FINITE SUMS OF CONSECUTIVE TERMS OF A SECOND ORDER LINEAR RECURRENCE RELATION

Curtis Cooper
School of Computer Science and Mathematics, University of Central Missouri, Warrensburg, Missouri cooper@ucmo.edu

Received: 6/10/21, Accepted: 11/15/21, Published: 11/23/21

Abstract

Let a, b, p, and q be integers. Let $W_{0}(a, b ; p, q)=a, W_{1}(a, b ; p, q)=b$, and for $n \geq 2$, let $W_{n}(a, b ; p, q)=p W_{n-1}(a, b ; p, q)+q W_{n-2}(a, b ; p, q)$. Let n and m be nonnegative integers. We will find a formula for $\sum_{i=n}^{n+m} W_{i}(a, b ; 1, q)$.

1. Introduction

We begin by defining a Horadam sequence [1].
Definition 1. Let a, b, p, and q be integers. Let $W_{0}(a, b ; p, q)=a, W_{1}(a, b ; p, q)=b$, and for $n \geq 2$, let

$$
W_{n}(a, b ; p, q)=p W_{n-1}(a, b ; p, q)+q W_{n-2}(a, b ; p, q)
$$

Let $X_{n}(a, b ; p, q)=W_{n+1}(a, b ; p, q)+W_{n-1}(a, b ; p, q)$ for $n \geq 1$. Let $U_{n}=$ $W_{n}(0,1 ; p, q)$ and $V_{n}=X_{n}(0,1 ; p, q)$ for $n \geq 0$. Finally, we define $H_{n}(a, b)=$ $W_{n}(a, b ; 1,1)$ for $n \geq 0$.

When there is no confusion regarding the initial values a and b and recurrence coefficients p and q, we write $W_{n}(a, b ; p, q)$ as W_{n}. Note that the Fibonacci numbers are $F_{n}=W_{n}(0,1 ; 1,1)$, the Lucas numbers are $L_{n}=W_{n}(2,1 ; 1,1)$, the Pell numbers are $P_{n}=W_{n}(0,1 ; 2,1)$, and the Jacobsthal numbers are $J_{n}=W_{n}(0,1 ; 1,2)$.

Several authors have studied this topic. Russell [5, 6] did some initial work. Melham [2] showed that for nonnegative integers n and m,

$$
\begin{aligned}
& \sum_{i=n}^{n+m} W_{i}(a, b ; p, 1) \\
& =\left\{\begin{array}{c}
\frac{1}{p} V_{(m+1) / 2}(a, b ; p, 1)\left(W_{(2 n+m+1) / 2}(a, b ; p, 1)+W_{(2 n+m-1) / 2}(a, b ; p, 1)\right), \\
\quad \text { if } m \equiv 1(\bmod 4) ; \\
\frac{1}{p} U_{(m+1) / 2}(a, b ; p, 1)\left(X_{(2 n+m+1) / 2}(a, b ; p, 1)+X_{(2 n+m-1) / 2}(a, b ; p, 1)\right), \\
\text { if } m \equiv 3(\bmod 4) .
\end{array}\right.
\end{aligned}
$$

We will find a formula for

$$
\sum_{i=n}^{n+m} W_{i}(a, b ; 1, q)
$$

for integers a, b, and q.
To state some of our theorems, we need to define the general r th order linear recurrence, where $r \geq 2$ is an integer.

Definition 2. Let $n \geq 0$ and $r \geq 1$ be integers. Also, let $\left\{a_{i}\right\}_{i=0}^{r-1}$ and $\left\{c_{i}\right\}_{i=1}^{r}$ be two finite sequences of r integers. The general r th order Horadam sequence is defined by

$$
\begin{aligned}
& W_{n}\left(a_{0}, a_{1}, \ldots, a_{r-1} ; c_{1}, c_{2}, \ldots, c_{r}\right) \\
& = \begin{cases}a_{n}, & \text { if } 0 \leq n \leq r-1 \\
\sum_{i=1}^{r} c_{i} W_{n-i}\left(a_{0}, a_{1}, \ldots, a_{r-1} ; c_{1}, c_{2}, \ldots, c_{r}\right), & \text { if } n \geq r\end{cases}
\end{aligned}
$$

In Section 2, we give a definition and state and prove a helpful lemma. Also, in Section 2, we compute a finite sum of terms involving consecutive U s. Then, in Section 3 , we will compute a finite sum of consecutive W s, where a, b, and q are integers and $p=1$.

2. Finite Sums Involving Consecutive \boldsymbol{U} s

Definition 3. Let $n \geq 0$ and p and q be integers. Let

$$
Y_{n}=W_{n}\left(0, q, 2 p q ; 2 p, q-p^{2},-p q\right)
$$

Note that when $p=q=1$, we have $Y_{n}(0,1,2 ; 2,0,-1)=F_{n+2}-1$ [3, A000071]. Also, when $p=2$ and $q=1, Y_{n}(0,1,4 ; 4,-3,-2)$ is $[3$, A094706] and is the convolution of P_{n} and 2^{n}. And, when $p=1$ and $q=2$, we define $G_{n}=Y_{n}(0,2,4 ; 2,1,-2)$, which is [3, A167030].

Lemma 1. Let p and q be integers. Then

$$
\begin{align*}
& U_{n}=\sum_{i \geq 0}\binom{n-1-i}{i} p^{n-1-2 i} q^{i} \text { for } n \geq 0 \tag{1}\\
& Y_{n}=\sum_{i \geq 0}\binom{n-i}{i+1} p^{n-1-2 i} q^{i+1} \text { for } n \geq 2 \tag{2}
\end{align*}
$$

We will prove the formula for Y_{n}. The proof of the formula for U_{n} is similar and will be omitted.

Proof. The proof is by induction on n.
Base Step. For $n=2$, the left-hand side of (2) is

$$
Y_{2}=W_{2}\left(0, q, 2 p q ; 2 p, q-p^{2},-p q\right)=2 p q .
$$

The right-hand side of (2) is

$$
\sum_{i \geq 0}\binom{2-i}{i+1} p^{2-1-2 i} q^{i+1}=\binom{2}{1} p^{1} q^{1}=2 p q
$$

Therefore, the base step is true for $n=2$.
For $n=3$, the left-hand side of (2) is
$Y_{3}=W_{3}\left(0, q, 2 p q ; 2 p, q-p^{2},-p q\right)=2 p \cdot 2 p q+\left(q-p^{2}\right) \cdot q=4 p^{2} q-q^{2}-p^{2} q=3 p^{2} q+q^{2}$.
The right-hand side of (2) is

$$
\sum_{i \geq 0}\binom{3-i}{i+1} p^{3-1-2 i} q^{i+1}=\binom{3}{1} p^{2} q^{1}+\binom{2}{2} p^{0} q^{2}=3 p^{2} q+q^{2}
$$

Therefore, the base step is true for $n=3$.
For $n=4$, the left-hand side of (2) is

$$
\begin{aligned}
Y_{4} & =W_{4}\left(0, q, 2 p q ; 2 p, q-p^{2},-p q\right) \\
& =2 p \cdot\left(3 p^{2} q+q^{2}\right)+\left(q-p^{2}\right) \cdot 2 p q+(-p q) \cdot q \\
& =6 p^{3} q+2 p q^{2}+2 p q^{2}-2 p^{3} q-p q^{2} \\
& =4 p^{3} q+3 p q^{2}
\end{aligned}
$$

The right-hand side of (2) is

$$
\sum_{i \geq 0}\binom{4-i}{i+1} p^{4-1-2 i} q^{i+1}=\binom{4}{1} p^{3} q^{1}+\binom{3}{2} p^{1} q^{2}=4 p^{3} q+3 p q^{2}
$$

Therefore, the base step is true for $n=4$.
Induction Step. Let $n \geq 5$ and assume that the result is true $n-3, n-2$, and $n-1$. We will prove the result for n. By the induction hypothesis, we know that

$$
\begin{aligned}
& Y_{n-3}=\sum_{i \geq 0}\binom{n-3-i}{i+1} p^{n-4-2 i} q^{i+1} \\
& Y_{n-2}=\sum_{i \geq 0}\binom{n-2-i}{i+1} p^{n-3-2 i} q^{i+1} \\
& Y_{n-1}=\sum_{i \geq 0}\binom{n-1-i}{i+1} p^{n-2-2 i} q^{i+1}
\end{aligned}
$$

Then, using the definition of Y_{n}, we have

$$
\begin{aligned}
Y_{n}= & 2 p Y_{n-1}+\left(q-p^{2}\right) Y_{n-2}-p q Y_{n-3} \\
= & 2 p \sum_{i \geq 0}\binom{n-1-i}{i+1} p^{n-2-2 i} q^{i+1}+\left(q-p^{2}\right) \sum_{i \geq 0}\binom{n-2-i}{i+1} p^{n-3-2 i} q^{i+1} \\
& -p q \sum_{i \geq 0}\binom{n-3-i}{i+1} p^{n-4-2 i} q^{i+1} .
\end{aligned}
$$

Rearranging terms and using the binomial coefficient recurrence relation

$$
\begin{equation*}
\binom{a+1}{b}=\binom{a}{b}+\binom{a}{b-1} \tag{3}
\end{equation*}
$$

twice, we know that for each $i \geq 0$,

$$
\begin{aligned}
& 2\binom{n-1-i}{i+1} p^{n-1-2 i} q^{i+1}+\binom{n-2-i}{i+1} p^{n-3-2 i} q^{i+2} \\
&-\binom{n-2-i}{i+1} p^{n-1-2 i} q^{i+1}-\binom{n-3-i}{i+1} p^{n-3-2 i} q^{i+2} \\
&=\binom{n-1-i}{i+1} p^{n-1-2 i} q^{i+1} \\
&+\left(\binom{n-1-i}{i+1}-\binom{n-2-i}{i+1}\right) p^{n-1-2 i} q^{i+1} \\
&+\left(\binom{n-2-i}{i+1}-\binom{n-3-i}{i+1}\right) p^{n-3-2 i} q^{i+2} \\
&=\binom{n-1-i}{i+1} p^{n-1-2 i} q^{i+1}+\binom{n-2-i}{i} p^{n-1-2 i} q^{i+1} \\
&-\binom{n-3-i}{i} p^{n-3-2 i} q^{i+2} .
\end{aligned}
$$

Replacing i by $i-1$ in the last term of this expression, we have

$$
\binom{n-1-i}{i+1} p^{n-1-2 i} q^{i+1}+\binom{n-2-i}{i} p^{n-1-2 i} q^{i+1}+\binom{n-2-i}{i-1} p^{n-1-2 i} q^{i+1}
$$

Combining the last two terms in this expression using (3), we have

$$
\binom{n-1-i}{i+1} p^{n-1-2 i} q^{i+1}+\binom{n-1-i}{i} p^{n-1-2 i} q^{i+1}
$$

Finally, combining the two remaining terms using (3), we have

$$
\binom{n-i}{i+1} p^{n-1-2 i} q^{i+1}
$$

Summing this last expression for all $i \geq 0$ gives us is what we wanted to prove. Therefore, the induction step is true. This completes the proof by induction.

We can arrange the terms of the polynomials U_{n} and Y_{n} in the following table. The sums of the rows of the table add up to U_{n}. We will show that the terms of Y_{n} appear in the table.

n	Sum						
0	0						
1	1						
2	$1 p$						
3	$1 p^{2}$	$1 q$					
4	$1 p^{3}$	$2 p q$					
5	$1 p^{4}$	$3 p^{2} q$	$1 q^{2}$				
6	$1 p^{5}$	$4 p^{3} q$	$3 p q^{2}$				
7	$1 p^{6}$	$5 p^{4} q$	$6 p^{2} q^{2}$	$1 q^{3}$			
8	$1 p^{7}$	$6 p^{5} q$	$10 p^{3} q^{2}$	$4 p q^{3}$			
9	$1 p^{8}$	$7 p^{6} q$	$15 p^{4} q^{2}$	$10 p^{2} q^{3}$	$1 q^{4}$		
10	$1 p^{9}$	$8 p^{7} q$	$21 p^{5} q^{2}$	$20 p^{3} q^{3}$	$5 p q^{4}$		
11	$1 p^{10}$	$9 p^{8} q$	$28 p^{6} q^{2}$	$35 p^{4} q^{3}$	$15 p^{2} q^{4}$	$1 q^{5}$	
12	$1 p^{11}$	$10 p^{9} q$	$36 p^{7} q^{2}$	$56 p^{5} q^{3}$	$35 p^{3} q^{4}$	$6 p q^{5}$	
13	$1 p^{12}$	$11 p^{10} q$	$45 p^{8} q^{2}$	$84 p^{6} q^{3}$	$70 p^{4} q^{4}$	$21 p^{2} q^{5}$	$1 q^{6}$
14	$1 p^{13}$	$12 p^{11} q$	$55 p^{9} q^{2}$	$120 p^{7} q^{3}$	$126 p^{5} q^{4}$	$56 p^{3} q^{5}$	$7 p q^{6}$

Now, we have a corollary to Lemma 1.
Corollary 1. Let $n \geq 4$. Then

$$
U_{n}=p^{n-1}+Y_{n-2}
$$

Proof. Let $n \geq 4, p$, and q be integers. By Lemma 1,

$$
\begin{aligned}
U_{n} & =\sum_{i \geq 0}\binom{n-1-i}{i} p^{n-1-2 i} q^{i} \\
Y_{n-2} & =\sum_{i \geq 0}\binom{n-2-i}{i+1} p^{n-3-2 i} q^{i+1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
U_{n} & =p^{n-1}+\sum_{i \geq 1}\binom{n-1-i}{i} p^{n-1-2 i} q^{i} \\
& =p^{n-1}+\sum_{i \geq 0}\binom{n-2-i}{i+1} p^{n-3-2 i} q^{i+1} \\
& =p^{n-1}+Y_{n-2} .
\end{aligned}
$$

This completes the proof.

Lemma 2. Let n and m be nonnegative integers. Then

$$
\begin{equation*}
W_{n}\left(Y_{m+1}, Y_{m+2} ; p, q\right)-p W_{n}\left(Y_{m}, Y_{m+1} ; p, q\right)=q U_{n+m+1} \tag{4}
\end{equation*}
$$

Proof. We fix m and prove the lemma by induction on n. Note that by Lemma 1,

$$
\begin{aligned}
Y_{m} & =\sum_{i \geq 0}\binom{m-i}{i+1} p^{m-1-2 i} q^{i+1} \\
Y_{m+1} & =\sum_{i \geq 0}\binom{m+1-i}{i+1} p^{m-2 i} q^{i+1} \\
Y_{m+2} & =\sum_{i \geq 0}\binom{m+2-i}{i+1} p^{m+1-2 i} q^{i+1} .
\end{aligned}
$$

Base Step. For $n=0$, the left-hand side of (4) is

$$
\begin{aligned}
& W_{0}\left(Y_{m+1}, Y_{m+2} ; p, q\right)-p W_{0}\left(Y_{m}, Y_{m+1} ; p, q\right)=Y_{m+1}-p Y_{m} \\
& =\sum_{i \geq 0}\binom{m+1-i}{i+1} p^{m-2 i} q^{i+1}-p \sum_{i \geq 0}\binom{m-i}{i+1} p^{m-1-2 i} q^{i+1} \\
& =\sum_{i \geq 0}\left(\binom{m+1-i}{i+1}-\binom{m-i}{i+1}\right) p^{m-2 i} q^{i+1} \\
& =\sum_{i \geq 0}\binom{m-i}{i} p^{m-2 i} q^{i+1} .
\end{aligned}
$$

The right-hand side of (4) is

$$
q U_{0+m+1}=q U_{m+1}=q \sum_{i \geq 0}\binom{m-i}{i} p^{m-2 i} q^{i}=\sum_{i \geq 0}\binom{m-i}{i} p^{m-2 i} q^{i+1}
$$

So the left-hand side and right-hand side are equal for $n=0$.
For $n=1$, the left-hand side of (4) is

$$
\begin{aligned}
& W_{1}\left(Y_{m+1}, Y_{m+2} ; p, q\right)-p W_{1}\left(Y_{m}, Y_{m+1} ; p, q\right)=Y_{m+2}-p Y_{m+1} \\
& =\sum_{i \geq 0}\binom{m+2-i}{i+1} p^{m+1-2 i} q^{i+1}-p \sum_{i \geq 0}\binom{m+1-i}{i+1} p^{m-2 i} q^{i+1} \\
& =\sum_{i \geq 0}\left(\binom{m+2-i}{i+1}-\binom{m+1-i}{i+1}\right) p^{m+1-2 i} q^{i+1} \\
& =\sum_{i \geq 0}\binom{m+1-i}{i} p^{m+1-2 i} q^{i+1}
\end{aligned}
$$

The right-hand side of (4) is
$q U_{1+m+1}=q U_{m+2}=q \sum_{i \geq 0}\binom{m+1-i}{i} p^{m+1-2 i} q^{i}=\sum_{i \geq 0}\binom{m+1-i}{i} p^{m+1-2 i} q^{i+1}$.
So the left-hand side and right-hand side are equal for $n=1$. Therefore, the base step is true.
Induction Step. Let $n \geq 2$ and assume that the result is true $n-2$ and $n-1$. We will prove the result for n.
By the induction hypothesis, we know that

$$
\begin{aligned}
& W_{n-2}\left(Y_{m+1}, Y_{m+2} ; p, q\right)-p W_{n-2}\left(Y_{m}, Y_{m+1} ; p, q\right)=q U_{n-2+m+1} \\
& W_{n-1}\left(Y_{m+1}, Y_{m+2} ; p, q\right)-p W_{n-1}\left(Y_{m}, Y_{m+1} ; p, q\right)=q U_{n-1+m+1}
\end{aligned}
$$

Then, using the recurrence relation for W_{n} and the induction hypothesis, we have

$$
\begin{aligned}
& W_{n}\left(Y_{m+1}, Y_{m+2} ; p, q\right)-p W_{n}\left(Y_{m}, Y_{m+1} ; p, q\right) \\
& =q W_{n-2}\left(Y_{m+1}, Y_{m+2} ; p, q\right)+p W_{n-1}\left(Y_{m+1}, Y_{m+2} ; p, q\right) \\
& -p\left(\left(q W_{n-2}\left(Y_{m}, Y_{m+1} ; p, q\right)+p W_{n-1}\left(Y_{m}, Y_{m+1} ; p, q\right)\right)\right. \\
& =q\left(W_{n-2}\left(Y_{m+1}, Y_{m+2} ; p, q\right)-p W_{n-2}\left(Y_{m}, Y_{m+1} ; p, q\right)\right) \\
& +p\left(W_{n-1}\left(Y_{m+1}, Y_{m+2} ; p, q\right)-p W_{n-1}\left(Y_{m}, Y_{m+1} ; p, q\right)\right) \\
& =q^{2} U_{n-2+m+1}+p q U_{n-1+m+1} \\
& =q\left(q U_{n-2+m+1}+p U_{n-1+m+1}\right) \\
& =q U_{n+m+1} .
\end{aligned}
$$

Thus, the induction step is true. Therefore, by mathematical induction, the result is true for all integers $n \geq 0$.

Theorem 1. Let n and m be nonnegative integers. Then

$$
\begin{equation*}
q \sum_{i=n}^{n+m} p^{n+m-i} U_{i}=W_{n}\left(Y_{m}, Y_{m+1} ; p, q\right) \tag{5}
\end{equation*}
$$

Proof. We fix n and prove the result by induction on m.
Base Step. For $m=0$, the left-hand side of (5) is

$$
q \sum_{i=n}^{n+0} p^{n+0-i} U_{i}=q p^{0} U_{n}=q U_{n}
$$

The right-hand side of (5) is

$$
W_{n}\left(Y_{0}, Y_{0+1} ; p, q\right)=W_{n}\left(Y_{0}, Y_{1} ; p, q\right)=W_{n}(0, q ; p, q)=q W_{n}(0,1 ; p, q)=q U_{n}
$$

The left-hand side is equal to the right-hand side so the base step is true.
Induction Step. We assume the result is true for some $m \geq 0$. We will prove the result is true for $m+1$. Using the induction hypothesis and Lemma 2 we have

$$
\begin{aligned}
& q \sum_{i=n}^{n+m+1} p^{n+m+1-i} U_{i}=p q \sum_{i=n}^{n+m} p^{n+m-i} U_{i}+q U_{n+m+1} \\
& =p W_{n}\left(Y_{m}, Y_{m+1} ; p, q\right)+q U_{n+m+1} \\
& =W_{n}\left(Y_{m+1}, Y_{m+2} ; p, q\right)
\end{aligned}
$$

This is what we wanted to prove. Therefore, by mathematical induction, the result is true.

Here is a special case of Theorem 1.
Corollary 2. Let n and m be nonnegative integers. Then

$$
\sum_{i=n}^{n+m} F_{i}=H_{n}\left(F_{m+2}-1, F_{m+3}-1\right)
$$

3. Finite Sums of Consecutive $W(a, b ; 1, q)$ s

We are now ready to state and prove our main result.
Theorem 2. Let n and m be nonnegative integers. Then

$$
q \sum_{i=n}^{n+m} p^{n+m-i} W_{i}=b W_{n}\left(Y_{m}, Y_{m+1} ; p, q\right)+q a W_{n-1}\left(Y_{m}, Y_{m+1} ; p, q\right)
$$

Proof. From an identity in Horadam [1] and Rabinowitz [4], we have

$$
W_{i}=b U_{i}+q a U_{i-1}
$$

Therefore,

$$
\begin{aligned}
& q \sum_{i=n}^{n+m} p^{n+m-i} W_{i}=q \sum_{i=n}^{n+m} p^{n+m-i}\left(b U_{i}+q a U_{i-1}\right) \\
& =q b \sum_{i=n}^{n+m} p^{n+m-i} U_{i}+q^{2} a \sum_{i=n}^{n+m} p^{n+m-i} U_{i-1} \\
& =b q \sum_{i=n}^{n+m} p^{n+m-i} U_{i}+q a q \sum_{i=n-1}^{n-1+m} p^{n-1+m-i} U_{i} \\
& =b W_{n}\left(Y_{m}, Y_{m+1} ; p, q\right)+q a W_{n-1}\left(Y_{m}, Y_{m+1} ; p, q\right)
\end{aligned}
$$

This completes the proof.

When $p=1$, we have the following corollary.
Corollary 3. Let $a, b, q, n \geq 0$, and $m \geq 0$ be integers. Then

$$
\sum_{i=n}^{n+m} W_{i}(a, b ; 1, q)=\frac{b}{q} W_{n}\left(Y_{m}, Y_{m+1} ; 1, q\right)+a W_{n-1}\left(Y_{m}, Y_{m+1} ; 1, q\right)
$$

In addition, we have three special cases of Corollary 3.
Corollary 4. Let n and m be nonnegative integers. Then

$$
\begin{aligned}
\sum_{i=n}^{n+m} L_{i} & =H_{n}\left(F_{m+2}-1, F_{m+3}-1\right)+2 H_{n-1}\left(F_{m+2}-1, F_{m+3}-1\right) \\
\sum_{i=n}^{n+m} J_{i} & =\frac{1}{2} W_{n}\left(G_{m}, G_{m+1} ; 1,2\right) \\
\sum_{i=n}^{n+m} H_{i}(a, b) & =b H_{n}\left(F_{m+2}-1, F_{m+3}-1\right)+a H_{n-1}\left(F_{m+2}-1, F_{m+3}-1\right)
\end{aligned}
$$

Acknowledgement. The author thanks an anonymous referee for the helpful suggestions which improved the paper.

References

[1] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (1965), 161-176.
[2] R. S. Melham, Certain classes of finite sums that involve generalized Fibonacci and Lucas Numbers, Fibonacci Quart. 42 (2004), 47-54.
[3] OEIS Foundation Inc. (2021), The On-Line Encyclopedia of Integer Sequences, https://oeis. org.
[4] S. Rabinowitz, Algorithmic manipulation of second-order linear recurrences, Fibonacci Quart. 37 (1999), 162-177.
[5] D. L. Russell, Summation of second-order recurrence terms and their squares, Fibonacci Quart. 19 (1981), 336-340.
[6] D. L. Russell, Notes on sums of products of generalized Fibonacci numbers, Fibonacci Quart. 20 (1982), 114-117.

