that maxHn < minHn+1 for each n ∈ N and such that for each f ∈ Φ,

FS

〈an +
∑
t∈Hn

yf(n),t

〉∞
n=1

 ⊆ A,
where Φ is the set of all functions f : N→ N for which f (n) ≤ n for all n ∈ N.

A strengthening of the above Central Sets Theorem was proved by D. De, N.

Hindman and D. Strauss in [4]. The following version for commutative semigroups

is simpler to state.

Theorem 1.8. Let (S,+) be a commutative semigroup. Let C be a central subset

of S. Then there exist functions α : Pf

(
SN) → S and H : Pf

(
SN) → Pf (N) such

that:

1. if F,G ∈ Pf

(
SN) and F ( G, then maxH (F ) < minH (G);

2. whenever r ∈ N, G1, G2, ..., Gr ∈ Pf

(
SN) such that G1 ( G2 ( ..... ( Gr and

for each i ∈ {1, 2, ...., r}, fi ∈ Gi one has

r∑
i=1

α (Gi) +
∑

t∈H(Gi)

fi (t)

 ∈ C.
Another important set, which is known as a J-set, is defined as follows.

Definition 1.9. Let (S,+) be a commutative semigroup. A set A ⊆ S is a J-set if

and only if whenever F ∈ Pf

(
SN), there exist a ∈ S and H ∈ Pf (N) such that for

each f ∈ F, a+
∑

t∈H f(t) ∈ A.

It can be shown that a piecewise syndetic set is a J-set [8, Theorem 14.8.3, page

336]. The set J(S) = {p ∈ βS : for allA ∈ p,A is a J-set} is a compact two-sided

ideal of βS.
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Definition 1.10. A ⊆ S is a C-set if and only if there exists an idempotent p ∈ J(S)

such that A ∈ p.

It can be shown that A is a C-set if and only if it satisfies the conclusion of the

Central Sets Theorem [4, Theorem 2.2]. It can also be shown that, for countable

commutative semigroups, C-sets satisfy a nice combinatorial characterization in

terms of J-sets which is similar to Theorem 1.6.

Theorem 1.11 ([8, Theorem 14.27, page 358]). For a countable semigroup (S, ·),
A ⊆ S is a C-set if and only if there is a decreasing sequence 〈Cn〉∞n=1 of subsets of

A such that,

1. for each n ∈ N, and each x ∈ Cn, there exists m ∈ N such that Cm ⊆ x−1Cn

and

2. for each n ∈ N, Cn is a J-set.

2. Proof of the Main Theorems

Theorem 2.1. Let A ⊆ N be a quasi-central set in N and l ∈ N. Then the collection

{(a, b) : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ A} is quasi-central in (N× N,+).

Proof. As A is quasi-central, there is a decreasing sequence of piecewise syndetic

sets of A, say {An : n ∈ N}, satisfying Theorem 1.6. So,

A ⊇ A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . . .

It follows from Theorem 1.2 that B = {(a, b) : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ A}
is piecewise syndetic in N× N . As Ai is piecewise syndetic for all i ∈ N; it follows

from Theorem 1.2 that

Bi = {(a, b) ∈ N× N : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ Ai}

is piecewise syndetic in N× N for all i ∈ N.

Clearly,

B ⊇ B1 ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . . .

If n ∈ N, and (a, b) ∈ Bn, then {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ An. From Theorem

1.6, there exists N ∈ N such that

AN ⊆
l⋂

i=0

(−(a+ ib) +An).
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Now (a1, b1) ∈ BN implies

{a1, a1 + b1, a1 + 2b1, . . . , a1 + lb1} ⊆ AN

⊆
l⋂

i=0

(−(a+ ib) +An).

This implies that (a1 + a) + i · (b1 + b) ∈ An for all i ∈ {0, 1, 2, . . . , l}. Hence,

(a1, b1) ∈ −(a, b) +Bn, which implies BN ⊆ −(a, b) +Bn.

Therefore, for any (a, b) ∈ Bn, there exists N ∈ N such that BN ⊆ −(a, b) +Bn,

and it follows from Theorem 1.6 that B is quasi-central in (N× N,+).

Now we will prove the following result, which is analogous to Theorem 2.1 and

also gives an abundance of J-sets.

Theorem 2.2. Let A ⊆ N be a J-set in N and l ∈ N. Then the collection

{(a, b) : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ A} is a J-set in (N× N,+).

Proof. Let

C = {(a, d) : {a, a+ d, ...., a+ ld} ⊆ A} .

Our goal is to show C is a J-set in (N× N,+). Any f ∈ N × N → N is of the

form f = (f1, f2) , where f1, f2 : N−→ N. Let us choose F ∈ Pf

(
(N× N)N

)
. Then

we have to show that there exist (a1, a2) ∈ N × N and H1 ∈ Pf (N) , such that for

all f ∈ F , (a1, a2) +
∑

t∈H1
f (t) ∈ C. Let us assume that F = {f1, f2, . . . , fm} for

some m ∈ N, where fi = (g2i−1, g2i), for i = 1, 2, . . . ,m. Choose any b ∈ N, and

consider the set G ∈ Pf

(
NN), where

G = {g2i−1 + j (b+ g2i) : i = 1, . . . ,m and j = 0, . . . , l} .

As A is a J-set, we have a ∈ N, H ∈ Pf (N) , such that a+
∑

t∈H h (t) ∈ A, for all

h ∈ G, i.e.,

a+
∑
t∈H

(g2i−1 + j (b+ g2i)) (t) ∈ A,

where i = 1, 2, . . . ,m and j = 0, 1, ...., l.

Hence a+
∑

t∈H g2i−1 (t)+j·
(
b |H|+

∑
t∈H g2i (t)

)
∈ A, i.e.,

(
a+

∑
t∈H g2i−1 (t) ,

b |H|+
∑

t∈H g2i (t)
)
∈ C,(from definition of C) i.e.,(a, b |H|)+

∑
t∈H(g2i−1, g2i) (t)

∈ C, i.e., (a, b |H|) +
∑

t∈H fi (t) ∈ C, where i = 1, 2, . . . ,m. So, for any F

in Pf

(
(N× N)N

)
, there exist (a, b |H|) ∈ N × N and H ∈ Pf (N) , such that

(a, b |H|) +
∑

t∈H fi (t) ∈ C, fi ∈ F, i = 1, 2, 3, . . . ,m. Hence C is a J set in

(N× N,+) and this proves the theorem.

The following theorem is an analogous version of Theorem 2.1.
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Theorem 2.3. Let A ⊆ N be a C-set in N and l ∈ N. Then the collection

{(a, b) : {a, a+ b, a+ 2b, . . . , a+ lb} ⊂ A} is a C-set in (N× N,+).

Proof. The proof of this Theorem is the same as the proof of Theorem 2.1, except

that one has to use Theorem 2.2 instead of Theorem 2.1. So we leave it to the

reader.
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