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Abstract

Let n0 be 1 or 3. If a multiplicative function f satisfies f(p + q − n0) = f(p) +
f(q) − f(n0) for all primes p and q, then f is the identity function f(n) = n or a
constant function f(n) = 1.

1. Introduction

In 2016 Chen, Fang, Yuan, and Zheng showed that if a multiplicative function f

satisfies f(p + q + n0) = f(p) + f(q) + f(n0) with 1 ≤ n0 ≤ 106 then f is the

identity function provided f(p0) 6= 0 for some prime p0 [1]. This is a variation of

Spiro’s seminal paper in 1992 in which she dealt multiplicative functions satisfying

f(p + q) = f(p) + f(q) [7]. She called the set of primes an additive uniqueness set

for multiplicative functions f with f(p0) 6= 0 for some prime p0.

A natural question follows about n0 being negative for the paper of Chen et al.

It is natural to consider the condition f(p + q − n0) = f(p) + f(q) − f(n0) with

n0 = 1, 2, 3 because a multiplicative function is defined on positive integers.

The author already studied a multiplicative function satisfying f(p + q − 2) =

f(p) + f(q)− f(2), which also yields that the set of numbers 1 less than primes is

an additive uniqueness set for multiplicative functions [5].

In this article we classify multiplicative functions satisfying f(p + q − n0) =

f(p) + f(q) − f(n0) with n0 = 1, 3. For consistency we state the classification for

n0 = 2 as well.

Theorem 1. If a multiplicative function f satisfies f(p+q−1) = f(p)+f(q)−f(1)

for all primes p and q, then f is the identity function f(n) = n or a constant

function f(n) = 1.
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Theorem 2 ([5]). If a multiplicative function f satisfies f(p+q−2) = f(p)+f(q)−
f(2) for all primes p and q, then f is the identity function f(n) = n, a constant

function f(n) = 1, or f(n) = 0 for n ≥ 2 unless n is odd and squareful.

Theorem 3. If a multiplicative function f satisfies f(p+q−3) = f(p)+f(q)−f(3)

for all primes p and q, then f is the identity function f(n) = n or a constant

function f(n) = 1.

Theorem 2 for n0 = 2 has one more option. We give a proof for Theorem 3. We

briefly skech the proof of Theorem 1, because it is similar. The proof of Theorem 2

is given in [5, §4].

2. Lemmas

Lemma 1. Assume a multiplicative function f satisfies f(p+q−3) = f(p)+f(q)−
f(3) for all primes p and q. Then, f(n) = 1 or f(n) = n for n = 2, 3, 5, 7, and 11.

Proof. Note that f(1) = 1 and the equalities

f(1) = f(2 + 2− 3) = f(2) + f(2)− f(3),

f(7) = f(5 + 5− 3) = f(5) + f(5)− f(3),

f(10) = f(2) f(5)

= f(11 + 2− 3) = f(11) + f(2)− f(3),

f(11) = f(7 + 7− 3) = f(7) + f(7)− f(3),

f(15) = f(3) f(5)

= f(11 + 7− 3) = f(11) + f(7)− f(3).

For convenience, let a = f(2), b = f(3), c = f(5), d = f(7), e = f(11). Then,

1 = 2a− b (1)

d = 2c− b (2)

ac = e + a− b (3)

e = 2d− b (4)

bc = e + d− b. (5)

Equation (3) becomes

ac = 4c− 7a + 4

by the Equations (1), (2), and (4). Also, Equation (5) becomes

2ac = 7c− 10a + 5.
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So, c = 4a− 3 and we obtain an equation a2 − 3a + 2 = 0.

Thus, a = 1 or a = 2 and it follows that

f(2) = 1, f(3) = 1, f(5) = 1, f(7) = 1, f(11) = 1;
f(2) = 2, f(3) = 3, f(5) = 5, f(7) = 7, f(11) = 11.

Lemma 2. The results in Lemma 1 can be extended up to n odd and n < 1010.

Proof. We use induction. Let n be odd and 11 < n < 1010.

If n is prime, then n = 6k − 1 or n = 6k + 1. Suppose n = 6k − 1. Note that

f(n + 4) = f(6k + 3) = f(n + 7− 3) = f(n) + f(7)− f(3).

Since 6k+ 3 can be factored into the product of two smaller integers, f(6k+ 3) = 1

or f(6k + 3) = 6k + 3 by the induction hypothesis. Thus, f(n) = 1 or f(n) = n

when n = 6k − 1 is prime.

Similarly, if n is a prime of the form 6k + 1, then f(n) = 1 or f(n) = n by

f(n + 2) = f(6k + 3) = f(n + 5− 3) = f(n) + f(5)− f(3).

If n is not a prime, n is either a product of two relatively prime integers or a

power of a prime. The first case is easy by the multiplicity of f . So the second case

remains.

Now, assume that n is a power of a prime with exponent ≥ 2. Then, n + 3 is

even and can be written as a sum of two primes p and q with 5 ≤ p, q < n by the

numerical verification of the Goldbach Conjecture up to 4× 1018 [4].

Then, since f(n) = f(n + 3− 3) = f(p + q − 3) = f(p) + f(q)− f(3), we obtain

that f(n) = 1 or f(n) = n by the induction hypothesis.

Indeed, those can be extended up to n ≤ 4× 1018 − 3.

Lemma 3. The results in Lemma 1 can be extended up to n even and n < 1010.

Proof. It is enough to investigate f(2r) with r ≤ 33. Note that k ·2r +1 with k < 2r

is called Proth number. If a Proth number is prime, it is called a Proth prime. It

is verified that there exists an odd integer k ≤ 4141 such that k · 2r + 1 is a Proth

prime for 1 ≤ r ≤ 1000 in The On-Line Encyclopedia of Integer Sequences (OEIS,

https://oeis.org/A057778), although the infinitude of Proth primes is not yet

proved [6].

Then, k · 2r + 1 is an odd prime and

f(k) f(2r) = f
(
(k · 2r + 1) + 2− 3

)
= f(k · 2r + 1) + f(2)− f(3).

Thus, we are done by Lemmas 1 and 2.
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If the Goldbach Conjecture and the infinitude of Proth primes for all exponents

were proved, Theorem 3 could be easily proved. But, neither of them has not yet

been proved, so that we need other strategy. In the following lemma, vp(n) means

the exponent of p in the prime factorization of n when p is a prime and n is a

positive integer. The set H was defined by Spiro and the numerical verification of

the Goldbach Conjecture was up to 2× 1010 at that time. We would call the set H

in the lemma the Spiro set.

Lemma 4. Let

H = {n | vp(n) ≤ 1 if p > 1000; vp(n) ≤ b9 logp 10c − 1 if p < 1000}.

For any integer m > 1010, there is an odd prime q ≤ m− 1 such that m + q ∈ H.

Proof. This lemma is the consequence of [1, Lemma 2.4] which follows the proof of

[7, Lemma 5].

Lemma 5 ([2, 3, 8]). Almost every even positive integer is expressible as the sum

of two primes.

Lemma 6. The restricted function f |H is the identity function or a constant func-

tion on H.

Proof. Assume f(n) = n for n = 2, 3, 5, 7, 11. If n < 1010, then f(n) = n from

Lemmas 2 and 3. Let n ∈ H with n ≥ 1010 and assume that f(m) = m for all

m ∈ H with m < n. If n is not a prime power, then f(n) = f(a)f(b) with (a, b) = 1

and a, b > 1. Since f(a) = a and f(b) = b by the induction hypothesis, f(n) = n.

Now, if n is a prime power, then n is a prime by the definition of H. If n = 6k−1,

then consider n + 7− 3 = 6k + 3. Since

f(n + 4) = f(6k + 3) = f(n + 7− 3) = f(n) + f(7)− f(3)

and 6k + 3 can be factored into the product of two smaller integers, f(n) = n.

Similarly, if n = 6k + 1, then

f(n + 2) = f(6k + 3) = f(n + 5− 3) = f(n) + f(5)− f(3)

yields f(n) = n.

By the same reasoning, we can conclude that f(n) = 1 if

f(2) = f(3) = f(5) = f(7) = f(11) = 1.
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Lemma 7 ([7, Lemma 7]). For any positive integer n, put

Hn =

{
{mn : m ∈ H, (m,n) = 1} if 2 | n;

{2mn : 2m ∈ H, (m,n) = 1} if 2 - n.

Then Hn satisfies the following properties:

1. Every element of Hn is even.

2. The set Hn has positive lower density.

3. Proofs of Theorems

Let us start to prove Theorem 3. Suppose that there exists n for which f(n) 6= n.

For kn ∈ Hn, we have that

f(kn) = f(k) f(n) = k f(n).

If f(kn) = kn, then f(n) = f(kn)/k = kn/k = n, which contradicts. So f(kn) 6= kn

for every kn ∈ Hn.

But, if kn + 3 with k odd can be represented as a sum of two primes p and q,

then

f(kn) = f(p + q − 3) = f(p) + f(q)− f(3) = p + q − 3 = kn.

Thus, this implies that there exist many counterexamples to the Goldbach Conjec-

ture whose density is positive. But, this contradicts Lemma 5. Therefore, f(n) = n

for all n.

We can prove Theorem 1 in the similar way. First, we have that

f(3) = f(2 + 2− 1) = f(2) + f(2)− f(1),

f(5) = f(3 + 3− 1) = f(3) + f(3)− f(1),

f(6) = f(2) f(3)

= f(5 + 2− 1) = f(5) + f(2)− f(1).

Let a = f(2), b = f(3), and c = f(5). Then,

b = 2a− 1, c = 2b− 1, ab = c + a− 1.

Thus,

a(2a− 1) =
(
2(2a− 1)− 1

)
+ a− 1

and it becomes a2 − 3a + 2 = 0. Hence, a = 1 or a = 2.
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Next, we should check f(2r) as in Lemma 3. We can use k · 2r − 1 instead of

k · 2r + 1. The list of prime k · 2r − 1 with 0 ≤ r ≤ 10000 is in OEIS (https:

//oeis.org/A126717). See also [6].
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