

FINITE SUMS OF CONSECUTIVE TERMS OF A SECOND ORDER LINEAR RECURRENCE RELATION

Curtis Cooper

School of Computer Science and Mathematics, University of Central Missouri, Warrensburg, Missouri cooper@ucmo.edu

Received: 6/10/21, Accepted: 11/15/21, Published: 11/23/21

Abstract

Let a, b, p, and q be integers. Let $W_0(a, b; p, q) = a$, $W_1(a, b; p, q) = b$, and for $n \ge 2$, let $W_n(a, b; p, q) = pW_{n-1}(a, b; p, q) + qW_{n-2}(a, b; p, q)$. Let n and m be nonnegative integers. We will find a formula for $\sum_{i=n}^{n+m} W_i(a, b; 1, q)$.

1. Introduction

We begin by defining a Horadam sequence [1].

Definition 1. Let a, b, p, and q be integers. Let $W_0(a, b; p, q) = a, W_1(a, b; p, q) = b$, and for $n \ge 2$, let

$$W_n(a, b; p, q) = pW_{n-1}(a, b; p, q) + qW_{n-2}(a, b; p, q).$$

Let $X_n(a,b;p,q) = W_{n+1}(a,b;p,q) + W_{n-1}(a,b;p,q)$ for $n \ge 1$. Let $U_n = W_n(0,1;p,q)$ and $V_n = X_n(0,1;p,q)$ for $n \ge 0$. Finally, we define $H_n(a,b) = W_n(a,b;1,1)$ for $n \ge 0$.

When there is no confusion regarding the initial values a and b and recurrence coefficients p and q, we write $W_n(a, b; p, q)$ as W_n . Note that the Fibonacci numbers are $F_n = W_n(0, 1; 1, 1)$, the Lucas numbers are $L_n = W_n(2, 1; 1, 1)$, the Pell numbers are $P_n = W_n(0, 1; 2, 1)$, and the Jacobsthal numbers are $J_n = W_n(0, 1; 1, 2)$.

Several authors have studied this topic. Russell [5, 6] did some initial work. Melham [2] showed that for nonnegative integers n and m,

$$\begin{split} &\sum_{i=n}^{n+m} W_i(a,b;p,1) \\ &= \begin{cases} \frac{1}{p} V_{(m+1)/2}(a,b;p,1) (W_{(2n+m+1)/2}(a,b;p,1) + W_{(2n+m-1)/2}(a,b;p,1)), \\ &\text{if } m \equiv 1 \pmod{4}; \\ \frac{1}{p} U_{(m+1)/2}(a,b;p,1) (X_{(2n+m+1)/2}(a,b;p,1) + X_{(2n+m-1)/2}(a,b;p,1)), \\ &\text{if } m \equiv 3 \pmod{4}. \end{cases} \end{split}$$

We will find a formula for

$$\sum_{i=n}^{n+m} W_i(a,b;1,q)$$

for integers a, b, and q.

To state some of our theorems, we need to define the general rth order linear recurrence, where $r \geq 2$ is an integer.

Definition 2. Let $n \ge 0$ and $r \ge 1$ be integers. Also, let $\{a_i\}_{i=0}^{r-1}$ and $\{c_i\}_{i=1}^r$ be two finite sequences of r integers. The general rth order Horadam sequence is defined by

$$W_n(a_0, a_1, \dots, a_{r-1}; c_1, c_2, \dots, c_r) = \begin{cases} a_n, & \text{if } 0 \le n \le r-1; \\ \sum_{i=1}^r c_i W_{n-i}(a_0, a_1, \dots, a_{r-1}; c_1, c_2, \dots, c_r), & \text{if } n \ge r. \end{cases}$$

In Section 2, we give a definition and state and prove a helpful lemma. Also, in Section 2, we compute a finite sum of terms involving consecutive Us. Then, in Section 3, we will compute a finite sum of consecutive Ws, where a, b, and q are integers and p = 1.

2. Finite Sums Involving Consecutive Us

Definition 3. Let $n \ge 0$ and p and q be integers. Let

$$Y_n = W_n(0, q, 2pq; 2p, q - p^2, -pq).$$

Note that when p = q = 1, we have $Y_n(0, 1, 2; 2, 0, -1) = F_{n+2} - 1$ [3, A000071]. Also, when p = 2 and q = 1, $Y_n(0, 1, 4; 4, -3, -2)$ is [3, A094706] and is the convolution of P_n and 2^n . And, when p = 1 and q = 2, we define $G_n = Y_n(0, 2, 4; 2, 1, -2)$, which is [3, A167030].

Lemma 1. Let p and q be integers. Then

$$U_n = \sum_{i>0} \binom{n-1-i}{i} p^{n-1-2i} q^i \text{ for } n \ge 0, \tag{1}$$

$$Y_n = \sum_{i \ge 0} \binom{n-i}{i+1} p^{n-1-2i} q^{i+1} \text{ for } n \ge 2.$$
(2)

We will prove the formula for Y_n . The proof of the formula for U_n is similar and will be omitted.

Proof. The proof is by induction on n.

Base Step. For n = 2, the left-hand side of (2) is

$$Y_2 = W_2(0, q, 2pq; 2p, q - p^2, -pq) = 2pq.$$

The right-hand side of (2) is

$$\sum_{i\geq 0} \binom{2-i}{i+1} p^{2-1-2i} q^{i+1} = \binom{2}{1} p^1 q^1 = 2pq.$$

Therefore, the base step is true for n = 2.

For n = 3, the left-hand side of (2) is

$$Y_3 = W_3(0, q, 2pq; 2p, q-p^2, -pq) = 2p \cdot 2pq + (q-p^2) \cdot q = 4p^2q - q^2 - p^2q = 3p^2q + q^2.$$

The right-hand side of (2) is

$$\sum_{i\geq 0} \binom{3-i}{i+1} p^{3-1-2i} q^{i+1} = \binom{3}{1} p^2 q^1 + \binom{2}{2} p^0 q^2 = 3p^2 q + q^2.$$

Therefore, the base step is true for n = 3.

For n = 4, the left-hand side of (2) is

$$Y_4 = W_4(0, q, 2pq; 2p, q - p^2, -pq)$$

= $2p \cdot (3p^2q + q^2) + (q - p^2) \cdot 2pq + (-pq) \cdot q$
= $6p^3q + 2pq^2 + 2pq^2 - 2p^3q - pq^2$
= $4p^3q + 3pq^2$.

The right-hand side of (2) is

$$\sum_{i\geq 0} \binom{4-i}{i+1} p^{4-1-2i} q^{i+1} = \binom{4}{1} p^3 q^1 + \binom{3}{2} p^1 q^2 = 4p^3 q + 3pq^2.$$

Therefore, the base step is true for n = 4.

Induction Step. Let $n \ge 5$ and assume that the result is true n - 3, n - 2, and n - 1. We will prove the result for n. By the induction hypothesis, we know that

$$Y_{n-3} = \sum_{i \ge 0} \binom{n-3-i}{i+1} p^{n-4-2i} q^{i+1},$$

$$Y_{n-2} = \sum_{i \ge 0} \binom{n-2-i}{i+1} p^{n-3-2i} q^{i+1},$$

$$Y_{n-1} = \sum_{i \ge 0} \binom{n-1-i}{i+1} p^{n-2-2i} q^{i+1}.$$

Then, using the definition of Y_n , we have

$$Y_{n} = 2pY_{n-1} + (q-p^{2})Y_{n-2} - pqY_{n-3}$$

= $2p\sum_{i\geq 0} {\binom{n-1-i}{i+1}} p^{n-2-2i}q^{i+1} + (q-p^{2})\sum_{i\geq 0} {\binom{n-2-i}{i+1}} p^{n-3-2i}q^{i+1}$
 $- pq\sum_{i\geq 0} {\binom{n-3-i}{i+1}} p^{n-4-2i}q^{i+1}.$

Rearranging terms and using the binomial coefficient recurrence relation

$$\binom{a+1}{b} = \binom{a}{b} + \binom{a}{b-1},\tag{3}$$

twice, we know that for each $i \ge 0$,

$$2\binom{n-1-i}{i+1}p^{n-1-2i}q^{i+1} + \binom{n-2-i}{i+1}p^{n-3-2i}q^{i+2} -\binom{n-2-i}{i+1}p^{n-1-2i}q^{i+1} - \binom{n-3-i}{i+1}p^{n-3-2i}q^{i+2} = \binom{n-1-i}{i+1}p^{n-1-2i}q^{i+1} + \left(\binom{n-1-i}{i+1} - \binom{n-2-i}{i+1}\right)p^{n-1-2i}q^{i+1} + \left(\binom{n-2-i}{i+1} - \binom{n-3-i}{i+1}\right)p^{n-3-2i}q^{i+2} = \binom{n-1-i}{i+1}p^{n-1-2i}q^{i+1} + \binom{n-2-i}{i}p^{n-1-2i}q^{i+1} - \binom{n-3-i}{i}p^{n-3-2i}q^{i+2}.$$

Replacing i by i-1 in the last term of this expression, we have

$$\binom{n-1-i}{i+1}p^{n-1-2i}q^{i+1} + \binom{n-2-i}{i}p^{n-1-2i}q^{i+1} + \binom{n-2-i}{i-1}p^{n-1-2i}q^{i+1}.$$

Combining the last two terms in this expression using (3), we have

$$\binom{n-1-i}{i+1}p^{n-1-2i}q^{i+1} + \binom{n-1-i}{i}p^{n-1-2i}q^{i+1}.$$

Finally, combining the two remaining terms using (3), we have

$$\binom{n-i}{i+1}p^{n-1-2i}q^{i+1}.$$

Summing this last expression for all $i \ge 0$ gives us is what we wanted to prove. Therefore, the induction step is true. This completes the proof by induction. \Box We can arrange the terms of the polynomials U_n and Y_n in the following table. The sums of the rows of the table add up to U_n . We will show that the terms of Y_n appear in the table.

n	Sum						
0	0						
1	1						
2	1p						
3	$1p^{2}$	1q					
4	$1p^{3}$	2pq					
5	$1p^{4}$	$3p^2q$	$1q^2$				
6	$1p^{5}$	$4p^3q$	$3pq^2$				
$\overline{7}$	$1p^{6}$	$5p^4q$	$6p^{2}q^{2}$	$1q^3$			
8	$1p^{7}$	$6p^5q$	$10p^{3}q^{2}$	$4pq^3$			
9	$1p^{8}$	$7p^6q$	$15p^{4}q^{2}$	$10p^{2}q^{3}$	$1q^4$		
10	$1p^{9}$	$8p^7q$	$21p^{5}q^{2}$	$20p^{3}q^{3}$	$5pq^4$		
11	$1p^{10}$	$9p^{8}q$	$28p^{6}q^{2}$	$35p^4q^3$	$15p^2q^4$	$1q^5$	
12	$1p^{11}$	$10p^9q$	$36p^{7}q^{2}$	$56p^{5}q^{3}$	$35p^3q^4$	$6pq^5$	
13	$1p^{12}$	$11p^{10}q$	$45p^{8}q^{2}$	$84p^{6}q^{3}$	$70p^{4}q^{4}$	$21p^2q^5$	$1q^6$
14	$1p^{13}$	$12p^{11}q$	$55p^{9}q^{2}$	$120p^{7}q^{3}$	$126p^{5}q^{4}$	$56p^{3}q^{5}$	$7pq^6$

Now, we have a corollary to Lemma 1.

Corollary 1. Let $n \ge 4$. Then

 $U_n = p^{n-1} + Y_{n-2}.$

Proof. Let $n \ge 4$, p, and q be integers. By Lemma 1,

$$U_n = \sum_{i \ge 0} \binom{n-1-i}{i} p^{n-1-2i} q^i,$$
$$Y_{n-2} = \sum_{i \ge 0} \binom{n-2-i}{i+1} p^{n-3-2i} q^{i+1}.$$

Thus,

$$U_n = p^{n-1} + \sum_{i \ge 1} \binom{n-1-i}{i} p^{n-1-2i} q^i$$
$$= p^{n-1} + \sum_{i \ge 0} \binom{n-2-i}{i+1} p^{n-3-2i} q^{i+1}$$
$$= p^{n-1} + Y_{n-2}.$$

This completes the proof.

Lemma 2. Let n and m be nonnegative integers. Then

$$W_n(Y_{m+1}, Y_{m+2}; p, q) - pW_n(Y_m, Y_{m+1}; p, q) = qU_{n+m+1}.$$
(4)

Proof. We fix m and prove the lemma by induction on n. Note that by Lemma 1,

$$Y_{m} = \sum_{i \ge 0} {\binom{m-i}{i+1}} p^{m-1-2i} q^{i+1},$$

$$Y_{m+1} = \sum_{i \ge 0} {\binom{m+1-i}{i+1}} p^{m-2i} q^{i+1},$$

$$Y_{m+2} = \sum_{i \ge 0} {\binom{m+2-i}{i+1}} p^{m+1-2i} q^{i+1}.$$

Base Step. For n = 0, the left-hand side of (4) is

$$W_{0}(Y_{m+1}, Y_{m+2}; p, q) - pW_{0}(Y_{m}, Y_{m+1}; p, q) = Y_{m+1} - pY_{m}$$

$$= \sum_{i \ge 0} \binom{m+1-i}{i+1} p^{m-2i}q^{i+1} - p\sum_{i \ge 0} \binom{m-i}{i+1} p^{m-1-2i}q^{i+1}$$

$$= \sum_{i \ge 0} \left(\binom{m+1-i}{i+1} - \binom{m-i}{i+1} \right) p^{m-2i}q^{i+1}$$

$$= \sum_{i \ge 0} \binom{m-i}{i} p^{m-2i}q^{i+1}.$$

The right-hand side of (4) is

$$qU_{0+m+1} = qU_{m+1} = q\sum_{i\geq 0} \binom{m-i}{i} p^{m-2i}q^i = \sum_{i\geq 0} \binom{m-i}{i} p^{m-2i}q^{i+1}.$$

So the left-hand side and right-hand side are equal for n = 0.

For n = 1, the left-hand side of (4) is

$$W_{1}(Y_{m+1}, Y_{m+2}; p, q) - pW_{1}(Y_{m}, Y_{m+1}; p, q) = Y_{m+2} - pY_{m+1}$$

$$= \sum_{i \ge 0} \binom{m+2-i}{i+1} p^{m+1-2i}q^{i+1} - p\sum_{i \ge 0} \binom{m+1-i}{i+1} p^{m-2i}q^{i+1}$$

$$= \sum_{i \ge 0} \left(\binom{m+2-i}{i+1} - \binom{m+1-i}{i+1} \right) p^{m+1-2i}q^{i+1}$$

$$= \sum_{i \ge 0} \binom{m+1-i}{i} p^{m+1-2i}q^{i+1}.$$

The right-hand side of (4) is

$$qU_{1+m+1} = qU_{m+2} = q\sum_{i\geq 0} \binom{m+1-i}{i} p^{m+1-2i} q^i = \sum_{i\geq 0} \binom{m+1-i}{i} p^{m+1-2i} q^{i+1}.$$

So the left-hand side and right-hand side are equal for n = 1. Therefore, the base step is true.

Induction Step. Let $n \ge 2$ and assume that the result is true n-2 and n-1. We will prove the result for n.

By the induction hypothesis, we know that

$$W_{n-2}(Y_{m+1}, Y_{m+2}; p, q) - pW_{n-2}(Y_m, Y_{m+1}; p, q) = qU_{n-2+m+1}$$

$$W_{n-1}(Y_{m+1}, Y_{m+2}; p, q) - pW_{n-1}(Y_m, Y_{m+1}; p, q) = qU_{n-1+m+1}.$$

Then, using the recurrence relation for W_n and the induction hypothesis, we have

$$\begin{split} &W_n(Y_{m+1},Y_{m+2};p,q) - pW_n(Y_m,Y_{m+1};p,q) \\ &= qW_{n-2}(Y_{m+1},Y_{m+2};p,q) + pW_{n-1}(Y_{m+1},Y_{m+2};p,q) \\ &- p((qW_{n-2}(Y_m,Y_{m+1};p,q) + pW_{n-1}(Y_m,Y_{m+1};p,q)) \\ &= q(W_{n-2}(Y_{m+1},Y_{m+2};p,q) - pW_{n-2}(Y_m,Y_{m+1};p,q)) \\ &+ p(W_{n-1}(Y_{m+1},Y_{m+2};p,q) - pW_{n-1}(Y_m,Y_{m+1};p,q)) \\ &= q^2U_{n-2+m+1} + pqU_{n-1+m+1} \\ &= q(qU_{n-2+m+1} + pU_{n-1+m+1}) \\ &= qU_{n+m+1}. \end{split}$$

Thus, the induction step is true. Therefore, by mathematical induction, the result is true for all integers $n \ge 0$.

Theorem 1. Let n and m be nonnegative integers. Then

$$q\sum_{i=n}^{n+m} p^{n+m-i}U_i = W_n(Y_m, Y_{m+1}; p, q).$$
(5)

Proof. We fix n and prove the result by induction on m.

Base Step. For m = 0, the left-hand side of (5) is

$$q\sum_{i=n}^{n+0} p^{n+0-i}U_i = qp^0U_n = qU_n.$$

The right-hand side of (5) is

$$W_n(Y_0, Y_{0+1}; p, q) = W_n(Y_0, Y_1; p, q) = W_n(0, q; p, q) = qW_n(0, 1; p, q) = qU_n$$

The left-hand side is equal to the right-hand side so the base step is true.

Induction Step. We assume the result is true for some $m \ge 0$. We will prove the result is true for m + 1. Using the induction hypothesis and Lemma 2 we have

$$q \sum_{i=n}^{n+m+1} p^{n+m+1-i}U_i = pq \sum_{i=n}^{n+m} p^{n+m-i}U_i + qU_{n+m+1}$$
$$= pW_n(Y_m, Y_{m+1}; p, q) + qU_{n+m+1}$$
$$= W_n(Y_{m+1}, Y_{m+2}; p, q).$$

This is what we wanted to prove. Therefore, by mathematical induction, the result is true. $\hfill \Box$

Here is a special case of Theorem 1.

Corollary 2. Let n and m be nonnegative integers. Then

$$\sum_{i=n}^{n+m} F_i = H_n(F_{m+2} - 1, F_{m+3} - 1).$$

3. Finite Sums of Consecutive W(a, b; 1, q)s

We are now ready to state and prove our main result.

Theorem 2. Let n and m be nonnegative integers. Then

$$q\sum_{i=n}^{n+m} p^{n+m-i}W_i = bW_n(Y_m, Y_{m+1}; p, q) + qaW_{n-1}(Y_m, Y_{m+1}; p, q).$$

Proof. From an identity in Horadam [1] and Rabinowitz [4], we have

$$W_i = bU_i + qaU_{i-1}.$$

Therefore,

$$q \sum_{i=n}^{n+m} p^{n+m-i} W_i = q \sum_{i=n}^{n+m} p^{n+m-i} \left(bU_i + qaU_{i-1} \right)$$
$$= qb \sum_{i=n}^{n+m} p^{n+m-i} U_i + q^2 a \sum_{i=n}^{n+m} p^{n+m-i} U_{i-1}$$
$$= bq \sum_{i=n}^{n+m} p^{n+m-i} U_i + qaq \sum_{i=n-1}^{n-1+m} p^{n-1+m-i} U_i$$
$$= bW_n(Y_m, Y_{m+1}; p, q) + qaW_{n-1}(Y_m, Y_{m+1}; p, q).$$

This completes the proof.

When p = 1, we have the following corollary.

Corollary 3. Let $a, b, q, n \ge 0$, and $m \ge 0$ be integers. Then

$$\sum_{i=n}^{n+m} W_i(a,b;1,q) = \frac{b}{q} W_n(Y_m, Y_{m+1};1,q) + a W_{n-1}(Y_m, Y_{m+1};1,q).$$

In addition, we have three special cases of Corollary 3.

Corollary 4. Let n and m be nonnegative integers. Then

$$\sum_{i=n}^{n+m} L_i = H_n(F_{m+2} - 1, F_{m+3} - 1) + 2H_{n-1}(F_{m+2} - 1, F_{m+3} - 1),$$

$$\sum_{i=n}^{n+m} J_i = \frac{1}{2} W_n(G_m, G_{m+1}; 1, 2),$$

$$\sum_{i=n}^{n+m} H_i(a, b) = bH_n(F_{m+2} - 1, F_{m+3} - 1) + aH_{n-1}(F_{m+2} - 1, F_{m+3} - 1).$$

Acknowledgement. The author thanks an anonymous referee for the helpful suggestions which improved the paper.

References

- A. F. Horadam, Basic properties of a certain generalized sequence of numbers, *Fibonacci Quart.* 3 (1965), 161-176.
- [2] R. S. Melham, Certain classes of finite sums that involve generalized Fibonacci and Lucas Numbers, *Fibonacci Quart.* 42 (2004), 47-54.
- [3] OEIS Foundation Inc. (2021), The On-Line Encyclopedia of Integer Sequences, https://oeis. org.
- [4] S. Rabinowitz, Algorithmic manipulation of second-order linear recurrences, Fibonacci Quart. 37 (1999), 162-177.
- [5] D. L. Russell, Summation of second-order recurrence terms and their squares, *Fibonacci Quart.* 19 (1981), 336-340.
- [6] D. L. Russell, Notes on sums of products of generalized Fibonacci numbers, *Fibonacci Quart.* 20 (1982), 114-117.