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Abstract

We define a family of multivariate polynomials generalizing the Stirling numbers
of the second kind and some of their multiple generalizations existent in the liter-
ature. We use simple techniques like generating functions or polynomial sequence
transforms to deduce recurrences for these polynomials.

1. Introduction

The Stirling numbers are very well-known combinatorial numbers present in many

branches of mathematics. They appear naturally in combinatorics, number theory

and probability, but also in fields such as algebraic topology or non-commutative

algebra.

There are many ways to define them (see for instance [14] and [17]) and there

are (too) many different notations in the literature (a historical compilation can be

found in [21]). We choose the generating functions to define these combinatorial

numbers, and will use one of the most standard notations (though maybe not the

best one according to [19]).

There are two types of Stirling numbers: those of the first kind, denoted by

s(`, k), can be defined by (
ln(1 + x)

)k
k!

=

∞∑
`=k

s(`, k)
x`

`!
, (1)

and the Stirling numbers of the second kind, denoted by S(`, k), defined by

(ex − 1)k

k!
=

∞∑
`=k

S(`, k)
x`

`!
. (2)

The formulas above may suggest that the Stirling numbers of the first and the

second kind are somehow inverse to each other. This is indeed the case, in the
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following sense:

d∑
k=m

s(k,m)S(d, k) =

d∑
k=m

s(d, k)S(k,m) = δmd, (3)

where δmd denotes the Kronecker delta.

The Stirling numbers can be interpreted combinatorially as follows. The number

(−1)`−ks(`, k) is the number of permutations of ` symbols which have exactly k

cycles, while the Stirling number of the second kind S(`, k) counts the number of

ways to partition a set of ` elements into k nonempty subsets.

There are many generalizations of these numbers (some of them are unified in

[18]), not only to generalized Stirling numbers but also to polynomials. See [15],

[24], [20] or [23] for some Stirling polynomials seemingly unrelated with the object

of study of this paper.

The usefulness of the Stirling polynomials studied in this paper resides in their

appearance in the Weyl algebra. More precisely, when computing an invariant

attached to holonomic ideals in the Weyl algebra, the so-called b-function with

respect to weights, we are led to solve certain linear systems of equations defined in

terms of the Stirling polynomials. In fact, the two-dimensional version of the Stirling

polynomials of the second kind has already appeared in [11] in connection with the

study of certain polynomial systems appearing in the computation of b-functions

with respect to weights.

2. The Stirling Polynomials of the Second Kind

In this section we define a family of Stirling polynomials which can be seen as

generalizations of the weighted Stirling numbers of the second kind. There are

many different generalizations of the Stirling numbers in the literature (see [18] and

the references therein). One way to generalize the Stirling numbers is to refine their

combinatorial definition, like the so-called r-Stirling numbers (see [5]). There are

also generalizations of the following recurrences:

s(n+ 1, k) = s(n, k − 1)− ns(n, k),

S(n+ 1, k) = S(n, k − 1) + kS(n, k),
(4)

that the classical Stirling numbers satisfy. This is the case of the q-Stirling numbers

(see [8]).

We have first met the Stirling polynomials object of study of this note, not in a

combinatorial context, but in the Weyl algebra. Hence we will define them in this

context and proceed later to give a combinatorial definition in terms of generating

functions.
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We denote by Dn the ring C[x1, . . . , xn, ∂1, . . . , ∂n] subject to the relations

∂ixj = xj∂i + δij , xixj = xjxi, ∂i∂j = ∂j∂i,

for 1 ≤ i, j ≤ n. It is called the n-th Weyl algebra over the field C.

As in any non-commutative ring, we are interested in writing an operator P ∈ Dn

in its so-called normally ordered expression:

P =
∑
α,β

cαβxα∂β .

And here the Stirling numbers naturally appear. In the first Weyl algebra D1 ⊆
C[x, ∂x], the normally ordered expression of (x∂x)` is given by

(
x∂x)` =

∑̀
k=0

S(`, k)xk∂kx , (5)

which can be seen as yet another possible definition of the Stirling numbers of the

second kind. The normally ordered expression of other operators in D1 give rise to

generalizations of the Stirling numbers. For instance, (5) was generalized in [6] as

(
xr∂sx

)n
= xn(r−s)

n∑
k=1

Sr,s(n, k)xk∂kx ,

where r ≥ s and the Sr,s(n, k) are one of the many generalized Stirling numbers

of the second kind existent in the literature. In fact, the expansion of
(
xr∂sx

)n
was

studied much earlier (see [7]).

It is interesting to note that in [9] the authors study another expansions, non-

normally ordered, of operators like (x + x∂x)n and (ax + x(1 + x)∂x)n in terms of

the polynomials

Sn(x) =

n∑
k=0

S(n, k)xk,

which are mostly known in the literature as the Bell polynomials.

In this paper we deal with a very direct generalization of (5). More precisely with

an analogous formula in the n-th Weyl algebra Dn, the normally ordered expression

of a power of an Euler operator.

Definition 1. Let α = (α0, α1, . . . , αn) ∈ Cn+1 and ` ∈ Z>0. The Stirling polyno-

mials of the second kind S
(`)
k (x0, x1, . . . , xn) (or simply S

(`)
k ) are defined as(

α0 + α1x1∂1 + · · ·+ αnxn∂n)` =
∑

k∈Zn
≥0
, |k|≤`

S
(`)
k (α)xk11 · · ·xknn ∂k11 · · · ∂knn .
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Notation. For any k = (k1, . . . , kn) ∈ Zn≥0 we use the standard notations

|k| = k1 + · · ·+ kn,

k! = k1! · · · kn!.

Given two vectors k, i ∈ Zn≥0, by i ≤ k we mean

0 ≤ ij ≤ kj for 1 ≤ j ≤ n,

and by i < k we mean i ≤ k and i 6= k. We set(
k

i

)
=

(
k1
i1

)
· · ·
(
kn
in

)
and

δki = δk1i1 · · · δknin =

 1 if k = i

0 otherwise

Moreover, for a positive integer `,(
`

i

)
=

(
`

i1

)(
`− i1
i2

)
· · ·
(
`− i1 − · · · − in−1

in

)
.

We denote x = (x0, . . . , xn) and hence C[x] = C[x0, . . . , xn]. The set {e1, . . . , en}
denotes the standard bases of Rn.

Let us see how these polynomials can alternatively be defined in terms of gener-

ating functions. The formula (2) can be written as

S(`, k) =
〈
t`

`!

〉
(et−1)k

k! , (6)

where
〈
t`

`!

〉
f(t) denotes the coefficient of t`

`! in the expansion of f(t). One of the

first generalizations of the Stirling numbers of the second kind was proposed by

Carlitz in [10], the so-called weighted Stirling numbers of the second kind

S(`, k, λ) =
〈
t`

`!

〉
eλt (e

t−1)k
k! .

Notice how subtle the difference between the generalized Stirling numbers and the

Stirling polynomials is: if we do not consider λ as a parameter, but as a variable,

we could equally talk of the weighted Stirling polynomials

S(`, k)(x) =

〈
t`

`!

〉
ext

(et − 1)k

k!
.

Generalizing to any number of variables we end up with the polynomials object of

study in this paper.
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Lemma 1. Given a point k = (k1, . . . , kn) ∈ Zn≥0 and a positive integer ` ∈ Z>0,

the Stirling polynomial of the second kind, S
(`)
k (x), is

S
(`)
k (x) =

〈
t`

`!

〉
1

k!
ex0t

n∏
j=1

(exjt − 1)kj .

Proof. By the multinomial theorem we have(
α0+α1x1∂1+· · ·+αnxn∂n)` =

∑
i0+···+in=`

(
`

i0, . . . , in

)
αi00 · · ·αinn (x1∂1)i1 · · · (xn∂n)in ,

where
(

`
i0,...,in

)
= `!

i0!···in! , or in other words,

(
α0+α1x1∂1+· · ·+αnxn∂n)` =

∑
i∈Zn
≥0
, |i|≤`

(
`

i

)
α
`−|i|
0 αi11 · · ·αinn (x1∂1)i1 · · · (xn∂n)in .

The result follows by using the identities in (5) and (2).

In other words, given k, the polynomial sequence {S(`)
k }` is defined by means of

the following generating function:

1

k!
ex0t

n∏
j=1

(
exjt − 1

)kj
=

∞∑
`=0

S
(`)
k (x)

t`

`!
.

Remark 1. When k = kei with 1 ≤ i ≤ n we have

S
(`)
kei

=
∑̀
j=k

(
`

j

)
S(j, k)x`−j0 xji .

The polynomials S
(`)
kei

specialize to well-known generalizations of the Stirling

numbers.

(i) First, it is clear that under the specialization x0 = 0 and xi = 1 we obtain

S
(`)
kei

(x0 = 0, xi = 1) = S(`, k),

the classical Stirling numbers.

(ii) As we have explained above, specializing xi = 1 and considering x0 = λ as a

parameter, leads to the weighted Stirling numbers of the second kind defined

by Carlitz in [10]. When λ is an integer, the weighted Stirling numbers form

a very interesting sequence. See for instance [26], where the author studies

the period of the sequence modulo a prime p.
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(iii) These polynomials also specialize to the r-Stirling numbers defined in [5] (de-

noted by Sr(`, k)), which are equivalent to the weighted Stirling numbers of

the second kind. Indeed, as it is proved in Theorem 16 [5], the r-Stirling

numbers can be defined by the following generating function

1

k!
erx(ex − 1)k =

∞∑
n=k

Sr(n+ k, k + r)
xn

n!
.

(iv) Moreover, these polynomials specialize to the generalized Stirling numbers

introduced in [22] and defined as follows

S(α)(n, k, r) =
(−1)k

k!

k∑
j=0

(−1)j
(
k

j

)
(α+ rj)n.

Indeed, by Corollary 2 we deduce that

S
(`)
kei

= S(x0)(`, k, xi).

The interest of these polynomials comes from its very definition, since they appear

when computing b-functions with respect to weights of holonomic ideals in the Weyl

algebra (see [25]). In [11] it already appeared the two-dimensional version of the

Stirling polynomials, besides the study of a linear system defined by the Stirling

polynomials, that has to be solved to compute the b-function. The results in [11]

have been applied in [12] and [13] to compute the b-function of certain families of

hypergeometric ideals.

In order to generalize in a forthcoming paper the results in [11] concerning the

linear systems of equations defined by the polynomials S
(`)
k , we study in the next

section the Stirling polynomials.

3. Properties of the Stirling Polynomials

First we will derive a closed formula for the Stirling polynomials. By Lemma 1 we

deduce that

S
(`)
k (x) = `!

k!

〈
t`
〉
ex0t(ex1t − 1)k1 · · · (exnt − 1)kn

= `!
k!

∑
i∈Zn
≥0
, |i|≤`

( 〈
t`−|i|

〉
ex0t

)∏n
j=1

( 〈
tij
〉

(exjt − 1)kj
)
.

By the identity (6) we have
〈
t`
〉

(ext − 1)k = k!
`! x

`S(`, k), and since
〈
t`−|i|

〉
ex0t =

x
`−|i|
0

(`−|i|)! , we straightforwardly deduce

S
(`)
k (x) =

∑
i≥k, |i|≤`

(
`

i

)( n∏
j=1

S(ij , kj)
)
x
`−|i|
0 xi11 · · ·xinn ∈ Z[x0, . . . , xn]. (7)
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Hence it is clear that for any k ∈ Zn≥0 and ` ∈ Z≥0, the Stirling polynomial S
(`)
k

is a homogeneous polynomial of degree ` in n+ 1 variables. Moreover we have that

S
(`)
k (x) = 0 whenever ` < |k|,

S
(|k|)
k (x) =

(|k|
k

)
xk11 · · ·xknn .

And the monomial xk11 · · ·xknn divides S
(`)
k (x) for any k ∈ Zn≥0 such that ` > |k|.

Example 1. We give a few examples of these Stirling polynomials.

• If k = (0, . . . , 0) then for any ` ∈ Z≥0 we have

S
(`)
0 = x`0.

• If ` = 1 and k = ei with 1 ≤ i ≤ n, we have

S(1)
ei

= xi.

• If k = (1, . . . , 1) we have

S
(n)
k = n!x1 · · ·xn,

S
(n+1)
k = (n+ 1)!

(
x0x1 · · ·xn +

1

2

n∑
j=1

x1 · · ·xj−1x2jxj+1 · · ·xn
)
.

• If n = 1 the polynomials are of the form S
(`)
k =

∑`
i=k

(
`
i

)
S(i, k)x`−i0 xi1. In

particular, when k = 1, it can be written as

S
(`)
1 = (x0 + x1)` − x`0.

This property will be generalized in Corollary 2 to n > 1 and any k.

• Some polynomials of the form S
(`)
(3,0) are

S
(3)
(3,0) = x31,

S
(4)
(3,0) = 4x0x

3
1 + 6x41,

S
(5)
(3,0) = 10x20x

3
1 + 30x0x

4
1 + 25x51.

• Some polynomials of the form S
(`)
(1,2) are:

S
(3)
(1,2) = 3x1x

2
2,

S
(4)
(1,2) = 12x0x1x

2
2 + 12x1x

3
2 + 6x21x

2
2,

S
(5)
(1,2) = 30x20x1x

2
2 + 60x0x1x

3
2 + 35x1x

4
2 + 30x0x

2
1x

2
2 + 10x31x

2
2 + 30x21x

3
2.
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• Some polynomials of the family S
(`)
(1,2,3):

S
(6)
(1,2,3) = 60x1x

2
2x

3
3,

S
(7)
(1,2,3) = 420x0x1x

2
2x

3
3 + 630x1x

2
2x

4
3 + 420x1x

3
2x

3
3 + 210x21x

2
2x

3
3.

3.1. Looking for Recurrences

In combinatorics, the method of sequence transforms has been proven very useful

to deduce combinatorial and polynomial identities (see [16] and [2]). Among the

more popular are the binomial transform and the Stirling transform (see [4]). We

proceed to define them.

(i) The binomial transform. Given an integer sequence {an}n, its binomial trans-

form is another sequence {bn}n defined by bn =
∑n
k=0

(
n
k

)
ak. We have that

bn =

n∑
k=0

(
n

k

)
ak if and only if an =

n∑
k=0

(−1)n−k
(
n

k

)
bk.

(ii) The Stirling transform. Given an integer sequence {fn}n its Stirling transform

of the second kind is the sequence {gn}n defined by

gn =

n∑
k=0

S(n, k)fk.

It is clear, by the orthogonality property in (3), that this is equivalent to

fn =

n∑
k=0

s(n, k)gk.

Combinatorial properties of an integer sequence {an} may transform into com-

binatorial properties of the corresponding sequence transform (see [2]).

Remark 2. Exactly with the same definitions as above we can consider transforms

of polynomial sequences. A simple example is given by one of the many ways to

define the Stirling numbers. Indeed, we have the following (horizontal) generating

series
x(x− 1) · · · (x− n+ 1) =

∑n
k=0 s(n, k)xk,

xn =
∑n
k=0 S(n, k)x(x− 1) · · · (x− k + 1).

Hence the polynomial sequence {xn} is the Stirling transform of the sequence of

falling factorials {x(x− 1) · · · (x− n+ 1)}.
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Moreover, by definition of the Bell polynomials

Bn(x) =

n∑
k=0

S(n, k)xk,

the Stirling transform of the sequence {xn} is the sequence of Bell polynomials

{Bn(x)}.
Not only polynomials, but we can even consider operators. For instance, the

identity (5) implies that the sequence of operators {(x∂)n}n can be seen as the

Stirling transform of the sequence {xn∂n}n. Hence we recover the dual of Equation

(5), as

xn∂n =
n∑
k=1

s(n, k)(x∂)k.

There are generalizations of these transforms in the literature. See for instance

[1], where the author defines the Stirling transforms as above but in terms of gener-

alized Stirling numbers. Here we are going to use multidimensional versions of both

the binomial and the Stirling transforms to derive interesting identities related with

the Stirling polynomials of the second kind.

If we consider sequences {ak}k (integral or polynomial) depending on a parameter

k ∈ Zn≥0, the obvious generalization of the binomial transform is the following.

Definition 2. The binomial transform of a sequence {ak}k∈Zn
≥0

is the sequence

bk =
∑
i≤k

(
k

i

)
ai.

Lemma 2. Given two sequences {ak} and {bk} we have

bk =
∑
i≤k

(
k

i

)
ai if and only if ak =

∑
i≤k

(
k

i

)
(−1)|k|−|i|bi.

Proof. The result follows since∑
j≤i≤k

(
k

i

)(
i

j

)
(−1)|i|−|j| = δjk.

The obvious generalization of the Stirling transform of a sequence {fk} depending

on a vector parameter would be

gk =
∑
i≤k

( n∏
r=1

S(kr, ir)
)
fi.
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But we are interested in presenting our Stirling polynomials as a Stirling transform

of certain polynomial sequence, and these polynomials depend on a parameter vector

k and a positive integer `. Hence we consider here an n-dimensional variant of the

Stirling transform as follows.

Definition 3. Given a polynomial sequence {fk,`} with k ∈ Zn≥0 and ` ∈ Z≥0, we

define the modified Stirling transform as

gk,` =
∑

i≥k, |i|≤`

( n∏
r=1

S(ir, kr)
)
fi,`.

Remark 3. The Stirling polynomials S
(`)
k are the modified Stirling transforms of

the polynomials of the sequence {fk,`} defined as

fk,` =

(
`

k

)
x
`−|k|
0 xk11 · · ·xknn .

Next we prove that this definition makes sense, since the transform is easily

inverted.

Lemma 3. A sequence {gk,`} is the modified Stirling transform of the sequence

{fk,`} if and only if

fk,` =
∑

i≥k, |i|≤`

( n∏
j=1

s(ij , kj)
)
gi,`.

Proof. If {gk,`} is the modified Stirling transform of the sequence {fk,`}, then∑
i≥k, |i|≤`

( n∏
r=1

s(ir, kr)
)
gi,` =

∑
i≥k, |i|≤`

(∏
r

s(ir, kr)
) ∑
j≥i, |j|≤`

(∏
r

S(jr, ir)
)
fj,`

=
∑

j≥i≥k, |j|≤`

(∏
r

s(ir, kr)S(jr, ir)
)
fj,`

=
∑

j≥k, |j|≤`

( ∑
j≥i≥k

∏
r

s(ir, kr)S(jr, ir)
)
fj,`.

And the result follows since, by (3),

∑
j≥i≥k

∏
r

s(ir, kr)S(jr, ir) =

k1∑
i1=j1

s(i1, k1)S(j1, i1) · · ·
kn∑

in=jn

s(in, kn)S(jn, in)

= δj1,k1 · · · δjn,kn

= δj,k.
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As a consequence we obtain a first relation for the Stirling polynomials of the

second kind.

Corollary 1. Given k ∈ Zn≥0 and a positive integer ` ≥ |k|,

∑
i≥k, |i|≤`

( n∏
r=1

s(ir, kr)
)
S
(`)
i =

(
`

k

)
x
`−|k|
0 xk11 · · ·xknn .

Definition 4. For any k ∈ Zn we define the linear form

Ak = x0 + k1x1 + · · ·+ knxn ∈ Z[x0, . . . , xn].

Next result is a rephrasing of Lemma 3.9 in [11], generalized to any number of

variables.

Proposition 1. For any ` ∈ Z≥0, the polynomial sequence {A`k}k is the binomial

transform of the sequence {k!S
(`)
k }k.

Proof. We have to prove that for all k ∈ Zn≥0 and ` ≥ 0 we have

A`k =
∑
i≤k

(
k

i

)
i!S

(`)
i . (8)

Recall that by i ≤ k we mean ij ≤ kj for 1 ≤ j ≤ n and by i < k we mean i ≤ k

and i 6= k. By Lemma 3∑
i≥j, |i|≤`

(∏
r

s(ir, jr)
)
S
(`)
i =

(
`

j

)
x
`−|j|
0 xj11 · · ·xjnn .

Then, for k ∈ Zn≥0 we have

kj11 · · · kjnn
∑

i≥j, |i|≤`

(∏
r

s(ir, jr)
)
S
(`)
i =

(
`

j

)
x
`−|j|
0 (k1x1)j1 · · · (knxn)jn .

Summing this equality in j such that j ∈ Zn≥0 with |j| ≤ `, we have on the right-hand

side A`k. The left-hand side gives∑
j∈Zn
≥0
, |j|≤`

∑
i≥j, |i|≤`

kj11 · · · kjnn
∏
r

s(ir, jr)S
(`)
i =

=
∑

i∈Zn
≥0
, |i|≤`

(∑
j≤i

kj11 · · · kjnn
∏
r

s(ir, jr)
)
S
(`)
i .
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And the result follows, since∑
j≤i k

j1
1 · · · kjnn

∏
r s(ir, jr) =

(∑i1
j1=0 k

j1
1 s(i1, j1)

)
· · ·
(∑in

jn=0 k
jn
n s(in, jn)

)
=
(
k1
i1

)
i1! · · ·

(
kn
in

)
in!,

because
∑i
j=0 s(i, j)x

j = x(x− 1) · · · (x− i+ 1).

Corollary 2. For any k ∈ Zn≥0 and any ` ∈ Z≥0,

k!S
(`)
k =

∑
i≤k

(
k

i

)
(−1)|k|−|i|A`i .

Moreover we can deduce from Proposition 1 some recurrences among the poly-

nomials S
(`)
k .

Lemma 4. For all k ∈ Zn≥0 and ` > 0 we have

S
(`+1)
k = x0S

(`)
k +

n∑
j=1

∑̀
c=0

(
`

c

)
x`−c+1
j S

(c)
k−ej

.

Proof. By Corollary 2

S
(`+1)
k = 1

k!

∑
i≤k
(
k
i

)
(−1)|k|−|i|A`+1

i

= 1
k!

∑
i≤k
(
k
i

)
(−1)|k|−|i|

(
x0 + i1x1 + · · ·+ inxn

)
A`i

= x0S
(`)
k + 1

k!

∑n
j=1

∑
i≤k ijxj

(
k
i

)
(−1)|k|−|i|A`i .

Notice that the sum
∑

i≤k ij
(
k
i

)
(−1)|k|−|i|A`i runs over i such that ij 6= 0 and we

have ∑
i≤k

ij

(
k

i

)
(−1)|k|−|i|A`i = kj

∑
i≤k

(
k− ej

i− ej

)
(−1)|k|−|i|A`i ,

where kj 6= 0. We can write it as∑
i≤k

ij

(
k

i

)
(−1)|k|−|i|A`i = kj

∑
r≤k−ej

(
k− ej

r

)
(−1)|k−ej|−|r|A`r+ej

,

and since Ar+ej
= Ar + xj we deduce that

kj
∑

r≤k−ej

(
k− ej

r

)
(−1)|k−ej|−|r|A`r+ej

= kj
∑̀
c=0

(
`

c

)
x`−cj

∑
r≤k−ej

crA
c
r,
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where we denote cr =
(
k−ej

r

)
(−1)|k−ej|−|r|. Again by the identity in Corollary 2 we

deduce the recurrence we want to prove.

This recurrence does not specialize to (4), defining the Stirling numbers of the

second kind, but to the following recurrence.

Corollary 3. We recover recurrences for the classical Stirling numbers of the second

kind

(i) S(`+ 1, k) =
∑`
c=0

(
`
c

)
S(c, k − 1),

(ii) kS(`, k) =
∑`−1
c=k−1

(
`
c

)
S(c, k − 1).

Proof. The first identity follows directly from Lemma 4 under the specialization as

explained in Remark 1 (i). Identity (ii) follows from (i) and the recurrence in (4)

on classical Stirling numbers of the second kind.

Now we study another recurrence deduced from Proposition 1. By Corollary 2,

it follows that under conditions of the type Ak = Ak′ , there exist recurrences of the

form ∑
i≤k

(
k

i

)
i!S

(`)
i =

∑
i≤k′

(
k′

i

)
i!S

(`)
i .

But there are many cancelations on this recurrence. To work it out we introduce

some notation. The condition Ak = Ak′ can be written as:

α1x1 + · · ·+ αnxn = 0, (9)

with α = (α1, . . . , αn) ∈ Pn−1. In fact, it is enough to consider α ∈ Zn such that

α1 + · · ·+ αn ≥ 0. Then we can write it in a unique way as

α = α+ − α−,

with α+, α− ∈ Zn≥0 and disjoint support. Moreover we can assume that α+ 6= 0.

The next result unifies Lemma 4.5 and Lemma 4.12 in [11], generalized to any

number of variables.

Proposition 2. Let α ∈ Zn \ {0} with |α| ≥ 0 and let k ∈ Zn≥0 such that k ≥ α−.

If α1x1 + · · ·+ αnxn = 0 we have the following identities for any ` ≥ 0:∑
i≤α+

α+!

(α+ − i)!

(
k + i

k

)
S
(`)
k+i−α− =

∑
i≤α−

α−!

(α− − i)!

(
k− α− + i

k− α−

)
S
(`)
k+i−α− .
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Proof. We abuse of notation by denoting S
(`)
i the polynomial under the condition

α1x1 + · · ·+ αnxn = 0.

One way to prove the equality of the statement is by using the powerful tool

of generating functions (see [27]). We compute the generating functions of the left

and right-hand side and check that they are equal under the condition α1x1 + · · ·+
αnxn = 0. The left-hand side gives

∑
`≥0

w`

`!

∑
i≤α+

α+!

(α+ − i)!

(
k + i

k

)〈
t`

`!

〉
1

(k + i− α−)!
ex0t

n∏
j=1

(exjt − 1)kj+ij−α
−
j

=
∑
i≤α+

α+!

(α+ − i)!

(
k + i

k

)
1

(k + i− α−)!

∑
`≥0

w`

`!

〈
t`

`!

〉
ex0t

n∏
j=1

(exjt − 1)kj+ij−α
−
j

=
∑
i≤α+

α+!

(α+ − i)!

(
k + i

k

)
1

(k + i− α−)!
ex0w

n∏
j=1

(exjw − 1)kj+ij−α
−
j

= ex0w
n∏
j=1

(exjw − 1)kj−α
−
j

∑
i≤α+

(
α+

i

)
(k + i)!

k!(k + i− α−)!

n∏
j=1

(exjw − 1)ij

=
ex0w

∏n
j=1(exjw − 1)kj−α

−
j

k!

( α+
1∑

i1=0

(
α+
1

i1

)
(k1 + i1)!

(k1 + i1 − α−1 )!
(ex1w − 1)i1

)
· · ·

· · ·
( α+

n∑
in=0

(
α+
n

in

)
(kn + in)!

(kn + in − α−n )!
(exnw − 1)in

)
.

Notice that if α+
j = 0 then

α+
j∑

ij=0

(
α+
j

ij

)
(kj + ij)!

(kj + ij − α−j )!
(exjw − 1)ij =

kj !

(kj − α−j )!
=

kj !

(kj − α−j )!
exjwα

+
j ,

while, if α+
j > 0 then α−j = 0 and hence

α+
j∑

ij=0

(
α+
j

ij

)
(kj + ij)!

(kj + ij − α−j )!
(exjw − 1)ij = exjwα

+
j =

kj !

(kj − α−j )!
exjwα

+
j .

Therefore we conclude that the generating function of the left-hand side equals

1

(k− α−)!
ew(x0+x1α

+
1 +···+xnα

+
n )

n∏
j=1

(exjw − 1)kj−α
−
j .
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The other generating function is∑
`≥0

w`

`!

∑
i≤α−

α−!

(α− − i)!

(
k− α− + i

k− α−

)〈
t`

`!

〉
1

(k + i− α−)!
ex0t

n∏
j=1

(exjt − 1)kj+ij−α
−
j

=
∑
i≤α−

α−!

(α− − i)!

1

(k− α−)!i!

∑
`≥0

w`

`!

〈
t`

`!

〉
ex0t

n∏
j=1

(exjt − 1)kj+ij−α
−
j

=
∑
i≤α−

(
α−

i

)
1

(k− α−)!
ex0w

n∏
j=1

(exjw − 1)kj+ij−α
−
j

= ex0w
n∏
j=1

(exjw − 1)kj−α
−
j

1

(k− α−)!

( α−1∑
i1=0

(
α−1
i1

)
(ex1w − 1)i1

)
· · ·

· · ·
( α−n∑
in=0

(
α−n
in

)
(exnw − 1)in

)

= ex0w
n∏
j=1

(exjw − 1)kj−α
−
j

1

(k− α−)!
ew(x1α

−
1 +···+xnα

−
n ).

We are done, since α1x1 + · · ·+ αnxn = 0 is equivalent to

α+
1 x1 + · · ·+ α+

n xn = α−1 x1 + · · ·+ α−n xn.

4. Some Combinatorial Applications

The Stirling numbers have a vast literature and there is a lot of work done to state

relations among these combinatorial numbers, of which [21] is a good example. In

this section we highlight some relations on the Stirling numbers of the second kind

that can be deduced from the results developed in the previous section.

A first consequence is a generalization of the well-known formula (see [3])

n∑
k=0

(
n

k

)
(−1)k

(
xk + y)m = (−1)nn!

m∑
j=n

(
m

j

)
xjym−jS(j, n), (10)

by simply rewriting the equation in Corollary 2.

Corollary 4. For any k ∈ Zn≥0 we have the polynomial identity:∑
i≤k

(−1)|k|−|i|

i!(k− i)!

(
x0+i1x1+· · ·+inxn

)`
=

∑
i≥k, |i|≤`

(
`

i

)( n∏
j=1

S(ij , kj)
)
x
`−|i|
0 xi11 · · ·xinn .
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Proposition 2 contains many combinatorial identities. Indeed, proper specializa-

tions of the Stirling polynomials together with a clever use of Proposition 2 (that is,

a right choice of the parameter α), can be useful to obtain (hopefully interesting)

relations among the classical Stirling numbers of the second kind.

The first example illustrates how we can recover a well-known generalized con-

volution formula.

Lemma 5. Given k = (k1, . . . , kn) ∈ Zn≥0 and ` ∈ Z≥0(
k1 + k2
k1

)
· · ·
(
k1 + · · ·+ kn

kn

)
S(`, k1 + · · ·+ kn) =

=
∑

i1+···+in=`, i≥k

(
`

i

)
S(i1, k1) · · ·S(in, kn).

Proof. Under the condition

x0 = 0, and x1 = x2 = · · · = xn,

we have for any k and any `,

S
(`)
k = x`

∑
i1+···+in=`, i≥k

(
`

i

) n∏
j=1

S(ij , kj), (11)

where we are denoting x = xi for 1 ≤ i ≤ n. Recall that by i ≥ k we mean ij ≥ kj
for any 1 ≤ j ≤ n.

Let us apply Proposition 2 with α = ei− ej for 1 ≤ i < j ≤ n (then α+ = ei and

α− = ej). We deduce that, if xi = xj , then

(ki + 1)S
(`)
k+ei−ej

= kjS
(`)
k .

Therefore, when x1 = x2 = · · · = xn, repeating this argument for x1 = xj with

2 ≤ j ≤ n, we have

S
(`)
k = · · · =

(
k1+k2
k1

)
S
(`)
k+k2e1−k2e2

= · · ·

=
(
k1+k2
k1

)(
k1+k2+k3

k3

)
· · ·
(
k1+···+kn

kn

)
S
(`)
|k|e1

,

for any k and any `. Then

S
(`)
k =

(
k1 + k2
k1

)(
k1 + k2 + k3

k3

)
· · ·
(
k1 + · · ·+ kn

kn

) ∑̀
i=|k|

(
`

i

)
S(i, |k|)x`−i0 xi1,
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which reduces to

S
(`)
k =

(
k1 + k2
k1

)(
k1 + k2 + k3

k3

)
· · ·
(
k1 + · · ·+ kn

kn

)
S(`, |k|)x`,

under the condition x0 = 0. The result follows from this equation together with

Equation (11).

As a corollary we recover the following closed formula for the Stirling numbers

of the second kind.

Corollary 5. For any two integers ` ≥ n > 0, we have

S(`, n) =
1

n!

∑
i1+···+in=`, ij≥1

(
`

i1

)(
`− i1
i2

)
· · ·
(
`− i1 − · · · − in−1

in

)
.

Another example is the following result, where we give a family of relations on

the Stirling numbers of the second kind.

Lemma 6. Given two positive integers a, b, we have

a∑
i=0

a!

(a− i)!
∑̀
j=i

(
`

j

)
S(j, i)x`−j0 xj1 =

b∑
i=0

b!

(b− i)!
∑̀
j=i

(
`

j

)
S(j, i)

(a
b

)j
x`−j0 xj1.

Proof. It follows by Proposition 2 with α = ae1 − bej and k = bej with 1 < j ≤
n.

Corollary 6. Given two positive integers a and b,

a∑
i=0

a!

(a− i)!
∑̀
j=i

(
`

j

)
S(j, i)bjx`−j =

b∑
i=0

b!

(b− i)!
∑̀
j=i

(
`

j

)
S(j, i)ajx`−j ,

and hence

b`
a∑
i=0

a!

(a− i)!
S(`, i) = a`

b∑
i=0

b!

(b− i)!
S(`, i).

5. Final Remarks

The main results of this paper are Proposition 1 and Proposition 2. They will

be crucial in studying the linear systems generalizing the work in [11]. Moreover

we believe that both may have other applications. Proposition 2 encodes many

recurrences on the Stirling numbers of the second kind and on some of their gen-

eralizations, as we have briefly illustrated in Section 4. As for Proposition 1 we

believe it may have other applications as a combinatorial tool.
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We finish by pointing out that it may be worth investigating an analogous version

of these polynomials, namely the Stirling polynomials of the first kind, satisfying or-

thogonality relations with the polynomials defined in this paper, as well as studying

a kind of generalized Bell polynomials defined by

B
(`)
k =

∑̀
j=0

S
(j)
k .
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ential Equations, in Algorithms and Computation in Mathematics, 6. Springer-Verlag, Berlin,
2000.

[26] Z.W. Sun, Combinatorial congruences and Stirling numbers, Acta Arith. 126, no. 4 (2007),
387-398.

[27] H.S. Wilf, Generatingfunctionology, Academic Press Inc., Boston MA, 1994.


