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Abstract

Let a, b, p, and q be integers. Let W0(a, b; p, q) = a, W1(a, b; p, q) = b, and for n ≥ 2,
let Wn(a, b; p, q) = pWn−1(a, b; p, q)+qWn−2(a, b; p, q). Let n and m be nonnegative
integers. We will find a formula for

∑n+m
i=n Wi(a, b; 1, q).

1. Introduction

We begin by defining a Horadam sequence [1].

Definition 1. Let a, b, p, and q be integers. Let W0(a, b; p, q) = a, W1(a, b; p, q) = b,

and for n ≥ 2, let

Wn(a, b; p, q) = pWn−1(a, b; p, q) + qWn−2(a, b; p, q).

Let Xn(a, b; p, q) = Wn+1(a, b; p, q) + Wn−1(a, b; p, q) for n ≥ 1. Let Un =

Wn(0, 1; p, q) and Vn = Xn(0, 1; p, q) for n ≥ 0. Finally, we define Hn(a, b) =

Wn(a, b; 1, 1) for n ≥ 0.

When there is no confusion regarding the initial values a and b and recurrence

coefficients p and q, we write Wn(a, b; p, q) as Wn. Note that the Fibonacci numbers

are Fn = Wn(0, 1; 1, 1), the Lucas numbers are Ln = Wn(2, 1; 1, 1), the Pell numbers

are Pn = Wn(0, 1; 2, 1), and the Jacobsthal numbers are Jn = Wn(0, 1; 1, 2).

Several authors have studied this topic. Russell [5, 6] did some initial work.

Melham [2] showed that for nonnegative integers n and m,

n+m∑
i=n

Wi(a, b; p, 1)

=


1
pV(m+1)/2(a, b; p, 1)(W(2n+m+1)/2(a, b; p, 1) + W(2n+m−1)/2(a, b; p, 1)),

if m ≡ 1 (mod 4);
1
pU(m+1)/2(a, b; p, 1)(X(2n+m+1)/2(a, b; p, 1) + X(2n+m−1)/2(a, b; p, 1)),

if m ≡ 3 (mod 4).
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We will find a formula for
n+m∑
i=n

Wi(a, b; 1, q)

for integers a, b, and q.

To state some of our theorems, we need to define the general rth order linear

recurrence, where r ≥ 2 is an integer.

Definition 2. Let n ≥ 0 and r ≥ 1 be integers. Also, let {ai}r−1
i=0 and {ci}ri=1

be two finite sequences of r integers. The general rth order Horadam sequence is

defined by

Wn(a0, a1, . . . , ar−1; c1, c2, . . . , cr)

=

{
an, if 0 ≤ n ≤ r − 1;∑r

i=1 ciWn−i(a0, a1, . . . , ar−1; c1, c2, . . . , cr), if n ≥ r.

In Section 2, we give a definition and state and prove a helpful lemma. Also,

in Section 2, we compute a finite sum of terms involving consecutive Us. Then, in

Section 3, we will compute a finite sum of consecutive W s, where a, b, and q are

integers and p = 1.

2. Finite Sums Involving Consecutive Us

Definition 3. Let n ≥ 0 and p and q be integers. Let

Yn = Wn(0, q, 2pq; 2p, q − p2,−pq).

Note that when p = q = 1, we have Yn(0, 1, 2; 2, 0,−1) = Fn+2 − 1 [3, A000071].

Also, when p = 2 and q = 1, Yn(0, 1, 4; 4,−3,−2) is [3, A094706] and is the convolu-

tion of Pn and 2n. And, when p = 1 and q = 2, we define Gn = Yn(0, 2, 4; 2, 1,−2),

which is [3, A167030].

Lemma 1. Let p and q be integers. Then

Un =
∑
i≥0

(
n− 1− i

i

)
pn−1−2iqi for n ≥ 0, (1)

Yn =
∑
i≥0

(
n− i

i + 1

)
pn−1−2iqi+1 for n ≥ 2. (2)

We will prove the formula for Yn. The proof of the formula for Un is similar and

will be omitted.
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Proof. The proof is by induction on n.

Base Step. For n = 2, the left-hand side of (2) is

Y2 = W2(0, q, 2pq; 2p, q − p2,−pq) = 2pq.

The right-hand side of (2) is∑
i≥0

(
2− i

i + 1

)
p2−1−2iqi+1 =

(
2

1

)
p1q1 = 2pq.

Therefore, the base step is true for n = 2.

For n = 3, the left-hand side of (2) is

Y3 = W3(0, q, 2pq; 2p, q−p2,−pq) = 2p·2pq+(q−p2)·q = 4p2q−q2−p2q = 3p2q+q2.

The right-hand side of (2) is∑
i≥0

(
3− i

i + 1

)
p3−1−2iqi+1 =

(
3

1

)
p2q1 +

(
2

2

)
p0q2 = 3p2q + q2.

Therefore, the base step is true for n = 3.

For n = 4, the left-hand side of (2) is

Y4 = W4(0, q, 2pq; 2p, q − p2,−pq)

= 2p · (3p2q + q2) + (q − p2) · 2pq + (−pq) · q
= 6p3q + 2pq2 + 2pq2 − 2p3q − pq2

= 4p3q + 3pq2.

The right-hand side of (2) is∑
i≥0

(
4− i

i + 1

)
p4−1−2iqi+1 =

(
4

1

)
p3q1 +

(
3

2

)
p1q2 = 4p3q + 3pq2.

Therefore, the base step is true for n = 4.

Induction Step. Let n ≥ 5 and assume that the result is true n − 3, n − 2, and

n− 1. We will prove the result for n. By the induction hypothesis, we know that

Yn−3 =
∑
i≥0

(
n− 3− i

i + 1

)
pn−4−2iqi+1,

Yn−2 =
∑
i≥0

(
n− 2− i

i + 1

)
pn−3−2iqi+1,

Yn−1 =
∑
i≥0

(
n− 1− i

i + 1

)
pn−2−2iqi+1.
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Then, using the definition of Yn, we have

Yn = 2pYn−1 + (q − p2)Yn−2 − pqYn−3

= 2p
∑
i≥0

(
n− 1− i

i + 1

)
pn−2−2iqi+1 + (q − p2)

∑
i≥0

(
n− 2− i

i + 1

)
pn−3−2iqi+1

− pq
∑
i≥0

(
n− 3− i

i + 1

)
pn−4−2iqi+1.

Rearranging terms and using the binomial coefficient recurrence relation(
a + 1

b

)
=

(
a

b

)
+

(
a

b− 1

)
, (3)

twice, we know that for each i ≥ 0,

2

(
n− 1− i

i + 1

)
pn−1−2iqi+1 +

(
n− 2− i

i + 1

)
pn−3−2iqi+2

−
(
n− 2− i

i + 1

)
pn−1−2iqi+1 −

(
n− 3− i

i + 1

)
pn−3−2iqi+2

=

(
n− 1− i

i + 1

)
pn−1−2iqi+1

+

((
n− 1− i

i + 1

)
−
(
n− 2− i

i + 1

))
pn−1−2iqi+1

+

((
n− 2− i

i + 1

)
−
(
n− 3− i

i + 1

))
pn−3−2iqi+2

=

(
n− 1− i

i + 1

)
pn−1−2iqi+1 +

(
n− 2− i

i

)
pn−1−2iqi+1

−
(
n− 3− i

i

)
pn−3−2iqi+2.

Replacing i by i− 1 in the last term of this expression, we have(
n− 1− i

i + 1

)
pn−1−2iqi+1 +

(
n− 2− i

i

)
pn−1−2iqi+1 +

(
n− 2− i

i− 1

)
pn−1−2iqi+1.

Combining the last two terms in this expression using (3), we have(
n− 1− i

i + 1

)
pn−1−2iqi+1 +

(
n− 1− i

i

)
pn−1−2iqi+1.

Finally, combining the two remaining terms using (3), we have(
n− i

i + 1

)
pn−1−2iqi+1.

Summing this last expression for all i ≥ 0 gives us is what we wanted to prove.

Therefore, the induction step is true. This completes the proof by induction.
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We can arrange the terms of the polynomials Un and Yn in the following table.

The sums of the rows of the table add up to Un. We will show that the terms of Yn

appear in the table.

n Sum
0 0
1 1
2 1p
3 1p2 1q
4 1p3 2pq
5 1p4 3p2q 1q2

6 1p5 4p3q 3pq2

7 1p6 5p4q 6p2q2 1q3

8 1p7 6p5q 10p3q2 4pq3

9 1p8 7p6q 15p4q2 10p2q3 1q4

10 1p9 8p7q 21p5q2 20p3q3 5pq4

11 1p10 9p8q 28p6q2 35p4q3 15p2q4 1q5

12 1p11 10p9q 36p7q2 56p5q3 35p3q4 6pq5

13 1p12 11p10q 45p8q2 84p6q3 70p4q4 21p2q5 1q6

14 1p13 12p11q 55p9q2 120p7q3 126p5q4 56p3q5 7pq6

Now, we have a corollary to Lemma 1.

Corollary 1. Let n ≥ 4. Then

Un = pn−1 + Yn−2.

Proof. Let n ≥ 4, p, and q be integers. By Lemma 1,

Un =
∑
i≥0

(
n− 1− i

i

)
pn−1−2iqi,

Yn−2 =
∑
i≥0

(
n− 2− i

i + 1

)
pn−3−2iqi+1.

Thus,

Un = pn−1 +
∑
i≥1

(
n− 1− i

i

)
pn−1−2iqi

= pn−1 +
∑
i≥0

(
n− 2− i

i + 1

)
pn−3−2iqi+1

= pn−1 + Yn−2.

This completes the proof.
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Lemma 2. Let n and m be nonnegative integers. Then

Wn(Ym+1, Ym+2; p, q)− pWn(Ym, Ym+1; p, q) = qUn+m+1. (4)

Proof. We fix m and prove the lemma by induction on n. Note that by Lemma 1,

Ym =
∑
i≥0

(
m− i

i + 1

)
pm−1−2iqi+1,

Ym+1 =
∑
i≥0

(
m + 1− i

i + 1

)
pm−2iqi+1,

Ym+2 =
∑
i≥0

(
m + 2− i

i + 1

)
pm+1−2iqi+1.

Base Step. For n = 0, the left-hand side of (4) is

W0(Ym+1, Ym+2; p, q)− pW0(Ym, Ym+1; p, q) = Ym+1 − pYm

=
∑
i≥0

(
m + 1− i

i + 1

)
pm−2iqi+1 − p

∑
i≥0

(
m− i

i + 1

)
pm−1−2iqi+1

=
∑
i≥0

((
m + 1− i

i + 1

)
−
(
m− i

i + 1

))
pm−2iqi+1

=
∑
i≥0

(
m− i

i

)
pm−2iqi+1.

The right-hand side of (4) is

qU0+m+1 = qUm+1 = q
∑
i≥0

(
m− i

i

)
pm−2iqi =

∑
i≥0

(
m− i

i

)
pm−2iqi+1.

So the left-hand side and right-hand side are equal for n = 0.

For n = 1, the left-hand side of (4) is

W1(Ym+1, Ym+2; p, q)− pW1(Ym, Ym+1; p, q) = Ym+2 − pYm+1

=
∑
i≥0

(
m + 2− i

i + 1

)
pm+1−2iqi+1 − p

∑
i≥0

(
m + 1− i

i + 1

)
pm−2iqi+1

=
∑
i≥0

((
m + 2− i

i + 1

)
−
(
m + 1− i

i + 1

))
pm+1−2iqi+1

=
∑
i≥0

(
m + 1− i

i

)
pm+1−2iqi+1.
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The right-hand side of (4) is

qU1+m+1 = qUm+2 = q
∑
i≥0

(
m + 1− i

i

)
pm+1−2iqi =

∑
i≥0

(
m + 1− i

i

)
pm+1−2iqi+1.

So the left-hand side and right-hand side are equal for n = 1. Therefore, the base

step is true.

Induction Step. Let n ≥ 2 and assume that the result is true n−2 and n−1. We

will prove the result for n.

By the induction hypothesis, we know that

Wn−2(Ym+1, Ym+2; p, q)− pWn−2(Ym, Ym+1; p, q) = qUn−2+m+1

Wn−1(Ym+1, Ym+2; p, q)− pWn−1(Ym, Ym+1; p, q) = qUn−1+m+1.

Then, using the recurrence relation for Wn and the induction hypothesis, we have

Wn(Ym+1, Ym+2; p, q)− pWn(Ym, Ym+1; p, q)

= qWn−2(Ym+1, Ym+2; p, q) + pWn−1(Ym+1, Ym+2; p, q)

− p((qWn−2(Ym, Ym+1; p, q) + pWn−1(Ym, Ym+1; p, q))

= q(Wn−2(Ym+1, Ym+2; p, q)− pWn−2(Ym, Ym+1; p, q))

+ p(Wn−1(Ym+1, Ym+2; p, q)− pWn−1(Ym, Ym+1; p, q))

= q2Un−2+m+1 + pqUn−1+m+1

= q (qUn−2+m+1 + pUn−1+m+1)

= qUn+m+1.

Thus, the induction step is true. Therefore, by mathematical induction, the result

is true for all integers n ≥ 0.

Theorem 1. Let n and m be nonnegative integers. Then

q

n+m∑
i=n

pn+m−iUi = Wn(Ym, Ym+1; p, q). (5)

Proof. We fix n and prove the result by induction on m.

Base Step. For m = 0, the left-hand side of (5) is

q

n+0∑
i=n

pn+0−iUi = qp0Un = qUn.

The right-hand side of (5) is

Wn(Y0, Y0+1; p, q) = Wn(Y0, Y1; p, q) = Wn(0, q; p, q) = qWn(0, 1; p, q) = qUn.
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The left-hand side is equal to the right-hand side so the base step is true.

Induction Step. We assume the result is true for some m ≥ 0. We will prove the

result is true for m + 1. Using the induction hypothesis and Lemma 2 we have

q

n+m+1∑
i=n

pn+m+1−iUi = pq

n+m∑
i=n

pn+m−iUi + qUn+m+1

= pWn(Ym, Ym+1; p, q) + qUn+m+1

= Wn(Ym+1, Ym+2; p, q).

This is what we wanted to prove. Therefore, by mathematical induction, the result

is true.

Here is a special case of Theorem 1.

Corollary 2. Let n and m be nonnegative integers. Then

n+m∑
i=n

Fi = Hn(Fm+2 − 1, Fm+3 − 1).

3. Finite Sums of Consecutive W (a, b; 1, q)s

We are now ready to state and prove our main result.

Theorem 2. Let n and m be nonnegative integers. Then

q

n+m∑
i=n

pn+m−iWi = bWn(Ym, Ym+1; p, q) + qaWn−1(Ym, Ym+1; p, q).

Proof. From an identity in Horadam [1] and Rabinowitz [4], we have

Wi = bUi + qaUi−1.

Therefore,

q

n+m∑
i=n

pn+m−iWi = q

n+m∑
i=n

pn+m−i (bUi + qaUi−1)

= qb

n+m∑
i=n

pn+m−iUi + q2a

n+m∑
i=n

pn+m−iUi−1

= bq

n+m∑
i=n

pn+m−iUi + qaq

n−1+m∑
i=n−1

pn−1+m−iUi

= bWn(Ym, Ym+1; p, q) + qaWn−1(Ym, Ym+1; p, q).

This completes the proof.
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When p = 1, we have the following corollary.

Corollary 3. Let a, b, q, n ≥ 0, and m ≥ 0 be integers. Then

n+m∑
i=n

Wi(a, b; 1, q) =
b

q
Wn(Ym, Ym+1; 1, q) + aWn−1(Ym, Ym+1; 1, q).

In addition, we have three special cases of Corollary 3.

Corollary 4. Let n and m be nonnegative integers. Then

n+m∑
i=n

Li = Hn(Fm+2 − 1, Fm+3 − 1) + 2Hn−1(Fm+2 − 1, Fm+3 − 1),

n+m∑
i=n

Ji =
1

2
Wn(Gm, Gm+1; 1, 2),

n+m∑
i=n

Hi(a, b) = bHn(Fm+2 − 1, Fm+3 − 1) + aHn−1(Fm+2 − 1, Fm+3 − 1).
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