BINARY RECURRENCES WITH PRIME POWERS AS FIXED POINTS OF THEIR DISCRIMINATOR

Matteo Ferrari
Dipartimento di Scienze Matematiche "G.L. Lagrange", Politecnico di Torino, Turin, Italy
matteo.ferrari@polito.it

Received: 12/15/20, Accepted: 11/22/21, Published: 12/3/21

Abstract

The discriminator sequence $\left\{\mathcal{D}_{\mathbf{u}}(n)\right\}_{n \geq 0}$ of a sequence $\mathbf{u}=\left\{u_{n}\right\}_{n \geq 0}$ of distinct integers is defined for each n as the smallest positive integer m such that u_{0}, \ldots, u_{n-1} are pairwise incongruent modulo m. Since in general, it is difficult to find an explicit characterization of the discriminator $\mathcal{D}_{\mathbf{u}}(n)$ of a given recurrence sequence $\mathbf{u}=\left\{u_{n}\right\}_{n \geq 0}$, we provide a bound for a specific type of binary recurrences. To do this, we investigate binary recurrences with prime powers as fixed points of their discriminator. We almost complete a characterization of the binary recurrences for which, for a given prime $R, \mathcal{D}_{\mathbf{u}}\left(R^{k}\right)=R^{k}$ for each $k \geq 0$. This paper is the continuation of a recent work by de Clercq et al., dealing with the case $R=2$.

1. Introduction

The discriminator sequence of a sequence $\mathbf{u}=\left\{u_{n}\right\}_{n \geq 0}$ of distinct integers is defined as the sequence $\left\{\mathcal{D}_{\mathbf{u}}(n)\right\}_{n \geq 0}$ given by

$$
\mathcal{D}_{\mathbf{u}}(n):=\min \left\{m \geq 1: u_{0}, \ldots, u_{n-1} \text { are pairwise distinct }(\bmod m)\right\} .
$$

Trivially, we have

$$
n \leq \mathcal{D}_{\mathbf{u}}(n) \leq \max \left\{u_{0}, \ldots, u_{n-1}\right\}-\min \left\{u_{0}, \ldots, u_{n-1}\right\}+1
$$

The main problem is to give an easy description or characterization of $\left\{\mathcal{D}_{\mathbf{u}}(n)\right\}$. In general, this is a difficult task, but we observe that if we have, for some prime R,

$$
\mathcal{D}_{\mathbf{u}}\left(R^{k}\right)=R^{k} \quad \text { for every } k \geq 1
$$

then $\mathcal{D}_{\mathbf{u}}(n)<R n$ for each $n \geq 1$. This follows easily since given n, take k such that $R^{k} \leq n \leq R^{k+1}$; if $\mathcal{D}_{\mathbf{u}}\left(R^{k+1}\right)=R^{k+1}$, then we have $\mathcal{D}_{\mathbf{u}}(n) \leq R^{k+1} \leq R n$.

For integers w_{0}, w_{1}, p and q, let $\mathbf{w}=\left\{w_{n}\right\}_{n \geq 0}$ be the sequence defined by

$$
\begin{equation*}
w_{n+2}=p w_{n+1}+q w_{n} \quad \text { for all } n \geq 0 \tag{1}
\end{equation*}
$$

In [1] the following result is established.
Theorem 1. Let $\mathbf{w}=\left\{w_{n}\right\}_{n \geq 0}$ be as in (1), if $(p, q) \equiv(2,3)(\bmod 4)$ and $w_{0}+w_{1}$ is odd, then $\mathcal{D}_{\mathbf{w}}\left(2^{k}\right)=2^{k}$ for every $k \geq 1$. If $(p, q) \not \equiv(2,3)(\bmod 4)$ and $k \geq 3$, then $\#\left\{w_{n}\left(\bmod 2^{k}\right): 0 \leq n \leq 2^{k}-1\right\}<2^{k}$.

In this paper, we will prove a partial generalization, namely the following results.
Theorem 2. Let $\mathbf{w}=\left\{w_{n}\right\}_{n \geq 0}$ be as in (1). If $(p, q) \equiv(2,2)(\bmod 3), p+q \not \equiv 7$ $(\bmod 9)$ and $w_{0} \not \equiv w_{1}(\bmod 9)$, then $\mathcal{D}_{\mathbf{w}}\left(3^{k}\right)=3^{k}$ for every $k \geq 1$.

Theorem 3. Let $\mathbf{w}=\left\{w_{n}\right\}_{n \geq 0}$ be as in (1) and $R \geq 5$ prime. If $(p, q) \equiv(2, R-1)$ $(\bmod R)$ and $w_{0} \not \equiv w_{1}(\bmod R)$, then $\mathcal{D}_{\mathbf{w}}\left(R^{k}\right)=R^{k}$ for every $k \geq 1$.

We will follow the line of reasoning of [1], focusing on the points where things change between $R=2$ and all the other primes, with particular attention on the second exception: $R=3$.

2. Preliminaries

The Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q})=\left\{u_{n}\right\}_{n \geq 0}$ for $p, q \in \mathbb{Z}$ is defined as

$$
\left\{\begin{array}{l}
u_{0}=0 \\
u_{1}=1 \\
u_{n+2}=p u_{n+1}+q u_{n} \quad n \geq 0
\end{array}\right.
$$

The general idea is to prove something for a Lucas sequence, and then generalize to an arbitrary binary recurrence, seeing it as a shifted Lucas sequence. For this purpose, in [1], in order to prove Theorem 1, the following result is established first.

Lemma 1. For a Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q}), \mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}\left(2^{k}\right)=2^{k}$ for all $k \geq 0$ if and only if $(p, q) \equiv(2,3)(\bmod 4)$.

We will prove analogous results for the other primes.
Lemma 2. For a Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q}), \mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}\left(3^{k}\right)=3^{k}$ for all $k \geq 0$ if and only if $(p, q) \equiv(2,2)(\bmod 3)$ and $p+q \not \equiv 7(\bmod 9)$.

Lemma 3. For a Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q})$, given $R>3$ prime, if $(p, q) \equiv(2, R-1)$ $(\bmod R)$, then $\mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}\left(R^{k}\right)=R^{k}$ for all $k \geq 0$.

The converse is proved only numerically for $R=5,7,11,13$.

Conjecture. For a Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q})$, given $R>3$ prime, if $\mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}\left(R^{k}\right)=R^{k}$ for all $k \geq 0$, then $(p, q) \equiv(2, R-1)(\bmod R)$.

Let $\nu_{q}(n)$, for q prime, be the exponent of q in the prime factorization of the integer n.

Theorem 4 (Kummer, 1852, cf. [2], pp. 30-33.). Let p be a prime number. The exponent of p in $\binom{n}{m}$, i.e. $v_{p}\left(\binom{n}{m}\right)$, is the number of base p carries when summing m with $n-m$ in base p.

Lemma 4. Given an odd prime R, we have

$$
\nu_{R}\left(\binom{l}{k} R^{k}\right) \geq \nu_{R}(R l)=\nu_{R}(l)+1
$$

for all $l \geq 1$ and for all $k \leq l$. Further, for all $k \geq 1$ and for all $l \leq R^{k}$

$$
\nu_{R}\left(\binom{R^{k}}{l} R^{l}\right) \geq k+1
$$

for all $k \geq 1$ and for all $l \leq R^{k} / 2$

$$
\nu_{R}\left(\binom{R^{k}}{2 l} R^{l}\right) \geq k+1
$$

finally, for all $k \geq 1$ and for all $l \leq\left(R^{k}-1\right) / 2$, with the exception $l=1$ and $R=3$,

$$
\nu_{R}\left(\binom{R^{k}}{2 l+1} R^{l}\right) \geq k+1
$$

Proof. We use Theorem 4 with $p=R$. Since the first inequality is clear when $k=1$, we may assume $k \geq 2$. If $\nu_{R}(l) \leq 1$, the inequality is obvious too. Since it is also clear if $k \geq \nu_{R}(l)+1$, we may assume that $k<\nu_{R}(l)+1$. Then, we have $\nu_{R}(k)<k<\nu_{R}(l)+1$. By summing up k with $l-k$, we have at least $\nu_{R}(l)-\nu_{R}(k)$ carries in base R. Thus, we obtain

$$
\nu_{R}\left(\binom{l}{k} R^{k}\right) \geq \nu_{R}(l)-\nu_{R}(k)+k \geq \nu_{R}(l)+1
$$

In the second inequality we have $l \in\left[1, R^{k}\right]$. In that case the number of carries from summing l with $R^{k}-l$ is at least, by the previous argument, $k-\nu_{R}(l)$, since $\nu_{R}(l) \leq \nu_{R}\left(R^{k}\right)=k$. Hence, by using Theorem 4 again, we obtain

$$
\nu_{R}\left(\binom{R^{k}}{l} R^{l}\right) \geq k-\nu_{R}(l)+l \geq k+1
$$

In the third inequality we have $l \in\left[1, R^{k} / 2\right]$. Then, similarly, the number of carries from summing $2 l$ with $R^{k}-2 l$ is at least $k-\nu_{R}(2 l)$. Therefore, using again Theorem 4 , we conclude

$$
\nu_{R}\left(\binom{R^{k}}{2 l} R^{l}\right) \geq k-\nu_{R}(2 l)+l=k-\nu_{R}(l)+l \geq k+1
$$

since R is odd. For the fourth inequality we have $l \in\left[1,\left(R^{k}-1\right) / 2\right]$. Then, again the number of carries from summing $2 l+1$ with $R^{k}-2 l-1$ is at least $k-\nu_{R}(2 l+1)$. Hence, by using for the last time Theorem 4, we obtain

$$
\nu_{R}\left(\binom{R^{k}}{2 l+1} R^{l}\right) \geq k-\nu_{R}(2 l+1)+l .
$$

Now the only exception occurs when $l=1$ and $R=3$, in that case $\nu_{R}(2 l+1)=$ $\nu_{3}(3)=1=l$, in all the other cases $-\nu_{R}(2 l+1)+l \geq 1$.

3. Proofs of the Main Theorems

Lemma 5. For a Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q})$, given a prime $R>3$, if $(p, q) \equiv(2, R-1)$ $(\bmod R)$, then $\mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}\left(R^{k}\right)=R^{k}$ for all $k \geq 0$.

Proof. Suppose $(p, q) \equiv(2, R-1)(\bmod R)$. We consider the quadratic polynomial $x^{2}-p x-q$ having discriminant $\Delta=p^{2}+4 q$. The equation $x^{2}-p x-q=0$ is the characteristic equation for the Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q})$.

The degenerate case. In the case $\Delta=0$, we have a generic solution

$$
u_{n}=A p_{0}^{n}+B n p_{0}^{n},
$$

with $p_{0}=p / 2$. Imposing the starting condition, we obtain $u_{n}=n p_{0}^{n-1}$. We notice that if $\Delta=p^{2}+4 q=0$, then p is even, and so $p_{0} \in \mathbb{Z}$; moreover, since $p \equiv 2$ $(\bmod R)$ and $R>2$, then $p_{0} \equiv 1(\bmod R)$. So we obtain
$\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{R-1}\right\}=\left\{0,1,2 p_{0}, \ldots,(R-1) p_{0}^{R-2}\right\} \equiv\{0,1,2, \ldots, R-1\} \quad(\bmod R)$.
We claim that $\nu_{R}\left(u_{m}-u_{n}\right)=\nu_{R}(m-n)$ for all $m>n$. Indeed, if there exist $n<m \leq R^{k}$ such that $u_{n} \equiv u_{m}\left(\bmod R^{k}\right)$, then we would expect $\nu_{R}(m-n)=$ $\nu_{R}\left(u_{m}-u_{n}\right) \geq k$. Since $u_{m}-u_{n}=m p_{0}^{m-1}-n p_{0}^{n-1}$, we have $u_{m}-u_{n} \equiv m-n$ $(\bmod R)$. So $\nu_{R}\left(u_{m}-u_{n}\right)=0$ if and only if $\nu_{R}(m-n)=0$. We assume that $m \equiv n$ $(\bmod R)$ and write $m=n+R l$. Then we obtain

$$
\begin{equation*}
u_{m}-u_{n}=(n+R l) p_{0}^{n+R l-1}-n p_{0}^{n-1}=p_{0}^{n-1}\left((n+R l)\left(p_{0}^{R l}-1\right)+R l\right) \tag{2}
\end{equation*}
$$

We write $p_{0}^{R}=1+R p_{1}$, with $p_{1} \in \mathbb{N}$ (this can be done since $p_{0} \equiv 1(\bmod R)$, and so $p_{0}=1+R t$ and $\left.p_{0}^{R}=1+R t \sum_{j=0}^{R-1}\binom{R}{j+1}(R t)^{j}\right)$. Thus, we obtain

$$
p_{0}^{R l}-1=\left(1+R p_{1}\right)^{l}-1=\sum_{s=1}^{l}\binom{l}{s}\left(R p_{1}\right)^{s} .
$$

From the latter equation and (2) we conclude

$$
u_{m}-u_{n}=p_{0}^{n-1}\left((n+R l) \sum_{s=1}^{l}\binom{l}{s}\left(R p_{1}\right)^{s}+R l\right)
$$

Since by Lemma 4 for every $s \geq 1$ we have

$$
\nu_{R}\left(\binom{l}{s}\left(R p_{1}\right)^{s}\right) \geq \nu_{R}\left(\binom{l}{s} R^{s}\right) \geq \nu_{R}(R l)
$$

we conclude that

$$
\nu_{R}\left(u_{m}-u_{n}\right)=\nu_{R}(R l)=\nu_{R}(m-n),
$$

thus establishing the claim.
The non-degenerate case. Here we suppose $\Delta \neq 0$. Since by assumption $p \equiv 2$ $(\bmod R)$ and $q \equiv R-1(\bmod R)$, it follows that $\Delta=p^{2}+4 q \equiv 4+4(R-1) \equiv 0$ $(\bmod R)$. Let $\alpha:=p / 2+\sqrt{\Delta} / 2$ and $\beta:=p / 2-\sqrt{\Delta} / 2$ be the roots of $x^{2}-p x-q=0$. The generic solution is $u_{n}=A \alpha^{n}+B \beta^{n}$. On imposing the initial condition we obtain

$$
\begin{equation*}
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \tag{3}
\end{equation*}
$$

We introduce the companion sequence $\mathbf{v}=\left\{v_{n}\right\}_{n \geq 0}$ given by

$$
\left\{\begin{array}{l}
v_{0}=2 \\
v_{1}=p \\
v_{n+2}=p v_{n+1}+q v_{n} \quad n \geq 0
\end{array}\right.
$$

By induction $v_{n} \equiv 2(\bmod R)$, for all $n \geq 0$. Further, we obtain

$$
\begin{equation*}
v_{n}=\alpha^{n}+\beta^{n} \quad \text { for all } n \geq 0 \tag{4}
\end{equation*}
$$

Next we will show that

$$
u_{n+R^{k}} \equiv u_{n}+R^{k} \quad\left(\bmod R^{k+1}\right)
$$

for all $k \geq 1$ and for all $n \geq 0$. We have

$$
(2 \alpha)^{R^{k}}=(p+\sqrt{\Delta})^{R^{k}}=\sum_{l=0}^{R^{k}}\binom{R^{k}}{l} p^{R^{k}-l} \Delta^{l / 2}
$$

and similarly

$$
(2 \beta)^{R^{k}}=(p-\sqrt{\Delta})^{R^{k}}=\sum_{l=0}^{R^{k}}\binom{R^{k}}{l} p^{R^{k}-l}\left(-\Delta^{1 / 2}\right)^{l}=\sum_{l=0}^{R^{k}}(-1)^{l}\binom{R^{k}}{l} p^{R^{k}-l} \Delta^{l / 2}
$$

So we have

$$
\begin{aligned}
(2 \alpha)^{R^{k}+n}-(2 \beta)^{R^{k}+n} & =(2 \alpha)^{n} \sum_{l=0}^{R^{k}}\binom{R^{k}}{l} p^{R^{k}-l} \Delta^{l / 2} \\
& -(2 \beta)^{n} \sum_{l=0}^{R^{k}}(-1)^{l}\binom{R^{k}}{l} p^{R^{k}-l} \Delta^{l / 2}
\end{aligned}
$$

We have $\alpha-\beta=\sqrt{\Delta}$ and, since $\Delta \neq 0$, we obtain

$$
\begin{aligned}
\frac{(2 \alpha)^{R^{k}+n}-(2 \beta)^{R^{k}+n}}{\alpha-\beta} & =2^{n} \frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l} p^{R^{k}-2 l} \Delta^{l} \\
& +2^{n}\left(\alpha^{n}+\beta^{n}\right) \sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l+1} p^{R^{k}-2 l-1} \Delta^{l}
\end{aligned}
$$

Recalling (3) and (4) we obtain

$$
\begin{aligned}
\frac{(2 \alpha)^{R^{k}+n}-(2 \beta)^{R^{k}+n}}{\alpha-\beta} & =2^{n} u_{n} \sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l} p^{R^{k}-2 l} \Delta^{l} \\
& +2^{n} v_{n} \sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l+1} p^{R^{k}-2 l-1} \Delta^{l}
\end{aligned}
$$

We want to show now that

$$
u_{n} \sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l} p^{R^{k}-2 l} \Delta^{l} \equiv 2^{R^{k}} u_{n} \quad\left(\bmod R^{k+1}\right)
$$

and

$$
v_{n} \sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l+1} p^{R^{k}-2 l-1} \Delta^{l} \equiv 2^{R^{k}} R^{k} \quad\left(\bmod R^{k+1}\right)
$$

For the first one, observe that

$$
\sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l} p^{R^{k}-2 l} \Delta^{l}=p^{R^{k}}+\sum_{l=1}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l} p^{R^{k}-2 l} \Delta^{l}
$$

since $p \equiv 2(\bmod R)$ we have $p=2+h R$ and

$$
p^{R^{k}}=(2+h R)^{R^{k}}=2^{R^{k}}+\sum_{j=1}^{R^{k}}\binom{R^{k}}{j} 2^{R^{k}-j}(h R)^{j}
$$

For each $j \geq 1$, recalling Lemma 4

$$
\binom{R^{k}}{j} 2^{R^{k}-j}(h R)^{j} \equiv 0 \quad\left(\bmod R^{k+1}\right)
$$

so $p^{R^{k}} \equiv 2^{R^{k}}\left(\bmod R^{k+1}\right)$. It remains to show that

$$
\sum_{l=1}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l} p^{R^{k}-2 l} \Delta^{l} \equiv 0 \quad\left(\bmod R^{k+1}\right)
$$

but this is true again for each $l \geq 1$ from Lemma 4 since $\Delta \equiv 0(\bmod R)$.
We want to show now that

$$
v_{n} \sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l+1} p^{R^{k}-2 l-1} \Delta^{l} \equiv 2^{R^{k}} R^{k} \quad\left(\bmod R^{k+1}\right)
$$

As before we split

$$
v_{n} \sum_{l=0}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l+1} p^{R^{k}-2 l-1} \Delta^{l}=v_{n} R^{k} p^{R^{k}-1}+v_{n} \sum_{l=1}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l+1} p^{R^{k}-2 l-1} \Delta^{l}
$$

Since $v_{n} \equiv 2(\bmod R)$ for all n, we have $v_{n} p^{R^{k}-1} \equiv 2^{R^{k}}(\bmod R)$. Multiplication of both sides by R^{k}, then yields the congruence $v_{n} R^{k} p^{R^{k}-1} \equiv 2^{R^{k}} R^{k}\left(\bmod R^{k+1}\right)$.

We notice that all the work done for now doesn't exclude the case $R=3$, the only difference is in evaluating the next sum. We want to show that for $R>3$ prime

$$
\sum_{l=1}^{\left(R^{k}-1\right) / 2}\binom{R^{k}}{2 l+1} p^{R^{k}-2 l-1} \Delta^{l} \equiv 0 \quad\left(\bmod R^{k+1}\right)
$$

This is an easy consequence of the fourth part of Lemma 4 and $\Delta \equiv 0(\bmod R)$.
Then, for $R>3$, we infer

$$
\begin{equation*}
u_{n+R^{k}} \equiv u_{n}+R^{k} \quad\left(\bmod R^{k+1}\right) \tag{5}
\end{equation*}
$$

which by induction leads to $\mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}\left(R^{k}\right)=R^{k}$ for all $k \geq 1$. Since $\mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}(n) \geq n$, we have to show only that $u_{m} \not \equiv u_{n}\left(\bmod R^{k+1}\right)$ for every pair (n, m) with $0 \leq n<$ $m<R^{k+1}$. This is true using repeatedly $u_{n+R^{h}} \equiv u_{n}+R^{h}\left(\bmod R^{h+1}\right)$ for $h \leq k$ and induction on k.

Theorem 5. For a Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q})$, it holds $\mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}\left(3^{k}\right)=3^{k}$ for all $k \geq 1$ if and only if $(p, q) \equiv(2,2)(\bmod 3)$ and $p+q \not \equiv 7(\bmod 9)$.

Proof. The proof is similar to the general one. We have only to deal more accurately with the sum

$$
\sum_{l=1}^{\left(3^{k}-1\right) / 2}\binom{3^{k}}{2 l+1} p^{3^{k}-2 l-1} \Delta^{l} \equiv 0 \quad\left(\bmod 3^{k+1}\right)
$$

In particular, from Lemma 4 for $l \geq 2$ each term is zero but, in general, the term with $l=1$

$$
\binom{3^{k}}{3} p^{3^{k}-3} \Delta=\frac{3^{k-1}\left(3^{k}-1\right)\left(3^{k}-2\right)}{2} p^{3^{k}-3} \Delta
$$

is not zero. It depends on the class of $\Delta(\bmod 9)$. If $(p, q) \equiv(2,2)(\bmod 3)$, then we have $(p, q) \equiv(2,2),(2,5),(5,2),(5,5),(2,8),(8,2),(5,8),(8,5)$ or $(8,8)(\bmod 9)$. We have three cases:

- when $p+q \equiv 4(\bmod 9)$, i.e. when $(p, q) \in\{(2,2),(5,8),(8,5)\}(\bmod 9)$, in which case $\Delta \equiv 3(\bmod 9)$;
- when $p+q \equiv 1(\bmod 9)$, i.e. when $(p, q) \in\{(5,5),(2,8),(8,2)\}(\bmod 9)$, in which case $\Delta \equiv 0(\bmod 9)$;
- when $p+q \equiv 7(\bmod 9)$, i.e. when $(p, q) \in\{(8,8),(2,5),(5,2)\}(\bmod 9)$, in which case $\Delta \equiv 6(\bmod 9)$.

We precisely will show that if $(p, q) \equiv(2,2)(\bmod 3)$ and $\Delta \neq 0$, then

$$
\begin{array}{rll}
\text { if } p+q \equiv 4 & (\bmod 9), \text { then } u_{n+3^{k}} \equiv u_{n}+2 \cdot 3^{k} & \left(\bmod 3^{k+1}\right) \\
\text { if } p+q \equiv 1 & (\bmod 9), \text { then } u_{n+3^{k}} \equiv u_{n}+3^{k} & \left(\bmod 3^{k+1}\right) \\
\text { if } p+q \equiv 7 & (\bmod 9), \text { then } u_{n+3^{k}} \equiv u_{n} & \left(\bmod 3^{k+1}\right) \tag{8}
\end{array}
$$

From this we can conclude that $\mathcal{D}_{\mathbf{u}(\mathbf{p}, \mathbf{q})}\left(3^{k}\right)=3^{k}$ if and only if $(p, q) \equiv(2,2)$ $(\bmod 3)$ and $p+q \not \equiv 7(\bmod 9)$. We notice that if $\Delta=0$, then $p^{2}=-4 q^{2}$, and so $(\bmod 9)$ the only possibilities with $(p, q) \equiv(2,2)(\bmod 3)$ are $(p, q) \equiv(5,5)$ $(\bmod 9),(p, q) \equiv(2,8)(\bmod 9)$ or $(p, q) \equiv(8,2)(\bmod 9)$. Since $p+q \not \equiv 7(\bmod 9)$ for these pairs (p, q), the claim it's true also for $\Delta=0$.

We have to deal with

$$
v_{n} \frac{3^{k-1}\left(3^{k}-1\right)\left(3^{k}-2\right)}{2} p^{3^{k}-3} \Delta
$$

and we will prove that in the first case it is equal to $2^{3^{k}} 3^{k}\left(\bmod 3^{k+1}\right)$, in the second case equal to $0\left(\bmod 3^{k+1}\right)$ and in the third case equal to $2^{3^{k}+1} 3^{k}\left(\bmod 3^{k+1}\right)$, this will complete the proof. In general, we have

$$
v_{n} \frac{3^{k-1}\left(3^{k}-1\right)\left(3^{k}-2\right)}{2} p^{3^{k}-3} \Delta \equiv v_{n} 3^{k-1} p^{3^{k}-3} \Delta \quad\left(\bmod 3^{k+1}\right)
$$

In the first case, since $\Delta \equiv 3(\bmod 9)$, then $\Delta=3+9 d$ for some d, thus we claim that

$$
v_{n} 3^{k} p^{3^{k}-3}(1+3 d) \equiv 2^{3^{k}} 3^{k} \quad\left(\bmod 3^{k+1}\right)
$$

This is true since $v_{n} p^{3^{k}-3}(1+3 d) \equiv 2^{3^{k}}(\bmod 3)$ and we can multiply both sides by 3^{k}. In the second case, since $\Delta \equiv 0(\bmod 9)$, we can write $\Delta=9 d$ and see that

$$
v_{n} 3^{k+1} p^{3^{k}-3} d \equiv 0 \quad\left(\bmod 3^{k+1}\right)
$$

For the third case, since $\Delta \equiv 6(\bmod 9)$, we have $\Delta=6+9 d$ and therefore we claim that

$$
v_{n} 3^{k} p^{3^{k}-3}(2+3 d) \equiv-2^{3^{k}} 3^{k} \quad\left(\bmod 3^{k+1}\right)
$$

This is true since $v_{n} p^{3^{k}-3}(2+3 d) \equiv-2^{3^{k}}(\bmod 3)$ and we can multiply both sides by 3^{k}. The converse can be shown numerically.

Now we are in the position to prove Theorems 2 and 3 .
Proof of Theorem 2 and of Theorem 3. Suppose $R>5$ or $R=3$ with $p+q \not \equiv 7$ $(\bmod 9)$. Write w_{n} as a shifted Lucas sequence, $w_{n}=a u_{n}+b u_{n+1}$, where u_{n} is the Lucas sequence $\mathbf{u}(\mathbf{p}, \mathbf{q})$. We find $b=w_{0}, a=w_{1}-p w_{0}$. Then, if $R>5$ or $R=3$ with $p+q \equiv 1(\bmod 9)$, by (5) and (7) we obtain

$$
\begin{aligned}
w_{n+R^{k}} & \equiv a u_{n+R^{k}}+b u_{n+1+R^{k}} \equiv a\left(u_{n}+R^{k}\right)+b\left(u_{n+1}+R^{k}\right) \\
& \equiv\left(a u_{n}+b u_{n+1}\right)+(a+b) R^{k} \equiv w_{n}+(a+b) R^{k} \quad\left(\bmod R^{k+1}\right)
\end{aligned}
$$

for $k \geq 1$. We can conclude since $a+b \equiv w_{1}-w_{0} \not \equiv 0(\bmod R)$. If $R=3$ and $p+q \equiv 4(\bmod 9)$ it is similar.

Acknowledgement. The author is grateful to Pieter Moree for his revision and his suggestions. Moreover, the author thanks the reviewers for their valuable comments

References

[1] A. De Clercq, F. Luca, L. Martirosyan, M. Matthis, P. Moree, M. A. Stoumen, and M. Weiß, Binary recurrences for which powers of two are discriminating moduli, J. Integer Seq. 23 (11) (2020).
[2] P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, New York, 1996.

