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Abstract
The discriminator sequence {Dy(n)}n>0 of a sequence u = {uy}n>0 of distinct
integers is defined for each n as the smallest positive integer m such that ug, . .., u,_1

are pairwise incongruent modulo m. Since in general, it is difficult to find an
explicit characterization of the discriminator D,,(n) of a given recurrence sequence
u = {up }n>0, we provide a bound for a specific type of binary recurrences. To do
this, we investigate binary recurrences with prime powers as fixed points of their
discriminator. We almost complete a characterization of the binary recurrences
for which, for a given prime R, Du(R*) = R* for each k > 0. This paper is the
continuation of a recent work by de Clercq et al., dealing with the case R = 2.

1. Introduction

The discriminator sequence of a sequence u = {uy, },>¢ of distinct integers is defined
as the sequence {Dy(n)},>0 given by

Dy(n) :=min{m > 1: uy,...,u,—1 are pairwise distinct (mod m)}.
Trivially, we have
n < Dy(n) < max{ug,...,Up—1} —min{ug, ..., up—1} + 1.

The main problem is to give an easy description or characterization of {Dy(n)}.
In general, this is a difficult task, but we observe that if we have, for some prime R,

Du(R*) = R* for every k > 1,

then Dy(n) < Rn for each n > 1. This follows easily since given n, take k such that
RF <n < RFLf Dy (RFY) = RFHL then we have Dy(n) < R < Rn.
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For integers wo, w1, p and ¢, let w = {w,, }»>0 be the sequence defined by
Wpt2 = PWpy1 + qu, for all n > 0. (1)
In [1] the following result is established.

Theorem 1. Let w = {w,, }n>0 be as in (1), if (p,q) = (2,3) (mod 4) and wo+wq
is odd, then Dy (2%) = 2% for every k > 1. If (p,q) # (2,3) (mod 4) and k > 3,
then #{w,, (mod 2¥):0 <n <2F -1} < 2k,

In this paper, we will prove a partial generalization, namely the following results.

Theorem 2. Let w = {wy, }n>0 be as in (1). If (p,q) = (2,2) (mod 3), p+q# 7
(mod 9) and wy #Z w; (mod 9), then Dy (3F) = 3% for every k > 1.

Theorem 3. Let w = {wy, }n>0 be as in (1) and R > 5 prime. If (p,q) = (2, R—1)
(mod R) and wg # wy (mod R), then Dy (R*) = R¥ for every k > 1.

We will follow the line of reasoning of [1], focusing on the points where things
change between R = 2 and all the other primes, with particular attention on the
second exception: R = 3.

2. Preliminaries
The Lucas sequence u(p,q) = {un }n>0 for p,q € Z is defined as

Uug = 0,
up =1,
Upt2 = PUnt1 + qup 1 2> 0.
The general idea is to prove something for a Lucas sequence, and then generalize

to an arbitrary binary recurrence, seeing it as a shifted Lucas sequence. For this
purpose, in [1], in order to prove Theorem 1, the following result is established first.

Lemma 1. For a Lucas sequence u(p,q), Dy(p,q) (2%) = 2% for all k > 0 if and
only if (p,q) = (2,3) (mod 4).

We will prove analogous results for the other primes.

Lemma 2. For a Lucas sequence u(p,q), Dy(p,q) (3%) = 3% for all k > 0 if and
only if (p,q) = (2,2) (mod 3) and p+q # 7 (mod 9).

Lemma 3. For a Lucas sequence u(p,q), given R > 3 prime, if (p,q) = (2, R—1)
(mod R), then Dy(p.q)(R*) = R* for all k > 0.

The converse is proved only numerically for R = 5,7,11,13.
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Conjecture. For a Lucas sequence u(p, q), given R > 3 prime, if Du(p,q)(Rk) = RF

for all k > 0, then (p,q) = (2, R —1) (mod R).

Let v4(n), for ¢ prime, be the exponent of ¢ in the prime factorization of the
integer n.

Theorem 4 (Kummer, 1852, cf. [2], pp. 30-33.). Let p be a prime number. The
exponent of p in (;), i.e. Up ((;’1)), is the number of base p carries when summing
m with n —m in base p.

Lemma 4. Given an odd prime R, we have

VR ((2) Rk) > vr(Rl) = vg(l) + 1

for alll > 1 and for all k < 1. Further, for all k > 1 and for all 1 < Rk

k
VR ((}3 )Rl> > k41

for all k > 1 and for all | < R¥/2

RE\ _,
> 1;
VR(<21)R>_I€+ 5

finally, for allk > 1 and for all | < (RF —1)/2, with the exceptionl =1 and R = 3,

> .
VR(<2H1)R) >k41

Proof. We use Theorem 4 with p = R. Since the first inequality is clear when
k =1, we may assume k > 2. If vg(l) < 1, the inequality is obvious too. Since it
is also clear if k > vg(l) + 1, we may assume that k < vr(l) + 1. Then, we have
vr(k) < k <wvg(l)+1. By summing up k with [ — k, we have at least vg(l) — vr(k)
carries in base R. Thus, we obtain

VR ((li) R’“) > vr(l) —vr(k) + k > vg(l) + 1.

In the second inequality we have I € [1, R*]. In that case the number of carries
from summing [ with R¥ — [ is at least, by the previous argument, k — vg(l), since
vr(l) < vr(RF) = k. Hence, by using Theorem 4 again, we obtain

vr (7, JB) 2 k- +1>k+1.
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In the third inequality we have [ € [1, R¥/2]. Then, similarly, the number of carries
from summing 2! with R¥ —2[ is at least k—vr(2l). Therefore, using again Theorem
4, we conclude

k
W((Z)Rl) >k—vrQ) +l=k—vr(l)+1>k+1

since R is odd. For the fourth inequality we have [ € [1,(R* — 1)/2]. Then, again
the number of carries from summing 2/ +1 with R¥ —2]—1 is at least k —vg(20+1).
Hence, by using for the last time Theorem 4, we obtain

RF .
>k — .
I/R<(2Z+I>R>k vr(204+1) +1

Now the only exception occurs when ! = 1 and R = 3, in that case vg(20 4+ 1) =
v3(3) =1 =1, in all the other cases —vr(20+1)+1 > 1. O

3. Proofs of the Main Theorems

Lemma 5. For a Lucas sequence u(p,q), given a prime R > 3, if (p,q) = (2,R—1)
(mod R), then Dyp.q)(R") = R* for all k > 0.

Proof. Suppose (p,q) = (2, R—1) (mod R). We consider the quadratic polynomial
x2 — pxr — ¢ having discriminant A = p? + 4¢. The equation 2% — px — ¢ = 0 is the
characteristic equation for the Lucas sequence u(p, q).

The degenerate case. In the case A =0, we have a generic solution
u, = Apg + Bnpy,

with po = p/2. Imposing the starting condition, we obtain u,, = npgfl. We notice
that if A = p? + 4¢ = 0, then p is even, and so pg € Z:; moreover, since p = 2
(mod R) and R > 2, then pg =1 (mod R). So we obtain

{ug,uy,us,...,ur—1} =40,1,2py, ..., (R—l)pé’zﬁ} ={0,1,2,...,R—1} (mod R).

We claim that vg(u, — u,) = vg(m — n) for all m > n. Indeed, if there exist
n < m < RF such that u, = u,, (mod R*), then we would expect vg(m —n) =
VR(Um — Uy) > k. Since uy, — u, = mpg“1 — npgfl, we have U, —u, = m-—n
(mod R). So vg(tm —uy) = 0if and only if vg(m —n) = 0. We assume that m =n

(mod R) and write m = n + RI. Then we obtain

Wy — = (n+ RO — npp ™ = pp ™ (n + RO — 1)+ RI). (2)
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We write pff = 14 Rp;, with p; € N (this can be done since pg = 1 (mod R), and
sopg =1+ Rt and plf =1+ Rt Zf:o (]+1)(Rt) ). Thus, we obtain

!
g)ﬂ -1= (1+Rp1)l —-1= Z (i)(Rpl)s.

s=1

From the latter equation and (2) we conclude

U — U =PI~ 1(n+Rz i() (Rpy)* +Rz).
s=1

Since by Lemma 4 for every s > 1 we have

o () o) 2o ((0) ) 2 vatro,

VR(Um — up) = vr(RL) = vgr(m —n),

we conclude that

thus establishing the claim.

The non-degenerate case. Here we suppose A # 0. Since by assumption p = 2
(mod R) and ¢ = R — 1 (mod R), it follows that A = p* +4¢=4+4(R—1)=0
(mod R). Let o := p/24++v/A/2 and 3 := p/2—+/A/2 be the roots of x> —pz—q = 0.
The generic solution is u, = Aa™ + BS™. On imposing the initial condition we
obtain

L
Upy = ———. 3
n a— 6 ( )
We introduce the companion sequence v = {v, },,>0 given by
Vo = 2a
U1 =D,

Un+2 = PUn+1 +quy, 1 2> 0.
By induction v, =2 (mod R), for all n > 0. Further, we obtain
v, =a’ + 4" foralln > 0. (4)
Next we will show that
Up i gr = Un + R¥ (mod RFH)

for all Kk > 1 and for all n > 0. We have

k RF

(20)% = (p+VA)" =3 (P;k)pR“Al/z,
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and similarly

@) = (p-v&)" - 3 <J§k>kal<‘A1/2)l = i(—l)l@k)pf*kw/?
=0

1=0
So we have

Rk

(QQ)Rk+n _ (25)Rk+n = (2a)" Z (}ik>kalAl/2

=0
R* Rk .

_ (2ﬂ)n Z(_l)l< Z >pR 71Al/2.
=0

We have o — 3 = v/A and, since A # 0, we obtain

ko kL n o (RF=1)/2
(20) " — (28)F 4 0" =B (R’“)kazl Al
1=0

a—pf a—pf 21
(R*-1)/2 R* .
N (1 n R _2l_1Al.
+ 2" (™ + ") ; <2l+1)p
Recalling (3) and (4) we obtain
k k (RF-1)/2 b
(2a)FHm — (28)F R\ Rpr_o1 ai
— 2TL
o — tn Z 21 P A
1=0
(RF-1)/2

+ 2"y Z R RF—21-1 Al
" 21+1)F '

=0

We want to show now that

(B —1)/2 R¥ k k
Up, Z <2l>pR “AAN =2y, (mod RF)
1=0
and
(R —1)/2 R* k k
RF_21—1 Al _ oRF pk k+1
Up, Z (2l+1>p A'=2"RY (mod R"™).

=0

For the first one, observe that

@lk )PRk_zW =p +

(RF-1)/2 (RF-1)/2

Z (Rk>ka—2lAl’
21
1=0 =1
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since p =2 (mod R) we have p =2+ hR and

p™ = (2+hR) =2 +Z< >2Rkﬂ (hR)’.
For each j > 1, recalling Lemma 4

k o . .
(R; >2Rk_7(hR)] =0 (mod RF*1),

so pR* = 2R" (mod RFF1). Tt remains to show that

(RF-1)/2 Rk .
( )pR “2Al =0 (mod Rk+1),

21
=1

but this is true again for each [ > 1 from Lemma 4 since A =0 (mod R).

We want to show now that

(RF-1)/2

RF RF_21—1 Al _ oR* pk k+1
Un ; (21+1>p A'=2" RY (mod R"™).

As before we split

(RF—1)/2

v Z R ka—Ql—lAl — RkpR’“—1+v
n s 2l+1 n n

(r*

—-1)/2
Z ( RF ) Rk—QI—IAl
P .
— 20+ 1

Since v, = 2 (mod R) for all n, we have v,,p® R*-1 = 9gR" (mod R) Multiplication
of both sides by R¥, then yields the congruence v, RFpf" =1 = 2B* Rk (mod RF+1).
We notice that all the work done for now doesn’t exclude the case R = 3, the
only difference is in evaluating the next sum. We want to show that for R > 3
prime
(RF-1

2 RF RF—21—1 Al k41
E “TPA'=0 (mod R .
- (2l+1>p (mo )

This is an easy consequence of the fourth part of Lemma 4 and A =0 (mod R).
Then, for R > 3, we infer

Upygr = Uy + RF (mod RF), (5)

which by induction leads to Dy(p q)(R¥) = R* for all k > 1. Since Dy(p q)(n) > n
we have to show only that u,, # u, (mod RFT!) for every pair (n,m) with 0 < n <
m < RFFL. This is true using repeatedly u, g = u, + R" (mod RM1) for h < k
and induction on k. O



INTEGERS: 21 (2021) 8

Theorem 5. For a Lucas sequence u(p, q), it holds Du(p?q)(Sk) =3* for allk>1
if and only if (p,q) = (2,2) (mod 3) and p+ q # 7 (mod 9).

Proof. The proof is similar to the general one. We have only to deal more accurately

with the sum
(3F-1)/2

Z 3 ka—Ql—lAl =0 (mod 3k+1)
—~ \20+1 - '

In particular, from Lemma 4 for [ > 2 each term is zero but, in general, the term

with | =1 3 1 rok N
(33)p3’“3A_ 33 *21)(3 *2)p3’t3A

is not zero. It depends on the class of A (mod 9). If (p, ¢) = (2,2) (mod 3), then we
have (p,q) = (2,2), (2,5), (5,2), (5,5), (2,8, (8,2), (5,8), (8,5) or (8,8) (mod 9).
We have three cases:

e when p+ ¢ =4 (mod 9), i.e. when (p,q) € {(2,2),(5,8),(8,5)} (mod 9),
in which case A =3 (mod 9);

e when p+ ¢ =1 (mod 9), i.e. when (p,q) € {(5,5),(2,8),(8,2)} (mod 9),
in which case A =0 (mod 9);

e when p+ ¢ =7 (mod 9), i.e. when (p,q) € {(8,8),(2,5),(5,2)} (mod 9),
in which case A =6 (mod 9).

We precisely will show that if (p,q) = (2,2) (mod 3) and A # 0, then

ifp+qg=4 (mod?9), then u, 3 = u, +2-3F (mod 3%T1);  (6)
if p+g=1 (mod9), then u, 3 = u, + 3~ (mod 351y, (7)
ifp+¢g=7 (mod?9), then u, 3+ =u, (mod 3**1).  (8)

From this we can conclude that Dypq)(3¥) = 3% if and only if (p,q) = (2,2)
(mod 3) and p+ ¢ # 7 (mod 9). We notice that if A = 0, then p? = —4¢?, and
so (mod 9) the only possibilities with (p,q) = (2,2) (mod 3) are (p,q) = (5,5)
(mod 9), (p,q) = (2,8) (mod 9) or (p,q) = (8,2) (mod 9). Since p+q £ 7 (mod 9)
for these pairs (p, q), the claim it’s true also for A = 0.

We have to deal with

3F-1(3k —1)(3F - 2)
2

X
Un, P> A

and we will prove that in the first case it is equal to 23" 3k (mod 3¥*+1), in the second
k

case equal to 0 (mod 3*+1) and in the third case equal to 2% T13F (mod 3k*1), this

will complete the proof. In general, we have

3F-1(3F —1)(3F - 2)
2

Up pgk_3A = vn3k_1p3k_3A (mod 3*+1).
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In the first case, since A = 3 (mod 9), then A = 3 + 9d for some d, thus we claim
that

vn3¥p® “3(1+3d) = 23"3%  (mod 3F*1).

This is true since vnp3k_3(1 +3d) = 23" (mod 3) and we can multiply both sides
by 3*. In the second case, since A =0 (mod 9), we can write A = 9d and see that

0,381 p3 84 = 0 (mod 3F1).

For the third case, since A = 6 (mod 9), we have A = 6 + 9d and therefore we
claim that

vn3kp3k_3(2 +3d) = —93"gk (mod 3F+1).

This is true since v,p> ~3(2 + 3d) = —2%" (mod 3) and we can multiply both sides
by 3*. The converse can be shown numerically. O

Now we are in the position to prove Theorems 2 and 3.

Proof of Theorem 2 and of Theorem 3. Suppose R > 5 or R =3 withp+q £ 7
(mod 9). Write w,, as a shifted Lucas sequence, w,, = aty, + by, 11, where u,, is the
Lucas sequence u(p,q). We find b = wg, a = w1 — pwg. Then, if R > 5 or R =3
with p+¢=1 (mod 9), by (5) and (7) we obtain

Wy g = Uy gk + Dy s 14 g = a(ty + RF) 4+ b(upqq + RY)
= (atp + btng1) + (a + b)R* = w, + (a+b)RF  (mod R*1)

for Kk > 1. We can conclude since a +b = w; — wp Z 0 (mod R). If R = 3 and
p+qg=4 (mod9) it is similar. O

Acknowledgement. The author is grateful to Pieter Moree for his revision and his
suggestions. Moreover, the author thanks the reviewers for their valuable comments

References

[1] A. De Clercq, F. Luca, L. Martirosyan, M. Matthis, P. Moree, M. A. Stoumen, and M. Weif},
Binary recurrences for which powers of two are discriminating moduli, J. Integer Seq. 23
(11) (2020).

(2] P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, New York, 1996.



