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Abstract

The generalized Bernoulli-Fibonacci distribution describes the waiting time until
k successive successes occur in a Bernoulli process. In the case of a symmetric
Bernoulli process, when the counting starts at time 1, we prove that the factorial
moments of this distribution are multiples of the terms of a subsequence of the gen-
eralized k-step Fibonacci numbers. As a result, when the counting starts at time
k, the factorial moments of the Bernoulli-Fibonacci distribution are linear combi-
nations of the aforementioned subsequence of the k-step Fibonacci numbers. Up to
now, most authors used the second version of the Bernoulli-Fibonacci distribution,
and thus have been unable to provide formulas for all the factorial moments of the
distribution for a general k. To establish the main result in our paper, we first prove
a number of identities involving the roots of unity of order k + 1 and the inverses
of the roots of the characteristic polynomial of the k-step Fibonacci numbers.

1. Introduction

For each k ∈ Z>0, let (F
(k)
n : n ∈ Z) be the sequence of k-step generalized Fibonacci

numbers defined by

F (k)
n = 0 for all n ≤ 0, F

(k)
1 = 1, and F (k)

n =

k∑
i=1

F
(k)
n−i for all n ≥ 2. (1)

This sequence has been studied by many authors; see, for example, Capocelli and

Cull [4], Christensen [5], Koutras [9], Medhi [11], Philippou et al. [14], Wolfram [19],

and Zhang and Hadjicostas [20].

It is well-known that

F (k)
n = 2n−2 for n = 2, . . . , k + 1 and F

(k)
k+2 = 2k − 1. (2)

The sequence (F
(k)
n : n ∈ Z>0) may be calculated either through recurrence (1) or
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through the more explicit formula

F (k)
n = S(k, n− 2)− S(k, n− k − 2) for n ≥ 2, (3)

where

S(k, n) =

bn/(k+1)c∑
j=0

(−1)j
(
n− kj
j

)
2n−(k+1)j . (4)

(Empty sums are assumed to be zero; e.g., S(k, n− k − 2) = 0 for 2 ≤ n ≤ k + 1.)

Equation (3) can proved using results from Dunkel [6].

For an equation similar to Equation (3), but apparently different, see also The-

orem 2.4 in Howard and Cooper [8], who worked with the shifted sequence (G
(k)
n :

n ∈ Z) = (F
(k)
n−k+2 : n ∈ Z). In our notation, for k ≥ 2 and n ≥ k+ 2, their formula

becomes

F (k)
n =

bn/(k+1)c∑
j=0

(−1)j
((

n− kj
j

)
−
(
n− kj − 2

j − 2

))
2n−(k+1)j−2, (5)

where we assume that
(
a
b

)
= 0 if b < 0. (Since Howard and Cooper [8] assume(

a
b

)
= 0 when a < b, we have modified the upper limit of summation in their

formula.)

It is well-known (see most of the references mentioned above) that

∞∑
n=0

F (k)
n xn =

x

1− (x+ x2 + · · ·+ xk)
. (6)

Let R∗k be the radius of convergence of power series (6). For k = 1, we clearly have

R∗1 = 1. For k ≥ 2, using results from Capocelli and Cull [4] and Wolfram [19], we

prove in Appendix A that

R∗k >
1

2− 1
2k

. (7)

Of course, inequality (7) is valid even for k = 1.

Generalized k-step Fibonacci numbers (as well related sequences) play a role in

describing the probabilistic properties of the run length or waiting time of a process.

We model the status of a process, whether it be “in control” or “out of control”,

with an infinite sequence of events, and define the run length (or waiting time) of

this process to be the first time the process is “out of control”. See Equations (29)

and (38) in Section 3.

We consider the control statistic of a moving average (MA) control chart as

our prototype example in deciding whether the sequence of events is in or out of

control at a certain time; see, for example, Böhm and Hackl [3], Lai [10], and

Zhang et al. [21]. Essentially, an MA control chart is a linear combination (of k
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at a time) independent and identically distributed random variables (Xi)
∞
i=1 with

positive coefficients. See Equations (34) and (37) in Section 3.

When the random variables (Xi)
∞
i=1 form a Bernoulli process with

P(Xi = 1) = p and P(Xi = 0) = q for each i ∈ Z>0,

where 0 < p, q < 1 and p+q = 1, and the MA control chart is the sum of k successive

Xi’s (e.g., see Equations (53) and (54) in Section 4), we may declare the process

to be “out of control” when the MA control chart is greater than a fixed constant

c that depends only on k. When c = k − 1, then the process is “out of control” if

and only if k successive 1’s are observed; e.g., see Feller [7, Section XIII.7]. See also

Equation (43) in Section 4 of our paper.

When p = q = 1
2 , we are dealing with a symmetric Bernoulli process; see Equa-

tions (42) in Section 4. The probability distribution of the run length of a symmetric

Bernoulli process that is “out of control” when k successive 1’s occur (i.e., when

c = k − 1) is usually known as the generalized k-step Bernoulli-Fibonacci distribu-

tion. Of course, one may reduce the value of c and get other kinds of “generalized

k-step Bernoulli-Fibonacci” distributions, but in this paper we only concentrate

with the case c = k − 1.

We provide explicit formulas for all the factorial moments of the generalized

k-step Bernoulli-Fibonacci distribution. See Theorem 2 in Section 4, which is es-

sentially the main result of the paper. Our explicit formulas involve the subsequence

(F
(k)
(k+1)r+k : r ∈ Z≥0) of the generalized k-step Fibonacci numbers.

The proof of Theorem 2 relies on Theorem 1, which is the main result of Sec-

tion 2. Theorem 1 gives the generating function of (F
(k)
(k+1)r+k : r ∈ Z≥0). (For

the generating functions of other subsequences of the generalized k-step Fibonacci

numbers, see Equation (60) in Section 5.)

The proof of Theorem 1 relies on a number of results about the generalized k-step

Fibonacci numbers that involve the roots of unity of order k + 1 and the inverses

of the roots of the characteristic polynomial of the k-step Fibonacci numbers.

In Theorem 2, we also give the probability generating function (p.g.f.) of the

above k-step Bernoulli-Fibonacci distribution. This p.g.f. was essentially obtained

by Medhi [11] and Shane [18] as well. The authors, however, work with a slightly

different random length or waiting time: the number of symmetric Bernoulli trials

needed until k successive 1’s are observed for the first time starting the counting at

time k. We start the counting at time 1; in our paper, compare Equations (29) and

(34) with Equations (37) and (38).

Even though the p.g.f. obtained by Medhi [11] and Shane [18] is tk−1 times our

p.g.f. in Theorem 2, the factorial moments obtained using the p.g.f. of those two

authors are more complicated than the factorial moments obtained using our p.g.f.

For more details, see the discussion after Equations (37) and (38) (at the end of

Section 3) and Remark 1 in Section 4 in our paper.
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We also note that Medhi [11] did not obtain any higher factorial moments for

his/her k-step Bernoulli-Fibonacci distribution. Shane [18] did obtain (in some

form) all the factorial moments for his/her k-step Bernoulli-Fibonacci distribution

when k = 2 (the usual Fibonacci case), but he/she stated that the factorial moments

for a general k are not known in closed form. Shane’s [18] formula for the case k = 2

is essentially a special case of our formula (55) in Section 4.

The organization of our paper is as follows. In Section 2, we derive the gener-

ating function of the subsequence (F
(k)
(k+1)r+k : r ∈ Z≥0) of the generalized k-step

Fibonacci numbers. In Section 3, we review the theory of the run length of an

MA process. In Section 4, we derive all the factorial moments of both versions

of the generalized k-step Bernoulli-Fibonacci distribution (in the symmetric case).

Finally, in Section 5, we give some concluding remarks, including an extension of

Theorem 1.

Note that, in Section 3, we use Abel’s partial summation (or summation by

parts): If Aj =
∑j
i=0 ai and Bj =

∑j
i=0 bi, then

n∑
j=0

ajBj = AnBn −
n∑
j=1

Aj−1bj . (8)

See, for example, Problem 18.19 in Billingsley [2, p. 244] (where we have corrected a

sign error). It is trivial, however, to prove Equation (8) by mathematical induction.

Also in Section 3, we use the falling factorial

[a]r := a(a− 1)(a− 2) · · · (a− r + 1) for r ∈ Z>0. (9)

We also let [a]0 := 1. (Note that [0]r = 0 for r ∈ Z>0 and [0]0 = 1.) It is easy to

prove that

r

j∑
i=1

[i− 1]r−1 = [j]r for r ∈ Z>0 and j ∈ Z≥0. (10)

2. Some Results About the Generalized k-step Fibonacci Numbers

The purpose of this section is to prove a result about the generating function of a

subsequence of the sequence (F
(k)
n : n ∈ Z≥0). In the process of doing so, we prove

a number of auxiliary results that are interesting in their own right.

Theorem 1. For k ≥ 2, we have

∞∑
r=0

F
(k)
(k+1)r+kx

r =
2k−2(x+ 1)

2k −
∑k
`=1 2k−`(x+ 1)`

for |x| <

(
1

2− 1
2k

)k+1

. (11)
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We first prove an auxiliary result about the factorization of a polynomial of degree

k(k + 1) that is a function of the polynomial that appears in the denominator of

the generating function in Equation (11). Denote by ρ1, . . . , ρn the roots of the

polynomial

qk(x) := 1− x− x2 − · · · − xk = xkrk

(
1

x

)
, (12)

where

rk(y) := yk − yk−1 − · · · − y − 1. (13)

The polynomial qk(x) is the denominator of the generating function (6), while rk(y)

is the characteristic polynomial of the sequence (F
(k)
n : n ∈ Z≥0).

Lemma 1. For each k ∈ Z>0, let dk(t) = 2k − 2k−1t − 2k−2t2 − · · · − tk and let

ω0,k = 1, ω1,k, . . ., ωk,k be all the roots of unity of order k + 1. Then

dk(xk+1 + 1) =

k∏
i=0

(1− ωi,kx− ω2
i,kx

2 − · · · − ωki,kxk). (14)

Proof. We treat the case k = 1 by itself. In this case, we have d1(t) = 2−t, ω0,1 = 1,

ω1,1 = −1, and

d1(x2 + 1) = 2− (x2 + 1) = 1− x2 =

1∏
i=0

(1− ωi,1x).

Assume now k ≥ 2 and define φk(x) to be the polynomial on the right-hand side

of Equation (14). We shall prove that the polynomial dk(xk+1 + 1)− φk(x), which

is of degree at most k(k + 1), vanishes for (at least) k(k + 1) + 1 different values of

x. This would prove that dk(xk+1 + 1)− φk(x) is identically zero, thus establishing

Equation (14) for all x.

None of the roots ρ1, . . . , ρk of the polynomial qk(x) in Equation (12) is equal to

0 or 1. We claim that the set

Ak := {ρj/ωi,k : j ∈ {1, . . . , k}, i ∈ {0, . . . , k}} ∪ {0} (15)

has exactly k(k+1)+1 elements. To prove this claim, first note that Equations (12)

and (13) imply that 1/ρ1, . . . , 1/ρk are the roots of the polynomial rk(y), which is

the characteristic polynomial of the sequence (F
(k)
n : n ∈ Z≥0).

Capocelli and Cull [4] and Wolfram [19] proved that the roots of rk(y) are simple,

so ρ1, . . . , ρk are distinct. Assume ρj/ωi,k = ρ`/ωm,k for 1 ≤ j, ` ≤ k and 0 ≤ i,m ≤
k. It follows that

ρk+1
j = (ρj/ωi,k)k+1 = (ρ`/ωm,k)k+1 = ρk+1

` . (16)
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Since the roots ρ1, . . . , ρk of qk(x) are also roots of (1 − x)qk(x) = 1 − 2x + xk+1,

we have

1− 2ρj + ρk+1
j = 0 = 1− 2ρ` + ρk+1

` . (17)

From Equations (16) and (17), we get ρj = ρ`, and so j = `. Since ρj/ωi,k =

ρ`/ωm,k, we conclude that ωi,k = ωm,k, and so i = m. Thus, (j, i) = (`,m).

Clearly, ρj/ωi,k 6= 0 for 1 ≤ j ≤ k and 0 ≤ i ≤ k. This completes the proof of the

claim that #Ak = k(k + 1) + 1. We shall now prove that dk(xk+1 + 1)− φk(x) = 0

for all x ∈ Ak, which would establish Equation (14).

Note that (ρj/ωi,k)k+1 + 1 = ρk+1
j + 1 = 2ρj , and thus

dk((ρj/ωi,k)k+1 + 1) = 2k − 2k−1(2ρj)− 2k−2(2ρj)
2 − · · · − (2ρj)

k

= 2k(1− ρj − ρ2
j − · · · − ρkj ) = 0.

Also, φk(ρj/ωi,k) = 0 because

1− ωi,k
(
ρj
ωi,k

)
− ω2

i,k

(
ρj
ωi,k

)2

− · · · − ωki,k
(
ρj
ωi,k

)k
= 1− ρj − ρ2

j − · · · − ρkj = 0.

Finally,

dk(0k+1 + 1) = 2k − 2k−1 − 2k−2 − · · · − 1 = 1 = φk(0),

and this establishes that dk(xk+1 + 1) = φk(x) for all x ∈ Ak, which finishes the

proof the lemma.

Lemma 2. For each k ∈ Z>0, let ω0,k = 1, ω1,k, . . ., ωk,k be all the roots of unity

of order k + 1, and let ρ1, ρ2, . . . , ρk be the roots of the polynomial qk(x) defined by

Equation (12). For each m ∈ {0, 1, . . . , k} and each root ρn of qk(x), we have

k∏
j=0
j 6=m

(ωm,k − ωj,k) =
k + 1

ωm,k
and

k∏
j=0
j 6=m

(ωm,k − ρnωj,k) =
2

ωm,k
. (18)

Proof. We treat the case k = 1 by itself. In this case, we have ω0,1 = 1, ω1,1 = −1,

and ρ1 = 1. It is then easy to prove both Equations (18) when k = 1.

Assume now k ≥ 2. We then have

k∏
j=0

(y − ωj,k) = yk+1 − 1 =⇒
k∏
j=0
j 6=m

(y − ωj,k) =
yk+1 − 1

y − ωm,k

=⇒
k∏
j=0
j 6=m

(xωm,k − ωj,k) =
(xωm,k)k+1 − 1

xωm,k − ωm,k
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=⇒
k∏
j=0
j 6=m

(xωm,k − ωj,k) =
1

ωm,k
(1 + x+ x2 + · · ·+ xk).

Letting x = 1 in the last equation above, we get the first equation in (18). On the

other hand,

k∏
j=0
j 6=m

(y − ωj,k) =
yk+1 − 1

y − ωm,k
=⇒

k∏
j=0
j 6=m

(
x

ρn
− ωj,k

)
=

(
x
ρn

)k+1

− 1

x
ρn
− ωm,k

=⇒
k∏
j=0
j 6=m

(x− ρnωj,k) =
xk+1 − ρk+1

n

x− ρnωm,k
.

Letting x = ωm,k in the last equality, we get

k∏
j=0
j 6=m

(ωm,k − ρnωj,k) =
ωk+1
m,k − ρk+1

n

ωm,k − ρnωm,k
=

1− ρk+1
n

ωm,k(1− ρn)

=
1

ωm,k
(1 + ρn + ρ2

n + · · ·+ ρkn) =
2

ωm,k

because 1 − ρn − ρ2
n − · · · − ρkn = 0. This proves the second equation in (18) and

completes the proof of the lemma.

Lemma 3. For each k ∈ Z>0, let ω0,k = 1, ω1,k, . . ., ωk,k be all the roots of unity

of order k + 1. Then

k∑
i=0

ωm+1
i,k =

{
0, if m = 0, 1, . . . , k − 1;

k + 1, if m = k.

Proof. Clearly,
∑k
i=0 ω

k+1
i,k =

∑k
i=0 1 = k + 1. Thus, we only prove the lemma for

m ∈ {0, 1, . . . , k − 1}.
Following Aigner [1, pp. 161–163], for r, n ∈ Z>0 with 1 ≤ n ≤ r, we define the

elementary symmetric function in r variables

an(x1, . . . , xr) :=
∑

i1<···<in

xi1 · · ·xin ,

where the sum extends over all
(
r
n

)
possible products of n of the variables x1, . . . , xr.

We also define the power function

sn(x1, . . . , xr) :=

r∑
i=1

xni .
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Aigner [1, Proposition 4.25] proved the following result that he attributes to

Waring:

an(x1, . . . , xr) =
∑

b1,...,bn≥0∑n
i=1 ibi=n

(−1)n−
∑n

i=1 bi∏n
i=1(bi!)

∏n
i=1 i

bi
sb11 · · · sbnn , (19)

where sj := sj(x1, . . . , xr) for all j ∈ {1, . . . , r}. In Equation (19), we let r = k+ 1,

x1 = ω0,k = 1, x2 = ω1,k, . . ., xk+1 = ωk,k, and n = 1, . . . , k. It is well-known that

an(ω0,k, ω1,k, . . . , ωk,k) = 0 for n = 1, . . . , k.

Thus, ∑
b1,...,bn≥0∑n

i=1 ibi=n

(−1)n−
∑n

i=1 bi∏n
i=1(bi!)

∏n
i=1 i

bi
sb11 · · · sbnn = 0 for n = 1, . . . , k. (20)

To finish the proof of the lemma, we prove by finite induction that

sn(ω0,k, ω1,k, . . . , ωk,k) = 0 for n = 1, . . . , k.

We have s1(ω0,k, ω1,k, . . . , ωk,k) = a1(ω0,k, ω1,k, . . . , ωk,k) = 0. Let m be a posi-

tive integer less than k and assume sn(ω0,k, ω1,k, . . . , ωk,k) = 0 for n = 1, . . . ,m. For

n = m+1 in Equation (20), the only term that does not involve sj(ω0,k, ω1,k, . . . , ωk,k)

for at least one j ∈ {1, . . . , k} is the one corresponding to (b1, b2, . . . , bm, bm+1) =

(0, 0, . . . , 0, 1). All the other terms are 0 (by the inductive hypothesis). We then

get
(−1)m+1−1

(1!)(m+ 1)1
sm+1(ω0,k, ω1,k, . . . , ωk,k) = 0,

which implies sm+1(ω0,k, ω1,k, . . . , ωk,k) = 0. This completes the finite induction

and the proof of the lemma.

In the next lemma, we evaluate a power series involving the subsequence (F
(k)
(k+1)r+k :

r ∈ Z≥0) of the k-step generalized Fibonacci numbers.

Lemma 4. For each k ∈ Z>0, let ω0,k = 1, ω1,k, . . ., ωk,k be all the roots of unity

of order k + 1. Then

∞∑
r=0

F
(k)
(k+1)r+kx

(k+1)r =
1

k + 1

k∑
i=0

ω2
i,kx

1−k

1− ωi,kx− ω2
i,kx

2 − · · ·ωki,kxk
(21)

for |x| < 1
2− 1

2k
.

Proof. It follows from Equation (6) in Section 1 that

σk(x) :=
x

1− (x+ x2 + · · ·+ xk)
=

∞∑
n=0

F (k)
n xn for |x| < 1

2− 1
2k

.
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Re-arranging the terms of the above (absolutely convergent) power series, we get

k∑
s=0

∞∑
r=0

F
(k)
(k+1)r+sx

(k+1)r+s = σk(x) for |x| < 1

2− 1
2k

.

Thus,
k∑
i=0

k∑
s=0

∞∑
r=0

F
(k)
(k+1)r+sωi,k(ωi,kx)(k+1)r+s =

k∑
i=0

ωi,kσk(ωi,kx).

It follows that

k∑
s=0

∞∑
r=0

(
k∑
i=0

ωs+1
i,k

)
F

(k)
(k+1)r+sx

(k+1)r+s =

k∑
i=0

ωi,kσk(ωi,kx).

By Lemma 3, we have
∑k
i=0 ω

s+1
i,k = 0 for s = 0, 1, . . . , k− 1 and

∑k
i=0 ω

s+1
i,k = k+ 1

for s = k. Thus,

(k + 1)

∞∑
r=0

F
(k)
(k+1)r+kx

(k+1)r+k =

k∑
i=0

ωi,kσk(ωi,kx),

from which we can easily derive Equation (21).

We are now ready to prove the main result of the section, that is, Theorem 1.

Proof of Theorem 1. Assume k ≥ 2. We first establish that

k∑
i=0

ω2
i,kx

1−k

1− ωi,kx− ω2
i,kx

2 − · · · − ωki,kxk
=

2k−2(k + 1)(xk+1 + 1)

2k −
∑k
`=1 2k−`(xk+1 + 1)`

. (22)

In view of Lemma 1, this is equivalent to

βk(x) :=

k∑
i=0

ω2
i,k

k∏
j=0
j 6=i

(1− ωj,kx− ω2
j,kx

2 − · · · − ωkj,kxk)

= 2k−2(k + 1)xk−1(xk+1 + 1). (23)

To prove Equation (23), we use the same technique we used in the proof of Lemma 1:

we show that βk(x) = 2k−2(k + 1)xk−1(xk+1 + 1) for all x ∈ Ak, where the set Ak
is defined in Equation (15). Since the degree of the polynomial βk(x) is at most k2

and #Ak = k(k+1)+1, proving the latter claim is more than enough in establishing

Equation (23).
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Putting x = 0 on both sides of Equation (23), we get
∑k
i=0 ω

2
i,k = 0, which is

true because k ≥ 2. Setting x = ρn/ωm,k on both sides of Equation (23), we get

ω2
m,k

k∏
j=0
j 6=m

(
1− ωj,k

(
ρn
ωm,k

)
− ω2

j,k

(
ρn
ωm,k

)2

− · · ·ωkj,k
(

ρn
ωm,k

)k)

= 2k−2(k + 1)

(
ρn
ωm,k

)k−1
((

ρn
ωm,k

)k+1

+ 1

)
.

The above equation is equivalent to

k∏
j=0
j 6=m

1− 2
(
ρnωj,k

ωm,k

)
+
(
ρnωj,k

ωm,k

)k+1

1−
(
ρnωj,k

ωm,k

) = 2k−2ρk−1
n (k + 1)(ρk+1

n + 1) (24)

= 2k−1ρkn(k + 1), (25)

where we have used the equality 1− 2ρn + ρk+1
n = 0. After some simple algebra, we

see that Equations (24) and (25) are equivalent to

k∏
j=0
j 6=m

2ρn

(
1− ωj,k

ωm,k

)
1−

(
ρnωj,k

ωm,k

) = 2k−1ρkn(k + 1)⇐⇒
k∏
j=0
j 6=m

ωm,k − ωj,k
ωm,k − ρnωj,k

=
k + 1

2
.

But the last equation follows immediately from Equations (18) in Lemma 2. This

means that Equation (23) is true for x = ρn/ωm,k. Thus, βk(x) = 2k−2(k +

1)xk−1(xk+1 + 1) for all x ∈ Ak, and this establishes Equation (23) for all x, and

thus Equation (22) for all x for which the denominators are not zero.

Lemma 4 and Equation (22) imply that

∞∑
r=0

F
(k)
(k+1)r+kx

r(k+1) =
2k−2(xk+1 + 1)

2k −
∑k
`=1 2k−`(xk+1 + 1)`

for |x| < 1

2− 1
2k

.

Given real y ∈ [0, 1/(2− 1/2k)k+1), we let x = y1/(k+1) in the above equation, and

we obtain
∞∑
r=0

F
(k)
(k+1)r+ky

r =
2k−2(y + 1)

2k −
∑k
`=1 2k−`(y + 1)`

. (26)

Using Equation (26) and the Uniqueness Theorem from Complex Analysis, we may

prove that Equation (11) holds for all complex x such that |x| <
(

1
2− 1

2k

)k+1

. �
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3. Review of the Theory of the Run Length of a Moving Average Process

All random variables are assumed to be defined on a common probability measure

space (Ω,F ,P) (where F is a σ-algebra of subsets of the sample space Ω). For

simplicity, the intersection of events A and B in F is denoted by AB (and the

definition can be extended to the intersection of a finite number of events in F ).

Consider a sequence of events (Ei)
∞
i=1 in F such that

P(Ei+1Ei+2 · · ·Ei+j) = P(E1E2 · · ·Ej) > 0 for all i, j ∈ Z>0. (27)

We also assume

P

( ∞⋂
i=1

Ei

)
= 0. (28)

When Ei occurs, we say the “sequence is in control at time i,” while when Eci
occurs, we say “the sequence is out of control at time i.” We define the run length

of the sequence (Ei)
∞
i=1 by

RL = inf{i ∈ Z>0 : Eci } (where inf ∅ := +∞). (29)

Consider the probabilities

p0 = 1, pi = P(E1E2 · · ·Ei) where i ∈ Z>0.

By Equation (27), we have pi > 0 for all i ∈ Z>0, even though Equation (28) is

equivalent to limn→∞ pn = 0. Since

P(RL = i) = P(E1E2 · · ·Ei−1E
c
i ) = pi−1 − pi for i ∈ Z>0,

it is also trivial to show that RL : Ω → R ∪ {∞} is an extended random variable

with P(RL = +∞) = 0 because of Equation (28).

Many authors have studied the average run length (ARL) of the sequence of the

events (Ei)
∞
i=1, defined as

ARL = E(RL) =

∞∑
`=1

`(p`−1 − p`).

See, for example, Böhm and Hackl [3], Lai [10], and Zhang et al. [21].

Note that, if

lim
n→∞

npn = 0, (30)

we may easily show that

ARL =

∞∑
i=0

pi.
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Of course, Equation (30) implies Equation (28). In addition, if Equation (30) holds,

either both of the series

∞∑
`=1

`(p`−1 − p`) and

∞∑
`=0

p`

converge or both diverge to ∞.

We define the rth factorial moment of the run length by

ARLr := E([RL]r) =

∞∑
`=r

[`]r(p`−1 − p`) for r ∈ Z>0,

where the falling factorial [a]r is defined in Equation (9) in Section 1. Some of these

factorial moments, of course, may be infinite. (Note that ARL = ARL1.)

Assuming that, for a given r ∈ Z>0,

lim
n→∞

[n]rpn = 0, (31)

one can use Equation (10) in Section 1 and summation by parts (Abel partial

summation) to show that ARLr equals

ARLr = r

∞∑
`=r−1

[`]r−1p`. (32)

In more detail, to prove Equation (32), first apply Equation (8) in Section 1 with

a0 = A0 = −p0, aj = pj−1 − pj and Aj = −pj for j ≥ 1,

b0 = B0 = 0, bj = r[j − 1]r−1 and Bj = [j]r for j ≥ 1.

To prove that
∑j
i=0 bi = Bj , use Equation (10). Afterwards, let n → ∞ and use

Equation (31) and the fact that [`]r = 0 for 0 ≤ ` < r. (Clearly, if Equation (31)

holds for r = r∗ ∈ Z>0, then it also holds for all r ∈ Z>0 with r ≤ r∗.)
The probability generating function (p.g.f.) of the run length, RL, of the sequence

of events (Ei)
∞
i=1 is defined by

G(t) = E(tRL) =

∞∑
`=1

t`(p`−1 − p`).

We have the following result whose proof we omit.

Proposition 1. Let (Ei)
∞
i=1 be a sequence of events satisfying conditions (27) and

(28) with p.g.f. G(t) for its run length. If R is the radius of convergence of the

p.g.f., then R ≥ 1 and

G(t) = 1 + (t− 1)

∞∑
`=0

p`t
` for |t| < R. (33)
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If p1 = P(E1) < 1, then R ≥ 1/p
1/k
1 > 1, and Equation (33) holds for all t ∈

[1, 1/p
1/k
1 ).

In case R > 1, then for all r ∈ Z>0, the derivative drG(t)
dtr exists at t = 1, ARLr

is finite, and

ARLr =
drG

dtr

∣∣∣∣
t=1

.

Next we explain the main statistical model used in this paper. Let k be a

fixed positive integer, (Xn)∞n=1 be a sequence of independent random variables with

common cumulative distribution function F : R→ [0, 1], with respect to (Ω,F ,P),

and (ai)
k
i=1 be a finite sequence of known positive constants. The moving average

control chart (MA chart) has the control statistic

Yi =

i+k−1∑
j=i

ai+k−jXj =

k∑
s=1

asXi+k−s for i ∈ Z>0. (34)

Since the constant coefficients in Equation (34) are the same for each Yi, the Yi’s

are identically distributed. For a fixed constant c ∈ R, whose value is specified by

the practitioner, an “out of control signal” at time i ∈ Z>0 is indicated by Yi > c,

while the event Yi ≤ c indicates that the “the signal is not out of control at time

i”. We assume that c is chosen so that

0 < P(Y1 ≤ c) < 1 (35)

and

P (Y1 ≤ c, Y2 ≤ c, . . . , Ym ≤ c) > 0 for each m ∈ Z>0. (36)

The following proposition (whose proof we omit) allows us to frame the “in control

at time i” events in terms of the previous theory.

Proposition 2. For the MA chart (Yi)
∞
i=1 defined by Equation (34) and for a fixed

c ∈ R such that conditions (35) and (36) hold, if we let Ei := [Yi ≤ c] for each

i ∈ Z>0, then the infinite sequence (Ei)
∞
i=1 satisfies conditions (27), (28), and (31)

for each r ∈ Z>0.

Unlike Zhang et al. [21], other authors, such as Lai [10] and Ross [17], define the

control statistic of an MA chart differently. For example, they define

Ws =

s∑
j=s−k+1

as+1−jXj for s ≥ k and (37)

RL(W ) = inf{s ∈ Z>0 : s ≥ k and Ws > c}. (38)

Denote by RL(Y ) the run length of the sequence of control statistics (Yi)
∞
i=1, as

defined by Equation (34), and by RL(W ) the run length of the sequence (Ws)
∞
s=k.
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Use similar notation for the average, the factorial moments, and the p.g.f.’s of the

run lengths of the two sequences (Yi)
∞
i=1 and (Ws)

∞
s=k. Letting ARL0 := 1, we then

have

Ws = Ys−k+1 for s ∈ Z≥k, Ei = [Yi ≤ c] = [Wi+k−1 ≤ c] for i ∈ Z>0, (39)

RL(W ) = RL(Y ) + (k − 1), ARL(W ) = ARL(Y ) + (k − 1), (40)

ARLr(W ) = r!

r∑
`=max(0,r−k+1)

(
k − 1

r − `

)
ARL`(Y )

`!
for k, r ∈ Z>0, (41)

and

GW (t) = tk−1GY (t) for |t| < RY = RW .

4. The Factorial Moments of the k-step Bernoulli-Fibonacci Distribution

In this section, we generalize an example from Zhang et al. [21] for symmetric

Bernoulli processes and we derive the factorial moments of the generalized k-

step Bernoulli-Fibonacci distribution. Let (Xi)
∞
i=1 be a sequence of independent

Bernoulli variables with

P(Xi = 0) = P(Xi = 1) =
1

2
for i ∈ Z>0. (42)

Moreover, consider the MA process given by Equations (34) in Section 3 with k ∈
Z>0, a1 = a2 = · · · = ak = 1, and c = k − 1. Then

Yi > c if and only if Xi = Xi+1 = · · · = Xi+k−1 = 1. (43)

For i ∈ Z≥0, consider the set of binary sequences

∆i,k =
{

(δ1, . . . , δi+k−1) ∈ {0, 1}i+k−1 | (δj , . . . , δj+k−1) 6= (1, . . . , 1) for j = 1, . . . , i
}
.

As in Zhang et al. [21], we obtain the following representation for pi:

pi = P(Y1 ≤ k − 1, . . . , Yi ≤ k − 1)

= P

`+k−1∑
j=`

Xj ≤ k − 1 for ` = 1, . . . , i


=

∑
(δ1,...,δi+k−1)∈∆i,k

P (X1 = δ1, . . . , Xi+k−1 = δi+k−1) =
#∆i,k

2i+k−1
. (44)

It is well-known–e.g., see Philippou and Makri [15] or Zhang and Hadjicostas [20]–

that

#∆i,k = F
(k)
i+k+1 for i ∈ Z≥0. (45)
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Using Equations (2), (6), and (45), we obtain

∞∑
i=0

(#∆i,k)xi =
2k−1 − x− x2

∑k−2
`=0 (2x)`

(1− x)(1− (x+ · · ·+ xk))
. (46)

Power series (6) and (46) have the same radius of convergence R∗k, which satisfies

inequality (7).

In the following theorem, we give a simple formula for the r-th factorial moment

of the run length RL(Y ) for each k ∈ Z>0.

Theorem 2. Let k ∈ Z>0, let Gk(t) be the p.g.f. of the run length of the sequence

of events (Ei)
∞
i=1 = ([Yi ≤ k − 1])∞i=1, and let ARL(k)

r be the k-th factorial moment

of the run length. Then

Gk(t) =
t

2k − 2k−1t− 2k−2t2 − · · · − tk
for |t| < 1

1− 1
2k+1

(47)

and ARL(k)
r =

r!F
(k)
(k+1)r+k

2k−2
for r ∈ Z>0. (48)

(For k ≥ 2, we may let ARL
(k)
0 := 1, and Equation (48) still holds.)

Proof. Clearly, p1 = 2k−1
2k ∈ (0, 1) and pn > 0 for each n ∈ Z≥0, and so conditions

(35) and (36) hold. By Proposition 2, the infinite sequence (Ei)
∞
i=1 satisfies condi-

tions (27), (28), and (31) for each r ∈ Z>0. By Proposition 1 and Equations (44)

and (46), the p.g.f. of the run length of the sequence of events (Ei)
∞
i=1 is

Gk(t) = 1 + (t− 1)

∞∑
`=0

p`t
` (49)

= 1 +
t− 1

2k−1

∞∑
`=0

#∆`,k

(
t

2

)`
(50)

= 1 +
(t− 1)

(
2k+1 − 2t− t2

∑k−2
`=0 t

`
)

(2− t)(2k − 2k−1t− 2k−2t2 − · · · − tk)
. (51)

After some algebra on Equation (51), we may prove the formula for Gk(t) in Equa-

tion (47).

The expansions in the infinite series in (49) and (50) are valid for
∣∣ t

2

∣∣ < R∗k,

where R∗k is the radius of convergence of power series (6) and (46). Because of

inequality (7), this means that these power series expansions are valid at least for

|t| < 1
1− 1

2k+1
.

To prove Equation (48) for k = 1, note that

1 +

∞∑
r=1

r!F
(1)
2r+1

r!21−2
(t− 1)r = 1 + 2

∞∑
r=1

(t− 1)r =
t

2− t
= G1(t) for |t− 1| < 1,



INTEGERS: 21 (2021) 16

i.e., for 0 < t < 2. This means ARL(1)
r =

r!F
(1)
2r+1

21−2 = 2r! for r ≥ 1.

Assume now k ≥ 2. By Theorem 1 in Section 2,

∞∑
r=0

F
(k)
(k+1)r+kx

r =
2k−2(x+ 1)

2k −
∑k
`=1 2k−`(x+ 1)`

for |x| <

(
1

2− 1
2k

)k+1

. (52)

Thus,

∞∑
r=0

r!F
(k)
(k+1)r+k

r!2k−2
(t− 1)r =

t

2k −
∑k
`=1 2k−`t`

= Gk(t) for |t− 1| <

(
1

2− 1
2k

)k+1

.

Also,
0!F

(k)

(k+1)0+k

2k−2 =
F

(k)
k

2k−2 = 1 because k ≥ 2. This proves that

ARL(k)
r =

r!F
(k)
(k+1)r+k

2k−2
for r ≥ 0,

and the proof of the theorem is complete.

Remark 1. Medhi [11] and Shane [18] essentially consider the random variables

(Ws : s ≥ k) defined by Equation (37) with a1 = · · · = ak = 1 and the run length

RL(W ) defined by Equation (38) with c = k − 1. This means that, for s ≥ k,

Ws = Xs−k+1 + · · ·+Xs; (53)

i.e., at time s ≥ k, Ws is the number of 1’s we observe in Bernoulli trials s− k + 1

through s. In contrast, in this section, for i ≥ 1,

Yi = Xi + · · ·+Xi+k−1. (54)

That is, at time i ≥ 1, Yi is the number of 1’s in Bernoulli trials i through i+k− 1.

Medhi [11, Equation (3.8), p. 218] and Shane [18, Equation (15), p. 521] derived

the p.g.f. of RL(W ), which is the number of Bernoulli trials needed to get k suc-

cessive 1’s for the first time starting the counting at time k, while RL(Y ) is the

number of Bernoulli trials needed to get k successive 1’s for the first time starting

the counting at time 1. We see from Equations (39)–(41) that Ws = Ys−k+1 for

s ≥ k, and the p.g.f. of RL(W ) is tk−1Gk(t), where Gk(t) is given by Equation (47).

Medhi [11] obtained the p.g.f. of RL(W ), but no higher moments. Shane [18,

Equation (9), p. 519], on the other hand, did obtain (in some form) all the factorial

moments of RL(W ) for the case k = 2, but he stated (on p. 521 of his paper)

that no closed form formula is known for a general k ≥ 3. In addition, because of

Equations (41) and (48), it would have been more difficult to identify the higher

factorial moments of RL(W ):

ARLr(W ) =
r!

2k−2

r∑
`=0

(
k − 1

r − `

)
F

(k)
(k+1)`+k for k ≥ 2 and r ≥ 1. (55)
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(As usual,
(
a
b

)
= 0 for 0 ≤ a < b.)

Remark 2. Medhi [11] mentions that his/her formula for the p.g.f. of RL(W )

in the symmetric case is a special case of a more general formula by Feller [7,

Equations (7.6), Section XIII.7]. If

P(Xi = 1) = p and P(Xi = 0) = q for i ∈ Z>0, (56)

where 0 < p, q < 1 with p+ q = 1, and (Ws : s ≥ k) and RL(W ) are defined as in

Remark 1 above, then the p.g.f. of RL(W ) is

GW,k(t) =
pktk(1− pt)

1− t+ qpktk+1
=

pktk

1− qt(1 + pt+ · · ·+ pk−1tk−1)
.

Feller [7, Equations (7.7), Section XIII.7] proved that

E(RL(W )) =
1− pk

qpk
and Var(RL(W )) =

1

(qpk)2
− 2k + 1

qpk
− p

q2
.

In the general case (56), the p.g.f. for the run length RL(Y ) of our sequence

(Yi : i ∈ Z>0) is t−(k−1)GW,k(t). We did not attempt to derive factorial moments

for the run length of this (not necessarily symmetric) generalized k-step Bernoulli-

Fibonacci distribution, but given our Theorem 2 above, we believe it would be easier

to work with the p.g.f. t−(k−1)GW,k(t) (rather than the p.g.f. GW,k(t)).

Given related research–see Koutras [9], Philippou and Makri [15], Philippou et

al. [14], and Philippou [16]–we strongly believe that the factorial moments of both

RL(Y ) and RL(W ) involve some kind of Fibonacci-like polynomials. For example,

Philippou and Makri [15] have calculated the factorial moments of the length Ln
of the longest success run in n Bernoulli trials using generalized Fibonacci-like

polynomials.

5. Conclusion

Ozdemir and Simsek [12] and Ozdemir et al. [13] defined the Fibonacci-type poly-

nomials (x, y) 7→ Gd(x, y; k,m, n) through the generating function

∞∑
d=0

Gd(x, y; k,m, n) td =
1

1− xkt− ymtn+m
, (57)

where k,m, n ∈ Z≥0. They proved that

Gd(x, y; k,m, n) =

bd/(m+n)c∑
c=0

(
d− c(m+ n− 1)

c

)
ymcxdk−mck−nck.



INTEGERS: 21 (2021) 18

Indeed, Equation (4) (due to Dunkel [6]) can be expressed as

S(k̃, ñ) = Gd=ñ(x = 2, y = −1; k = 1,m = 1, n = k̃)

and therefore, from Equation (3), we get

F
(k̃)
ñ = Gd=ñ−2(x = 2, y = −1; k = 1,m = 1, n = k̃)

−Gd=ñ−k̃−2(x = 2, y = −1; k = 1,m = 1, n = k̃). (58)

The integer #∆i,k̃ (see Equation (45)), which equals the number of 0-1 sequences

of length i+ k̃ − 1 that avoid k̃ consecutive 1’s, can then be expressed as

#∆i,k̃ = F
(k̃)

i+k̃+1
= Gd=i+k̃−1(x = 2, y = −1; k = 1,m = 1, n = k̃)

−Gd=i−1(x = 2, y = −1; k = 1,m = 1, n = k̃). (59)

Given Equations (58) and (59) above, one might conjecture that the identification

of the factorial moments of a non-symmetric Bernoulli-Fibonacci distribution (see

Equations (56) in Section 4), or a variation of the Bernoulli-Fibonacci distribution,

might be achieved by using the polynomials (x, y) 7→ Gd(x, y; k,m, n) defined via

the generating function in Equation (57). These polynomials are probably related

to the Fibonacci-like polynomials in Philippou and Makri [15], who used them to

solve related problems. We did not attempt to resolve the related problems for any

of these generalizations.

Finally, we mention that the techniques of Section 2 can be modified to give

similar results for other subsequences of the generalized k-step Fibonacci numbers.

For example, the proof of Lemma 4 can be modified to yield

∞∑
r=0

F
(k)
(k+1)(r+1)−mx

(k+1)r =
1

k + 1

k∑
i=0

ωm+1
i,k xm−k

1− ωi,kx− ω2
i,kx

2 − · · ·ωki,kxk

for k,m ∈ Z≥0 with k ≥ m+ 1 and |x| < 1
2− 1

2k
. As a result, the proof of Theorem 1

can be modified to yield

∞∑
r=0

F
(k)
(k+1)(r+1)−mx

r =
2k−1−m(x+ 1)m

2k −
∑k
`=1 2k−`(x+ 1)`

for |x| <

(
1

2− 1
2k

)k+1

. (60)

The above formula is again valid for for k,m ∈ Z≥0 with k ≥ m+ 1. We omit the

details of the proofs.
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A. Appendix: Proof of Inequality (7) About a Radius of Convergence

Let k ≥ 2. The radius of convergence R∗k of power series (6) is the smallest modulus

among all k (possibly complex) roots of the polynomial qk(x), which is defined by

Equation (12). Since qk(x) = xkrk
(

1
x

)
, where rk(y) is defined by Equation (13),

1
R∗

k
is the largest modulus among all k (possibly complex) roots of the polynomial

rk(y).

Capocelli and Cull [4] and Wolfram [19] proved that the characteristic polynomial

rk(y) has a unique positive root χ
(k)
0 , and this root satisfies

2− 1

2k−1
< χ

(k)
0 < 2− 1

2k
. (61)

Furthermore, they proved that any other (possibly complex) root χ
(k)
i of rk(y)

satisfies
1
k
√

3
< |χ(k)

i | < 1. (62)

It follows from inequalities (61) and (62) that, for k ≥ 2,

1

R∗k
< max

(
2− 1

2k
, 1

)
= 2− 1

2k
=⇒ R∗k >

1

2− 1
2k

.

This proves inequality (7).
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