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Abstract

The discriminator sequence {Du(n)}n≥0 of a sequence u = {un}n≥0 of distinct
integers is defined for each n as the smallest positive integerm such that u0, . . . , un−1

are pairwise incongruent modulo m. Since in general, it is difficult to find an
explicit characterization of the discriminator Du(n) of a given recurrence sequence
u = {un}n≥0, we provide a bound for a specific type of binary recurrences. To do
this, we investigate binary recurrences with prime powers as fixed points of their
discriminator. We almost complete a characterization of the binary recurrences
for which, for a given prime R, Du(Rk) = Rk for each k ≥ 0. This paper is the
continuation of a recent work by de Clercq et al., dealing with the case R = 2.

1. Introduction

The discriminator sequence of a sequence u = {un}n≥0 of distinct integers is defined

as the sequence {Du(n)}n≥0 given by

Du(n) := min{m ≥ 1 : u0, . . . , un−1 are pairwise distinct (mod m)}.

Trivially, we have

n ≤ Du(n) ≤ max{u0, . . . , un−1} −min{u0, . . . , un−1}+ 1.

The main problem is to give an easy description or characterization of {Du(n)}.
In general, this is a difficult task, but we observe that if we have, for some prime R,

Du(Rk) = Rk for every k ≥ 1,

then Du(n) < Rn for each n ≥ 1. This follows easily since given n, take k such that

Rk ≤ n ≤ Rk+1; if Du(Rk+1) = Rk+1, then we have Du(n) ≤ Rk+1 ≤ Rn.
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For integers w0, w1, p and q, let w = {wn}n≥0 be the sequence defined by

wn+2 = pwn+1 + qwn for all n ≥ 0. (1)

In [1] the following result is established.

Theorem 1. Let w = {wn}n≥0 be as in (1), if (p, q) ≡ (2, 3) (mod 4) and w0 +w1

is odd, then Dw(2k) = 2k for every k ≥ 1. If (p, q) 6≡ (2, 3) (mod 4) and k ≥ 3,

then #{wn (mod 2k) : 0 ≤ n ≤ 2k − 1} < 2k.

In this paper, we will prove a partial generalization, namely the following results.

Theorem 2. Let w = {wn}n≥0 be as in (1). If (p, q) ≡ (2, 2) (mod 3), p + q 6≡ 7

(mod 9) and w0 6≡ w1 (mod 9), then Dw(3k) = 3k for every k ≥ 1.

Theorem 3. Let w = {wn}n≥0 be as in (1) and R ≥ 5 prime. If (p, q) ≡ (2, R−1)

(mod R) and w0 6≡ w1 (mod R), then Dw(Rk) = Rk for every k ≥ 1.

We will follow the line of reasoning of [1], focusing on the points where things

change between R = 2 and all the other primes, with particular attention on the

second exception: R = 3.

2. Preliminaries

The Lucas sequence u(p,q) = {un}n≥0 for p, q ∈ Z is defined as
u0 = 0,

u1 = 1,

un+2 = pun+1 + qun n ≥ 0.

The general idea is to prove something for a Lucas sequence, and then generalize

to an arbitrary binary recurrence, seeing it as a shifted Lucas sequence. For this

purpose, in [1], in order to prove Theorem 1, the following result is established first.

Lemma 1. For a Lucas sequence u(p,q), Du(p,q)(2
k) = 2k for all k ≥ 0 if and

only if (p, q) ≡ (2, 3) (mod 4).

We will prove analogous results for the other primes.

Lemma 2. For a Lucas sequence u(p,q), Du(p,q)(3
k) = 3k for all k ≥ 0 if and

only if (p, q) ≡ (2, 2) (mod 3) and p+ q 6≡ 7 (mod 9).

Lemma 3. For a Lucas sequence u(p,q), given R > 3 prime, if (p, q) ≡ (2, R− 1)

(mod R), then Du(p,q)(R
k) = Rk for all k ≥ 0.

The converse is proved only numerically for R = 5, 7, 11, 13.



INTEGERS: 21 (2021) 3

Conjecture. For a Lucas sequence u(p,q), given R > 3 prime, if Du(p,q)(R
k) = Rk

for all k ≥ 0, then (p, q) ≡ (2, R− 1) (mod R).

Let νq(n), for q prime, be the exponent of q in the prime factorization of the

integer n.

Theorem 4 (Kummer, 1852, cf. [2], pp. 30-33.). Let p be a prime number. The

exponent of p in
(
n
m

)
, i.e. vp

((
n
m

))
, is the number of base p carries when summing

m with n−m in base p.

Lemma 4. Given an odd prime R, we have

νR

((
l

k

)
Rk

)
≥ νR(Rl) = νR(l) + 1

for all l ≥ 1 and for all k ≤ l. Further, for all k ≥ 1 and for all l ≤ Rk

νR

((
Rk

l

)
Rl

)
≥ k + 1;

for all k ≥ 1 and for all l ≤ Rk/2

νR

((
Rk

2l

)
Rl

)
≥ k + 1;

finally, for all k ≥ 1 and for all l ≤ (Rk−1)/2, with the exception l = 1 and R = 3,

νR

((
Rk

2l + 1

)
Rl

)
≥ k + 1.

Proof. We use Theorem 4 with p = R. Since the first inequality is clear when

k = 1, we may assume k ≥ 2. If νR(l) ≤ 1, the inequality is obvious too. Since it

is also clear if k ≥ νR(l) + 1, we may assume that k < νR(l) + 1. Then, we have

νR(k) < k < νR(l) + 1. By summing up k with l− k, we have at least νR(l)− νR(k)

carries in base R. Thus, we obtain

νR

((
l

k

)
Rk

)
≥ νR(l)− νR(k) + k ≥ νR(l) + 1.

In the second inequality we have l ∈ [1, Rk]. In that case the number of carries

from summing l with Rk − l is at least, by the previous argument, k − νR(l), since

νR(l) ≤ νR(Rk) = k. Hence, by using Theorem 4 again, we obtain

νR

((
Rk

l

)
Rl

)
≥ k − νR(l) + l ≥ k + 1.
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In the third inequality we have l ∈ [1, Rk/2]. Then, similarly, the number of carries

from summing 2l with Rk−2l is at least k−νR(2l). Therefore, using again Theorem

4, we conclude

νR

((
Rk

2l

)
Rl

)
≥ k − νR(2l) + l = k − νR(l) + l ≥ k + 1

since R is odd. For the fourth inequality we have l ∈ [1, (Rk − 1)/2]. Then, again

the number of carries from summing 2l+1 with Rk−2l−1 is at least k−νR(2l+1).

Hence, by using for the last time Theorem 4, we obtain

νR

((
Rk

2l + 1

)
Rl

)
≥ k − νR(2l + 1) + l.

Now the only exception occurs when l = 1 and R = 3, in that case νR(2l + 1) =

ν3(3) = 1 = l, in all the other cases −νR(2l + 1) + l ≥ 1.

3. Proofs of the Main Theorems

Lemma 5. For a Lucas sequence u(p,q), given a prime R > 3, if (p, q) ≡ (2, R−1)

(mod R), then Du(p,q)(R
k) = Rk for all k ≥ 0.

Proof. Suppose (p, q) ≡ (2, R− 1) (mod R). We consider the quadratic polynomial

x2 − px− q having discriminant ∆ = p2 + 4q. The equation x2 − px− q = 0 is the

characteristic equation for the Lucas sequence u(p,q).

The degenerate case. In the case ∆ = 0, we have a generic solution

un = Apn0 +Bnpn0 ,

with p0 = p/2. Imposing the starting condition, we obtain un = npn−1
0 . We notice

that if ∆ = p2 + 4q = 0, then p is even, and so p0 ∈ Z; moreover, since p ≡ 2

(mod R) and R > 2, then p0 ≡ 1 (mod R). So we obtain

{u0, u1, u2, . . . , uR−1} = {0, 1, 2p0, . . . , (R−1)pR−2
0 } ≡ {0, 1, 2, . . . , R−1} (mod R).

We claim that νR(um − un) = νR(m − n) for all m > n. Indeed, if there exist

n < m ≤ Rk such that un ≡ um (mod Rk), then we would expect νR(m − n) =

νR(um − un) ≥ k. Since um − un = mpm−1
0 − npn−1

0 , we have um − un ≡ m − n
(mod R). So νR(um−un) = 0 if and only if νR(m−n) = 0. We assume that m ≡ n
(mod R) and write m = n+Rl. Then we obtain

um − un = (n+Rl)pn+Rl−1
0 − npn−1

0 = pn−1
0

(
(n+Rl)(pRl

0 − 1) +Rl
)
. (2)
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We write pR0 = 1 +Rp1, with p1 ∈ N (this can be done since p0 ≡ 1 (mod R), and

so p0 = 1 +Rt and pR0 = 1 +Rt
∑R−1

j=0

(
R

j+1

)
(Rt)j). Thus, we obtain

pRl
0 − 1 = (1 +Rp1)l − 1 =

l∑
s=1

(
l

s

)
(Rp1)s.

From the latter equation and (2) we conclude

um − un = pn−1
0

(
(n+Rl)

l∑
s=1

(
l

s

)
(Rp1)s +Rl

)
.

Since by Lemma 4 for every s ≥ 1 we have

νR

((
l

s

)
(Rp1)s

)
≥ νR

((
l

s

)
Rs

)
≥ νR(Rl),

we conclude that

νR(um − un) = νR(Rl) = νR(m− n),

thus establishing the claim.

The non-degenerate case. Here we suppose ∆ 6= 0. Since by assumption p ≡ 2

(mod R) and q ≡ R − 1 (mod R), it follows that ∆ = p2 + 4q ≡ 4 + 4(R − 1) ≡ 0

(mod R). Let α := p/2+
√

∆/2 and β := p/2−
√

∆/2 be the roots of x2−px−q = 0.

The generic solution is un = Aαn + Bβn. On imposing the initial condition we

obtain

un =
αn − βn

α− β
. (3)

We introduce the companion sequence v = {vn}n≥0 given by
v0 = 2,

v1 = p,

vn+2 = pvn+1 + qvn n ≥ 0.

By induction vn ≡ 2 (mod R), for all n ≥ 0. Further, we obtain

vn = αn + βn for all n ≥ 0. (4)

Next we will show that

un+Rk ≡ un +Rk (mod Rk+1)

for all k ≥ 1 and for all n ≥ 0. We have

(2α)R
k

=
(
p+
√

∆
)Rk

=

Rk∑
l=0

(
Rk

l

)
pR

k−l∆l/2,
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and similarly

(2β)R
k

=
(
p−
√

∆
)Rk

=

Rk∑
l=0

(
Rk

l

)
pR

k−l
(
−∆1/2

)l
=

Rk∑
l=0

(−1)l
(
Rk

l

)
pR

k−l∆l/2.

So we have

(2α)R
k+n − (2β)R

k+n = (2α)n
Rk∑
l=0

(
Rk

l

)
pR

k−l∆l/2

− (2β)n
Rk∑
l=0

(−1)l
(
Rk

l

)
pR

k−l∆l/2.

We have α− β =
√

∆ and, since ∆ 6= 0, we obtain

(2α)R
k+n − (2β)R

k+n

α− β
= 2n

αn − βn

α− β

(Rk−1)/2∑
l=0

(
Rk

2l

)
pR

k−2l∆l

+ 2n(αn + βn)

(Rk−1)/2∑
l=0

(
Rk

2l + 1

)
pR

k−2l−1∆l.

Recalling (3) and (4) we obtain

(2α)R
k+n − (2β)R

k+n

α− β
= 2nun

(Rk−1)/2∑
l=0

(
Rk

2l

)
pR

k−2l∆l

+ 2nvn

(Rk−1)/2∑
l=0

(
Rk

2l + 1

)
pR

k−2l−1∆l.

We want to show now that

un

(Rk−1)/2∑
l=0

(
Rk

2l

)
pR

k−2l∆l ≡ 2R
k

un (mod Rk+1)

and

vn

(Rk−1)/2∑
l=0

(
Rk

2l + 1

)
pR

k−2l−1∆l ≡ 2R
k

Rk (mod Rk+1).

For the first one, observe that

(Rk−1)/2∑
l=0

(
Rk

2l

)
pR

k−2l∆l = pR
k

+

(Rk−1)/2∑
l=1

(
Rk

2l

)
pR

k−2l∆l,
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since p ≡ 2 (mod R) we have p = 2 + hR and

pR
k

= (2 + hR)R
k

= 2R
k

+

Rk∑
j=1

(
Rk

j

)
2R

k−j(hR)j .

For each j ≥ 1, recalling Lemma 4(
Rk

j

)
2R

k−j(hR)j ≡ 0 (mod Rk+1),

so pR
k ≡ 2R

k

(mod Rk+1). It remains to show that

(Rk−1)/2∑
l=1

(
Rk

2l

)
pR

k−2l∆l ≡ 0 (mod Rk+1),

but this is true again for each l ≥ 1 from Lemma 4 since ∆ ≡ 0 (mod R).

We want to show now that

vn

(Rk−1)/2∑
l=0

(
Rk

2l + 1

)
pR

k−2l−1∆l ≡ 2R
k

Rk (mod Rk+1).

As before we split

vn

(Rk−1)/2∑
l=0

(
Rk

2l + 1

)
pR

k−2l−1∆l = vnR
kpR

k−1 + vn

(Rk−1)/2∑
l=1

(
Rk

2l + 1

)
pR

k−2l−1∆l.

Since vn ≡ 2 (mod R) for all n, we have vnp
Rk−1 ≡ 2R

k

(mod R). Multiplication

of both sides by Rk, then yields the congruence vnR
kpR

k−1 ≡ 2R
k

Rk (mod Rk+1).

We notice that all the work done for now doesn’t exclude the case R = 3, the

only difference is in evaluating the next sum. We want to show that for R > 3

prime
(Rk−1)/2∑

l=1

(
Rk

2l + 1

)
pR

k−2l−1∆l ≡ 0 (mod Rk+1).

This is an easy consequence of the fourth part of Lemma 4 and ∆ ≡ 0 (mod R).

Then, for R > 3, we infer

un+Rk ≡ un +Rk (mod Rk+1), (5)

which by induction leads to Du(p,q)(R
k) = Rk for all k ≥ 1. Since Du(p,q)(n) ≥ n,

we have to show only that um 6≡ un (mod Rk+1) for every pair (n,m) with 0 ≤ n <
m < Rk+1. This is true using repeatedly un+Rh ≡ un +Rh (mod Rh+1) for h ≤ k

and induction on k.
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Theorem 5. For a Lucas sequence u(p,q), it holds Du(p,q)(3
k) = 3k for all k ≥ 1

if and only if (p, q) ≡ (2, 2) (mod 3) and p+ q 6≡ 7 (mod 9).

Proof. The proof is similar to the general one. We have only to deal more accurately

with the sum
(3k−1)/2∑

l=1

(
3k

2l + 1

)
p3

k−2l−1∆l ≡ 0 (mod 3k+1).

In particular, from Lemma 4 for l ≥ 2 each term is zero but, in general, the term

with l = 1 (
3k

3

)
p3

k−3∆ =
3k−1(3k − 1)(3k − 2)

2
p3

k−3∆

is not zero. It depends on the class of ∆ (mod 9). If (p, q) ≡ (2, 2) (mod 3), then we

have (p, q) ≡ (2, 2), (2, 5), (5, 2), (5, 5), (2, 8), (8, 2), (5, 8), (8, 5) or (8, 8) (mod 9).

We have three cases:

• when p+ q ≡ 4 (mod 9), i.e. when (p, q) ∈ {(2, 2), (5, 8), (8, 5)} (mod 9),

in which case ∆ ≡ 3 (mod 9);

• when p+ q ≡ 1 (mod 9), i.e. when (p, q) ∈ {(5, 5), (2, 8), (8, 2)} (mod 9),

in which case ∆ ≡ 0 (mod 9);

• when p+ q ≡ 7 (mod 9), i.e. when (p, q) ∈ {(8, 8), (2, 5), (5, 2)} (mod 9),

in which case ∆ ≡ 6 (mod 9).

We precisely will show that if (p, q) ≡ (2, 2) (mod 3) and ∆ 6= 0, then

if p+ q ≡ 4 (mod 9), then un+3k ≡ un + 2 · 3k (mod 3k+1); (6)

if p+ q ≡ 1 (mod 9), then un+3k ≡ un + 3k (mod 3k+1); (7)

if p+ q ≡ 7 (mod 9), then un+3k ≡ un (mod 3k+1). (8)

From this we can conclude that Du(p,q)(3
k) = 3k if and only if (p, q) ≡ (2, 2)

(mod 3) and p + q 6≡ 7 (mod 9). We notice that if ∆ = 0, then p2 = −4q2, and

so (mod 9) the only possibilities with (p, q) ≡ (2, 2) (mod 3) are (p, q) ≡ (5, 5)

(mod 9), (p, q) ≡ (2, 8) (mod 9) or (p, q) ≡ (8, 2) (mod 9). Since p+q 6≡ 7 (mod 9)

for these pairs (p, q), the claim it’s true also for ∆ = 0.

We have to deal with

vn
3k−1(3k − 1)(3k − 2)

2
p3

k−3∆

and we will prove that in the first case it is equal to 23
k

3k (mod 3k+1), in the second

case equal to 0 (mod 3k+1) and in the third case equal to 23
k+13k (mod 3k+1), this

will complete the proof. In general, we have

vn
3k−1(3k − 1)(3k − 2)

2
p3

k−3∆ ≡ vn3k−1p3
k−3∆ (mod 3k+1).
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In the first case, since ∆ ≡ 3 (mod 9), then ∆ = 3 + 9d for some d, thus we claim

that

vn3kp3
k−3(1 + 3d) ≡ 23

k

3k (mod 3k+1).

This is true since vnp
3k−3(1 + 3d) ≡ 23

k

(mod 3) and we can multiply both sides

by 3k. In the second case, since ∆ ≡ 0 (mod 9), we can write ∆ = 9d and see that

vn3k+1p3
k−3d ≡ 0 (mod 3k+1).

For the third case, since ∆ ≡ 6 (mod 9), we have ∆ = 6 + 9d and therefore we

claim that

vn3kp3
k−3(2 + 3d) ≡ −23

k

3k (mod 3k+1).

This is true since vnp
3k−3(2 + 3d) ≡ −23

k

(mod 3) and we can multiply both sides

by 3k. The converse can be shown numerically.

Now we are in the position to prove Theorems 2 and 3.

Proof of Theorem 2 and of Theorem 3. Suppose R > 5 or R = 3 with p + q 6≡ 7

(mod 9). Write wn as a shifted Lucas sequence, wn = aun + bun+1, where un is the

Lucas sequence u(p,q). We find b = w0, a = w1 − pw0. Then, if R > 5 or R = 3

with p+ q ≡ 1 (mod 9), by (5) and (7) we obtain

wn+Rk ≡ aun+Rk + bun+1+Rk ≡ a(un +Rk) + b(un+1 +Rk)

≡ (aun + bun+1) + (a+ b)Rk ≡ wn + (a+ b)Rk (mod Rk+1)

for k ≥ 1. We can conclude since a + b ≡ w1 − w0 6≡ 0 (mod R). If R = 3 and

p+ q ≡ 4 (mod 9) it is similar.
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