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Abstract

For m “ 3, 4, . . . , let λm “ 2 cosπ{m and let Jmpm “ 3, 4, . . . ) be triangle functions
for the Hecke groups Gpλmq with Fourier expansions Jmpτq “

ř8

n“´1 anpmqq
n
m,

where qmpτq “ exp 2πiτ{λm. (When normalized appropriately, J3 becomes Klein’s
j-invariant jpτq “ 1{e2πiτ ` 744 ` ¨ ¨ ¨ .) For n “ ´1, 0, 1, 2 and 3, Raleigh gave
polynomials Pnpxq such that a´1pmq

nq2n`2
m anpmq “ Pnpmq for m “ 3, 4, . . . , and

conjectured that similar relations hold for all positive integers n. This was proved
by Akiyama. We apply work of Hecke to study experimentally similar polynomial
interpolations of the Jm Fourier coefficents and the Fourier coefficients of other,
positive weight, modular forms for Gpλmq. We connect these polynomials (again,
only empirically) with variants of Dedekind’s eta function, with the Fourier expan-
sions of some standard Hauptmoduln, and, in the case of analogues of Eisenstein
series for SLp2,Zq, with certain divisor sums.

1. Introduction

Here is an example of a sequence tPnpxqu from Qrxs and a corresponding sequence

of modular forms tfmu having the relationship we examine in this article. Let Tm
be the cyclic subgroup of SLp2,Rq generated by

ˆ

1 2π{m
0 1

˙

,

let fmpxq be sinpmxq, and let

Qnpxq :“ p´1qpn´1q{2xn{n!.

Furthermore let Pnpxq “ Qnpxq if n is odd and Pnpxq “ 0 if n is even. Members of

SLp2,Rq act on R as follows. If

M “

ˆ

a b
c d

˙
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and x is real, we set

Mpxq :“
ax` b

cx` d
.

Thus the Tm act on R by translation. From the periodicity and Taylor series of sine,

we know that fmpxq is invariant (weight-0 modular) with respect to the action of the

Tm and equal to
ř8

n“0 Pnpmqx
n. We say that the elements of tfmu are interpolated

by the sequence of polynomials tPnpxqun“0,1,....

The novel material in the present article is an account of numerical experiments

and several conjectures based on them (but no theorems.) Here is a first sketch of

the theoretical background of our experiments.

Let Z,Q,C and H denote, respectively, the set of integers t0,˘1,˘2, ...u, the set

of rational numbers, the set of complex numbers, and the set of complex numbers

with positive imaginary parts. (We will reserve the letter τ for elements of the upper

half-plane, and z for generic complex numbers.) We write H˚ “ HYQYti8u, and

we equip H˚ with the Poincaré metric. Figures T made by three geodesics of H˚ are

called hyperbolic or circular-arc triangles. Let λm “ 2 cosπ{m. For m “ 3, 4, ...,

we define the Hecke group Gpλmq as the discrete group generated by the maps

z Ñ ´1{z and z Ñ z ` λm. The full modular group SLp2,Zq is identical to Gpλ3q.

To define modular forms for the Hecke groups, we preview a definition from

Berndt [7], which we will quote again in a later section. (We depart occasionally

from Berndt’s choices of variable to avoid clashes with some of our other notation.)

We say that f belongs to the space Mpλ, k, γq if

1.

fpτq “
8
ÿ

n“0

ane
2πinτ{λ,

where λ ą 0 and τ P H, and

2. fp´1{τq “ γpτ{iqkfpτq, where k ą 0 and γ “ ˘1.

We say that f belongs to the space M0pλ, k, γq if f satisfies conditions 1 and 2 and

if an “ Opncq for some real number c, as n tends to 8.

Members of Mpλ, k, γq are known as modular forms for Gpλq of weight k. Con-

dition 1 tells us that they are invariant under translations τ ÞÑ τ ` λ. Next we

preview Berndt’s definition of cusp forms for Hecke groups. If f P Mpλ, k, γq and

fpi8q “ 0, then we call f a cusp form of weight k and multiplier γ with respect

to Gpλq. For cusp forms, the constant terms of condition 1 vanish. We denote by

Cpλ, k, γq the vector space of all cusp forms of this kind.

For our purposes, Schwarz triangles T are hyperbolic triangles in H˚ with certain

restrictions on the angles at the vertices. From a Euclidean point of view, their sides

are vertical rays, segments of vertical rays, semicircles orthogonal to the real axis

and meeting it at points pr, 0q with r rational, or arcs of such semicircles. We choose
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λ, µ and ν, all non-negative, such that λ`µ`ν ă 1; then the angles of T are λπ, µπ,

and νπ. By reflecting T across one of its edges, we get another Schwarz triangle.

The reflection between two triangles in H˚ is effected by a Möbius transformation,

so the orbit of T under repeated reflections is associated to a collection of Möbius

transformations. The group generated by these transformations is a triangle group.

By the Riemann Mapping Theorem there is a conformal, onto map φ : T ÞÑ H˚
called a triangle function.

Hecke groups are triangle groups H that act properly discontinuously on H [23].

This means that for compact K Ă H, the set tµ P H s.t. K X µpKq ‰ Hu is

finite. Recall that Gpλmq is the Hecke group generated by the maps z ÞÑ ´1{z

and z ÞÑ z ` λm. Hecke established in [23] that Gpλmq has the structure of a free

product of cyclic groups C2 ˚Cm, generalizing the relation SLp2,Zq “ C2 ˚C3 [39].

Let ρ “ ´ expp´πi{mq “ ´ cospπ{mq ` i sinpπ{mq, and let Tm Ă H˚ denote

the hyperbolic triangle with vertices ρ, i, and i8. The corresponding angles are

π{m,π{2 and 0 respectively. Let φλm
be a triangle function for Tm. The function

φλm
has a pole at i8 and period λm. For P,Q P H˚, let us us write P ”H Q

when µ P H and Q “ µpP q. Then φλm
extends to a function Jm : H˚ Ñ H˚ by

declaring that JmpP q “ JmpQq if and only if P ”H Q. The function Jm is modular

for Gpλmq.

Schwarz, Lehner, Raleigh and others studied Schwarz triangle functions, which

map hyperbolic triangles T in the extended upper half z-plane onto the extended

upper half w-plane [27, 35, 38]. For certain T “ Tm, a triangle function φλm :

T Ñ H˚ extends to a map Jm : H˚ Ñ H˚ invariant under modular transformations

from Gpλmq. Suitably normalized, the Jm become analogues jm of the normalized

Klein’s modular invariant

jpτq “ 1{q ` 744` 196884q ` ...

where q “ qpτq “ expp2πiτq and j3pτq “ jpτq.1 The jm are studied in Conjecture

1 below.

With λm “ 2 cosπ{m and qmpτq “ expp2πiτ{λmq, the original Jm have Fourier

series Jmpτq “
ř

ně´1 anpmqqmpτq
n. For n “ ´1, 0, 1, 2 and 3, Raleigh gave poly-

nomials Pnpxq such that a´1pmq
nq2n`2
m anpmq “ Pnpmq for m “ 3, 4, ..., and con-

jectured that similar relations hold for all positive integers n [35]. Akiyama proved

this conjecture in the passage after [1, eq. (6)].

Hecke built families of modular forms fm for Gpλmq sharing particular properties

[7, 23]. Earlier authors, whose work we will also describe, had already built modular

functions (meromorphic functions invariant under the action of Gpλq, thus, of weight

zero) from triangle functions.

The plan of the article is as follows: (1) an elaboration of the preceding discussion

1For j, see [39, Chapter VII, eq. (23)].
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to establish a basis for the code in our experiments;2 (2) conjectures on polynomials

in Qrxs interpolating the coefficients in Fourier expansions of triangle functions for

Gpλmq; (3) a survey of Hecke’s theory of modular forms for Gpλmq, especially

the construction of modular forms from modular functions; (4) several conjectures

about polynomials in Qrxs interpolating the coefficients in Fourier expansions of

Hecke modular forms on Gpλmq; (5) several data plots and tables. Tables at the

end of the article focus on the triangle functions since they are the basis of our

construction of positive-weight modular forms, but more extensive collections of

plots and tables are available within the Sagemath and Mathematica notebooks on

[10].

Our conjectures are based on numerical experiments; here is a little more de-

tail on the way we arrive at them. We begin with a list of modular functions or

modular forms fm for Gpλmq,m “ 3, 4, ..., sharing certain properties picked out

by Hecke’s theory. Then we make tables of polynomials Qnpxq generated by La-

grangian interpolation from the values of the coefficient kmpnq in Fourier expansions

fm “
ř

n kmpnqX
n
m, where Xm is a variable related to qmpτq. Thus we are seeking

Qnpxq such that

Qnpmq “ kmpnq (1)

for m “ 3, 4, ..... If the degrees of the Qnpxq we obtain are linear in n, we take

this to be evidence that the Qnpxq do satisfy Equation (1) for all integers m greater

than two. (Typically, the alternative outcome is that the degree of every polynomial

Qnpxq that we generate in a given table is equal to the size of the data set we are

trying to interpolate.)

We are indebted to John Leo. Some parts of our exposition of the background

material is based on that of [28]. The earliest computer code we located for calcu-

lating Fourier expansions of triangle functions for Hecke groups is that of [28]; Leo’s

code was based on Lehner’s construction. Leo also calculates the Fourier coefficients

of weight 4 and weight 6 Hecke-analogues of classical Eisenstein series in Chapter

4 of [28]. Our own code for triangle functions comes from the papers of Lehner

and Raleigh. (J. Jermann’s package [24] is also concerned with modular forms of

triangle groups for Hecke groups.)

2We have documention in the data repository [10]. Mathematica notebook names end in the
suffix “.nb”, and SageMath notebook names end in the suffix “.ipynb”. Numerical data files named
in the notebooks is stored in the folder “data” on [10]. A green “Code” button on the top page
of the repository contains a drop-down menu with a download option. A Mathematica notebook
(“mf25.nb”) in the repository is a searchable library of functions that may not be defined explicitly
within our other notebooks. We used SageMath release 9.1.
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2. A Glossary

Some special functions in this list are related; different notations for similar objects

are used by Lehner and Raleigh, and we included all of them:

1. the digamma function ψpzq :“ Γ1pzq{Γpzq;

2. the Schwarzian derivative

tw, zu :“
2w1w3 ´ 3w22

2w12
(2)

for w “ wpzq; 3

3. the Pochhammer symbol

paq0 :“ 1 and, for n ě 1, paqn :“ apa` 1q...pa` n´ 1q “ Γpa` nq{Γpaq;

4. the function cν given by

cν “ cνpα, β, γq :“
pαqνpβqν

ν!pγqν
, ν ě 0; 4

5. the function eν given by

eν “ eνpα, βq :“
ν´1
ÿ

p“0

ˆ

1

α` p
`

1

β ` p
´

2

1` p

˙

; 5

3[15, page 130, eq. (370.8)]. In section 3 below, we discuss Caratheodory’s presentation of
a well-known theorem of Schwarz; when stating this theorem in eq. (374.1) of his Section 374,

Carathéodory writes “tw, zu “ w
1
w

3
´3w

22

w
12

“ ...”, but we infer that the Schwarzian derivative

tw, zu is intended from the automorphy property of clause 2 of Schwarz’s theorem.
4[15, page 138, eq. (377.3)]. To facilitate comparison with Raleigh’s [35, eq. (91)], we remark

that

cν “
Γpα` νq

Γpαq
¨

Γpβ ` νq

Γpβq
¨

Γp1q

Γp1` νq
¨

Γpγq

Γpγ ` νq
. (3)

In the terms of Schwarz’s Theorem 1 below, Raleigh is treating the case λ “ 0, for which (by
Equation (7) below) γ “ 1 and the expression on the right side of Equation (3) becomes, as in
Raleigh,

Γpα` νqΓpβ ` νq

ΓpαqΓpβqpν!q2
.

5[35, eq. (91)]. Here, we are dealing with the same ambiguity present in the definition of cν :
this is a specialization to the case γ “ 1 of the eν for ν ě 1 given by [15, page 153, eq. (387.5)]:

eν “ eνpα, β, γq “
n´1
ÿ

p“0

ˆ

1

α` p
`

1

β ` p
´

2

γ ` p

˙

.

Unless it is explicitly indicated to be otherwise, we intend the former (Raleigh’s) definition.
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6. (a) Gauss’s hypergeometric series

F pα, β, γ; zq :“
8
ÿ

ν“0

cνpα, β, γqz
ν ; 6

(b) we let

F1pα, β, γ; zq :“ F pα, β, γ ` 1; zq; 7

(c) alternatively, dropping γ [28, eq. (3.5)]:

F1pα, β; zq :“
8
ÿ

ν“1

pαqkpβqν
pν!q2

eνpα, βq;
8

7. with F “ F pα, β, γ; zq, a special function

F˚pα, β, γ; zq :“
BF

Bα
`
BF

Bβ
` 2

BF

Bγ
; 9

8. in [15, page 152, eqns. (386.2) and (386.3)], a special function φ˚2 pzq is defined

as a certain limit, but it is immediately reduced to

φ˚2 pzq “ F pα, β, 1; zq log z ` F˚pα, β, 1; zq;

9. the set Q “ t2, 5, 6, 8, 10, 11, 14, 15, 17, 18, 20, 22, 23, ...u of positive integers

not represented by the quadratic form x2 ` xy ` y2 [44];10

10. the McKay-Thompson series of class 4A, t1, 24, 276, 2048, ...u, which is the

sequence of coefficients in the q-series of a certain hauptmodul discussed in

[30]; 11

11. as usual, the cardinality of a finite set S is written #S, the nth prime number

is denoted by pn, the number of primes less than or equal to x is written πpxq,

and σkpnq :“
ř

0ăd|n d
k.

6[15, page 138, eq. (377.4)]. The function F is occasionally written in [15] as φ1.
7As defined in the first line of [15, page 142.]
8It is in the latter form, defined more cryptically in [27, p. 244], that we will use F1; to establish

his series for the triangle functions, which we will apply below, Lehner uses this definition of F1,
as well as certain theorems from Fricke [20]. Referring to item 4, we see that

F1pα, β; zq “
8
ÿ

ν“1

cνpα, β, 1qeνpα, βq.

We will derive another form of F1pα, β; zq in item 7.
9F˚ may be written [15, page 153, eq. (387.4)]

F˚pα, β, γ; zq “
8
ÿ

ν“1

cνpα, β, γqeνpα, β, γqz
ν .

It follows that F˚pα, β, 1; zq “ F1pα, β; zq.
10B. Cloitre asserts on the cited page that Q is also the set of non-negative integers n such that

δpnq is non-zero, where η is Dedekind’s eta function and
ř

n δpnqx
n “ ηpx3q{ηpxq3.

11We identified it with the sequence tφnu of our Conjecture 1 after finding it in on [46].
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3. Calculation of Schwarz’s Inverse Triangle Function

Schwarz proved the following result.

Theorem 1 ([15, Section 374)].

1. Let the half-plane =z ą 0 be mapped conformally onto an arbitrary circular-

arc triangle whose angles at its vertices A,B, and C are πλ, πµ, and πν, and let

the vertices A,B,C be the images of the points z “ 0, 1,8, respectively. Then

the mapping function wpzq must be a solution of the third-order differential

equation

tw, zu “
1´ λ2

2z2
`

1´ µ2

2p1´ z2q
`

1´ λ2 ´ µ2 ` ν2

2zp1´ zq
. (4)

2. If w0pzq is any solution of Equation (4) that satisfies w10pzq ‰ 0 at all interior

points of the half-plane, then the function

wpzq “
aw0pzq ` b

cw0pzq ` d
pad´ bc ‰ 0q

is likewise a solution of Equation (3).

3. Also, every solution of Equation (4) that is regular and non-constant in the

half-plane =z ą 0 represents a mapping of this half-plane onto a circular-arc

triangle with angles πλ, πµ, and πν.

(In Carathéodory’s lexicon, a regular function is one that is differentiable on an

open connected set [14, page 124].)

Let us write

α “
1

2
p1´ λ´ µ` νq, (5)

β “
1

2
p1´ λ´ µ´ νq, (6)

and

γ “ 1´ λ. (7)

The solutions w of Equation (4) are inverse to triangle functions; they are quotients

of arbitrary solutions of

u2 ` ppzqu1 ` qpzqu “ 0 (8)

when

p “
1´ λ

z
´

1´ µ

1´ z

and [15, page 136, eq. (376.4)]

q “ ´
αβ

zp1´ zq
.
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Equation (8) reduces [15, page 137, eqns. 376.5-7] to the hypergeometric differential

equation

zp1´ zqu2 ` pγ ´ pα` β ` 1qzqu1 ´ αβu “ 0. (9)

As long as γ is not a non-positive integer, u “ F pα, β, γ; zq is a solution of Equation

(9); it is the only solution regular at z “ 0, and it satisfies (see the final paragraph

of [15, Section 377, page 138]) F pα, β, γ; 0q “ 1.

In [15, Sections 386-388, pages 151-155], we find that when γ “ 1 and λ “ 0,

another, linearly independent, solution of Equation (8) is φ˚2 pzq. The passage [15,

Section 394, pages 165 - 167] is devoted to the case λ “ 0. There [15, page 166, eq.

(394.4)] we find that the mapping function w of Theorem 1 satisfies

w “
1

πi

„

φ˚2
φ1
´ p2ψp1q ´ ψp1´ αq ´ ψp1´ βqq



` i
sinπµ

cosπµ` cosπν
. (10)

4. Inversion of Schwarz’s Inverse Triangle Function

Following Lehner and Raleigh, we consider the Schwarz triangle Tm with vertices

at ρ “ ´ expp´πi{mq, i, and i8. In terms of Theorem 1, Tm has λ “ 0 (an angle 0

at the vertex i8), µ “ 1{2 (an angle π{2 at i), and ν “ 1{m (an angle π{m at ρ.)

In this situation, γ “ 1.

Let Jm be automorphic for Gpλmq with Jmpρq “ 0, Jmpiq “ 1, and Jmpi8q “ 8.

In terms of Theorem 1, w and Jm are inverse functions. We are going to write down

the Fourier expansion
ř8

n“´1 anqmpτq
n of Jm.

By clause 2 of Theorem 1, if w satisfies Equations (4) and (10), so does τ “

τpzq “ λmwpzq{2, and therefore

2πiτ{λm “
φ˚2
φ1
´ p2ψp1q ´ ψp1´ αq ´ ψp1´ βqq ´ π secpπ{mq.

Let us write logAm “ ´2ψp1q ` ψp1 ´ αq ` ψp1 ´ βq ´ π secpπ{mq. In general,

Am “ a´1pmq [35].12 Recalling the definitions of φ1 and φ˚2 from our glossary items

6 and 8, we find (abbreviating Jmpτq as Jm) that

2πiτ{λm “ ´ log Jm `
F˚pα, β, 1; 1{Jmq

F pα, β, 1; 1{Jmq
` logAm. (11)

Equation (11) is [35, eq.(6)], but Raleigh suppresses the subscripts. He also writes

exp 2πiτ{λm as xm, so that (in our earlier notation) xm “ qmpτq.

In Raleigh’s notation, after taking exponentials,

xm{Am “
1

Jm
exp

F˚pα, β, 1; 1{Jmq

F pα, β, 1; 1{Jmq
, (12)

12For example, two lines below eq. (13).
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the right side of which has a power series in Jm with rational coefficients. Writing

Xm “ xm{Am we can regard Xm “ XmpJmq as a power series in Jm with rational

coefficients. Following [27] and [35], we inverted this power series to obtain one for

the modular function Jm, also with rational coefficients. The Fourier expansion of

Jm in Xm is normalized so that the coefficient of 1{Xm is 1 [35, eq. (12)]. Let I

be a formal operation taking a power series σpvq to its inverse; that is, if u “ σpvq

then v “ I pσqpuq. Let YmpJq be a power series such that

YmpJmq “ Jm exp
F˚pα, β, 1; Jmq

F pα, β, 1; Jmq
“ Xm p1{Jmq

and hence

Ymp1{Jmq “
1

Jm
expm

F˚pα, β, 1; 1{Jmq

F pα, β, 1; 1{Jmq
“ XmpJmq,

so that I pYmqpXmpJqq “ 1{Jm and, therefore, Jm “ 1{I pYmqpXmq.

5. Raleigh’s Polynomials for Triangle Functions

Let Xm be the variable from the previous section. We define some operators on

infinite series in Xm.13

Definition 1. Let f “
ř8

n“a knX
n
m, where kn is a rational number for n “ a, a`

1, ..., and ka ‰ 0.

1. Let g “
ř8

n“a knp2
6m3Xmq

n “
ř8

n“a k̃nX
n
m (say). Then

f :“ g{k̃a.

2. Let

f˚ :“
1

ka

8
ÿ

n“a

knX
n´a
m .

Recall, from the passage following Equation (12) in the previous section, that

the Fourier expansion of Jm in Xm has the form

Jmpτq “ 1{Xm `

8
ÿ

n“0

anpmqX
n
m.

Definition 2. For the present purpose, we regard Jm as a Laurent series in Xm

and write

jm :“ Jm.

13The substitution involved appears in [28].
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Conjecture 1. Let the Fourier expansion of jmpτq be

jm “ 1{Xm `
ÿ

ně0

cmpnqX
n
m.

(Some code for jm Fourier expansions appearing in SageMath notebooks cited below

was generated in [10, notebook “j from scratch.ipynb”], which employs a “dictio-

nary” (the definitions at the top of the notebook) distinct from the corresponding

dictionaries in the notebooks where it is reproduced.) Then the following statements

are true.

1. For each integer n greater than ´2, there exists a polynomial Cnpxq P Qrxs
that satisfies the relation cmpnq “ Cnpmq for m “ 3, 4, ... [10, notebook “con-

jecture 1.nb”].

2. Let tφnu be as in item 10 of our glossary. For some degree 2n, irreducible,

monic polynomial γnpxq in Qrxs we have [10, notebook “conjecture 1 clause

2.ipynb”]:

Cnpxq “ φn ¨ px´ 2qpx` 2qxn`1γnpxq.

3. The function j3 is identical to the modular function on SLp2,Zq usually de-

noted j [10, notebook “conjecture 1 cause 3.nb”].

4. The complex roots of γnpxq lie in the disk with center zero and radius n{ logpnq.

(Pertinent notebooks are [10, notebooks “conjecture1clause4.nb”, “conjec-

ture1clause4d.nb”, “conjecture 1 clause 4 no2.ipynb”, “conjecture 1 clause 4

no3.ipynb”, “conjecture 1 clause 4 no4.ipynb”, “conjecture 1 clause 4 no5.ipynb”,

and “conjecture 1 clause 4 no6.ipynb”].)

5. Let Gn be the Galois group of γnpxq over the rationals. The size of Gn is

2nn! and (if n is greater than two) Gn is isomorphic to a permutation group

on 2n elements te1, ..., e2nu with three generators: a transposition pej , ekq, a

product pej , ej1qpek, ek1q, and a product Γ1Γ2 of disjoint cycles Γ1 and Γ2, each

of length n, such that Γ1 sends ej to ej1 and Γ2 sends ek to ek1 [10, folder

“conjecture1clause5”].

6. Let n be larger than one and let πn be the set of prime numbers dividing

the denominator of at least one non-zero coefficient of Cnpxq in its unfactored

form. (See [10, notebook “conjecture 1 clause 6.ipynb”.]) Then the following

claims are true.

(a) π2 “ t3u and π3 is empty.

(b) If πn is ordered by size, it contains no gaps. That is, if p and p1 are

consecutive elements of πn with p “ pk and p1 “ pj , then j “ k ` 1.
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(c) If n is an odd prime other than 3, then

πn “ t3, ..., k, ..., puk prime

where p is the greatest prime less than n.

(d) If n is composite and n` 1 is prime, then

πn “ t3..., k, ..., n` 1uk prime.

(e) If n and n` 1 are both composite, then

πn “ t3..., k, ..., puk prime

where p is the greatest prime less than n.

Clause 2 implies that, for m greater than or equal to three, cnpmq is nonzero.

It is already known that, for all integers n ě ´1, the nth Fourier coefficient of

j “ j3, namely cpnq “ cnp3q, is positive. (See, for example, page 199 in [36].)

We tested clause 4 in several ways. We approximated the roots of the γnpxq with

root-finding routines and compared their complex moduli with n{ logpnq. We used

the argument principle to count the zeros in central disks of radius n{ logpnq. We

superimposed plots of the roots of γnpxq against plots of circles with radius n{ logpnq

and center at the origin. An example is depicted in Figure 1. (See [10, notebook

“conjecture1clause4d.nb”], the name of the notebook notwithstanding.) For clause

5, we computed the Galois groups in Magma. For clause 6, some sequences we

generated in the analysis were identified in [40] and [48].

Conjecture 2. Let the Fourier expansion of Jmpτq be

Jm “
8
ÿ

n“´1

ampnqX
n
m.

(Relevant documents in [10] are notebooks “conjecture 2.nb”, “conjecture2no1.ipynb”,

“capital-J make data file1jun21.ipynb” and associated data files.)

1. (For clause 1, see [10, notebooks “conjecture 2.nb”, “conjecture 2 clause

1b.ipynb”, and “conjecture 2 clause 1b no2.ipynb”].) We have the following.

(a) There exist polynomials Anpxq such that A´1pxq ” 1, A0pxq “ 3x2 ` 4,

A1pxq “ 69x4´ 8x2´ 48, and Anpmq “ m2n`2ampnq for m “ 3, 4, ..... 14

(b) Let Cnpxq be as in Conjecture 1. We have the following.

Anpxq “ 2´6n´6x´n´1Cnpxq.

14The first few polynomials in our table of the polynomials An (Table 5) agree with Raleigh’s
equation-group III in [35].



INTEGERS: 21 (2021) 12

2. Let πn be the set of prime numbers dividing the denominator of at least

one non-zero coefficient of An. Then the following statements are true [10,

notebook “conjecture 2 clause 2 w code 14jun21.ipynb”].

(a) π2 “ t3u.

(b) If πn is ordered by size, it contains no gaps. That is, if p and p1 are

consecutive elements of πn with p “ pk and p1 “ pj , then j “ k ` 1.

(c) If n is an odd prime, then

πn “ t2, ..., k, ..., puk prime

where p is the greatest prime less than n.

(d) If n is composite and n` 1 is prime, then

πn “ t2..., k, ..., n` 1uk prime.

(e) If n and n` 1 are both composite, then

πn “ t2..., k, ..., puk prime

where p is the greatest prime less than n.

The existence statement in clause 1a of Conjecture 2 is equivalent up to some

changes of variable, obviously, to the conjecture of Raleigh proved in [1]. We iden-

tified the leading numerical term in clause 1b of Conjecture 2 after looking at [49].

Clause 2 of Conjecture 2 is only a slight refinement of [1, proposition 2].

6. Survey of Hecke’s Theory of Modular Forms

When the w-image of H˚ is Tm, the inverse of w is φλm
. The extension by modularity

Jm of φλm
to H˚, is periodic with period λm and maps ρ to 0, i to 1, and i8 to

8 [27, eq. (2)]. These mapping properties allow us, following Berndt’s exposition

of Hecke, to construct positive weight modular forms for Gpλmq from Jm [7]. This

section describes results of Hecke that are perhaps most easily accessible for the

classical case m “ 3 in Schoeneberg and, for the general case, in Berndt [37, 7].

6.1. The Case m “ 3

By keeping track of the weights, zeros and poles of the constituent factors in the

numerator and denominator of the fraction defining

fa,b,c “
J

1a

JbpJ ´ 1qc
,
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Schoeneberg demonstrates that fa,b,c is an entire modular form of weight 2a for

SLp2,Zq if a ě 2, 3c ď a, 3b ď 2a, b ` c ě a and a, b, c are integers. (Schoeneberg

speaks of “dimension ´2a” [37, Theorem 16, page 45].) Thus he is able to write

down a weight 4 entire modular form E˚4 “ f2,1,1 for SLp2,Zq with a zero of order
1
3 at ρ “ e2πi{3 and a weight 6 entire modular form E˚6 “ f3,2,1 for SLp2,Zq with a

zero of order 1
2 at i. (Schoeneberg writes G˚4 , G

˚
6 .) It is well known that the (vector

space) dimension of the spaces of weight 4 and 6 entire modular forms for SLp2,Zq
is equal to one, so E˚4 and E˚6 may be identified with the usual weight 4 and weight

6 Eisenstein series, up to a normalization. Finally, Schoeneberg defines the weight

12 cusp form ∆˚ “ E˚34 ´ E˚26 with a zero of order 1 at i8. It is a multiple of ∆.

6.2. The Case m ě 3

We quote statements from Berndt, which is an exposition of Hecke, [22] and other

writings. We depart occasionally from Berndt’s choices of variable to avoid clashes

with our earlier notation.

Definition 3. We say that f belongs to the space Mpλ, k, γq if

1.

fpτq “
8
ÿ

n“0

ane
2πinτ{λ,

where λ ą 0 and τ P H, and

2. fp´1{τq “ γ ¨ pτ{iqkfpτq, where k ą 0 and γ “ ˘1 [7, Definition 2.2].

We say that f belongs to the space M0pλ, k, γq if f satisfies conditions 1 and 2, and

if an “ Opncq for some real number c, as n tends to 8.

After defining the notion of a fundamental region in the usual way and defining

as Gpλq the group of linear fractional transformations generated by τ ÞÑ ´1{τ and

τ ÞÑ τ ` λ, Berndt states (for τ “ x` iy)

Theorem 2 ([7, Theorem 3.1]). Let Bpλq “ tτ P H : x ă λ{2, |τ | ą 1u. If

λ ě 2 or if λ “ 2 cospπ{mq, where m ě 3 is an integer, then Bpλq is a fundamental

region for Gpλq.

Definition 4. Let TA “ tλ : λ “ 2 cospπ{mq,m ě 3,m P Zu [7, Definition 3.4].

Berndt states in his Theorem 5.4 that Gpλq is discrete if and only if λ belongs

to TA. This discreteness is the premise of the theory of automorphic functions

generally. He embeds within the proof of his Lemma 3.1 (which we omit), the

following definition.

Definition 5. The symbol τλ denotes the intersection in H of the line x “ ´λ{2

and the unit circle |τ | “ 1.
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(Berndt remarks at the top of page 35 that τλ is the lower left corner of Bpλq).

and that πθ “ π ´ argpτλq, so that cospπθq “ λ{2.)

To characterize Eisenstein series, we need to keep track of some analytical prop-

erties. The next definition summarizes the second paragraph of Berndt’s Chapter

5. (Throughout his Chapter 5, λ ă 2.)

Definition 6. Let f be in Mpλ, k, γq, f not identically zero.

1. N “ Nf counts the zeros of f on Bpλq with multiplicities.

2. Nf does not count zeros at τλ, at τλ ` λ, at i, or at i8.

3. If τ0 P Bpλq, fpτ0q “ 0 and <pτ0q “ ´λ{2, then fpτ0 ` λq “ 0 and Nf counts

only one of the two zeros.

4. If τ0 P Bpλq, fpτ0q “ 0, and |τ0| “ 1, then fp´1{τ0q “ 0, and Nf counts only

one of these two zeros.

5. The numbers nλ, ni, and n8 are the orders of the zeros of f at τλ, i and i8,

respectively. The order n8 is measured in terms of expp2πiτ{λq.

The multiplier γ is given by the following theorem.

Theorem 3 ([7, Corollary 5.2]). Let f be in Mpλ, k, γq and let ni be the order of

the zero of f at τ “ i. Then

γ “ p´1qni .

The next two results tell us that the only nontrivial case in this theory is the one

that we are interested in.

Theorem 4 ([7, Lemma 5.1]). If dimMpλ, k, γq ‰ 0,

Nf ` n8 `
1

2
ni `

nλ
m
“

1

2
k

ˆ

1

2
´ θ

˙

.

By Berndt’s eq. (5.16), if m ě 3 then the right side can be written as kpm´2q{4m.

Theorem 5 ([7, Theorem 5.2)]. If dimMpλ, k, γq ‰ 0, then θ “ 1{m where m ě 3

and m P Z.

We are concerned with λ in TA. This makes λ ă 2, as in all the results of Berndt’s

Chapter 5. One estimate for dimMpλ, k, γq is given in the following theorem.

Theorem 6 ([7, Theorem 5.6]). If λ is not in TA, then dimMpλ, k, γq “ 0. If

λ “ 2 cospπ{mq is in TA, then for nontrivial f in Mpλ, k, γq, the weight k has the

form

k “
4h

m´ 2
` 1´ γ,
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where h ě 1 is an integer. Furthermore,

dimMpλ, k, γq “ 1`

Z

h` pγ ´ 1q{2

m

^

.

Eliminating h, we find that

dimMpλ, k, γq “ 1`

Z

k

ˆ

1

4
´

1

2m

˙

`
γ

4
´

1

4

^

. (13)

Berndt proves that the dimension formula above holds also when h “ 0. [7, Remark

5.3]

The existence of certain modular forms is provided by the following theorem.

Theorem 7 ([7, Theorem 5.5]). Let λ lie in TA. Then there exist functions fλ, fi,

and f8 in Mpλ, k, γq such that each has a simple zero at τλ, i, and i8, respectively,

and no other zeros. Here, γ is given by Theorem 3 of the present article, and k

is determined in each case from Theorem 4 of the present article. Thus, fλ is in

Mpλ, 4{pm´2q, 1q, fi is in Mpλ, 2m{pm´2q,´1q, and f8 is in Mpλ, 4m{pm´2q, 1q.

Remark 1. By the Riemann mapping theorem there exists a function gpτq that

maps the simply connected region Bpλq one-to-one and conformally onto H. If we

require that gpτλq “ 0, gpiq “ 1, and gpi8q “ 8, then g is determined uniquely [7],

pages 47-48].

Now we can write down fλ, fi, and f8 explicitly. The next theorem is extracted

from the proof of Theorem 7. fλ and fi correspond to Eisenstein series and f8 to

a cusp form. In our code, we take g to be a normalized form of Jm.

Theorem 8 ([7], page 50).

fλpτq “

"

g1pτq2

gpτqpgpτq ´ 1q

*1{pm´2q

,

fipτq “

"

g1pτqm

gpτqm´1pgpτq ´ 1q

*1{pm´2q

,

and

f8pτq “

"

g1pτq2m

gpτq2m´2pgpτq ´ 1qm

*1{pm´2q

.

In our applications to Lehmer’s problem, we will be interested in the dimensions of

the weight 12 cusp spaces for λ “ λm “ 2 cosπ{m.

Definition 7. If f is in Mpλ, k, γq and fpi8q “ 0, then we call f a cusp form of

weight k and multiplier γ with respect to Gpλq. We denote by Cpλ, k, γq the vector

space of all cusp forms of this kind. [7, Definition 5.2]
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The next remark follows from [7, eq. (5.25)].

Remark 2.

dimCpλ, k, γq ě dimMpλ, k, γq ´ 1.

Remark 3. In view of Theorem 6, Equation (12), Remark 2, and the fact that

γ “ ˘1, we see that dimCpλm, 12, γq is greater than 1 when m is greater than or

equal to 12.

7. Modular Forms Studied in Our Experiments

We are going to write down versions of the functions from Theorem 8 such that,

at m “ 3, they reduce to corresponding functions in the classical theory. Some

have fixed weights (four, six and twelve) and others have weights that vary with m.

The classical objects (in Serre’s notation [39]) are Klein’s j-invariant, the weight

four Eisenstein series E2, the weight six Eisenstein series E3, and the generating

function of Ramanujan’s tau function, namely the normalized weight twelve cusp

form ∆. They all belong to one-dimensional vector spaces of modular forms and

the number of zeros each one has in a given fundamental region is small, so the

identifications follow by comparison of the initial Fourier coefficients [39, Chapter

VII, eqns. (20-21)].

Corresponding to fλ, we have the following definition.

Definition 8. 1. Let Hλ,mpτq be

"

J 1mpτq
2

JmpτqpJmpτq ´ 1q

*1{pm´2q

.

2. Let Hλ,4,mpτq equal Hλ,mpτq
m´2.

Now we state a definition corresponding to fi.

Definition 9. 1. Let Hi,mpτq equal

"

J 1mpτq
m

Jmpτqm´1pJmpτq ´ 1q

*1{pm´2q

.

Definition 10. 1. Corresponding to f8, let ∆8,mpτq equal

"

J 1mpτq
2m

Jmpτq2m´2pJmpτq ´ 1qm

*1{pm´2q

.

2. Let ∆˛m equal H3
λ,m{Jm.
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3. Let ∆˛12,m equal H3
λ,4,m{Jm.

Remark 4. By Berndt’s Theorem 7 above, we have the following table of weights:

Hλ,m Hλ,4,m Hi,m ∆˛m ∆˛12,m ∆8,m
4{pm´ 2q 4 2m{pm´ 2q 12{pm´ 2q 12 4m{pm´ 2q

8. Interpolation by Polynomials

In this section, we state conjectures about polynomials interpolating coefficients of

modular forms for Hecke groups. Conjectures 6 and 7 bear on Lehmer’s question

about the existence of zeros of Ramanujan’s tau function.

Berndt’s (Hecke’s) Theorems 7 and 8 above make it clear that Akiyama’s theorem

proving Raleigh’s conjecture on the interpolation of the coefficients of the Fourier

expansions of Hecke triangle functions extends in some way to the modular forms

defined in the previous section. We did experiments to explore the details; our

observations are summarized in the conjectures below.

8.1. Analogues of SLp2,Zq Eisenstein Series

We found the sequence te4,nu mentioned below on [41].

Conjecture 3. Let the Fourier expansion of Hλ,4,mpτq be

Hλ,4,mpτq “
8
ÿ

n“0

β4,mpnqX
n
m.

Then the following statements are true ([10, notebooks “conjecture 3.nb” and “con-

jecture 3.ipynb”]; associated data files are in the data folder on [10]).

1. The Fourier expansion ofHλ,4,3pτq reduces to Serre’s weight-4 Eisenstein series

E2 in the sense that β4,3pnq “ 240σ3pnq for n “ 1, 2, 3, ... [39, page 93].

2. For each n there is a polynomial B4,npxq with rational coefficients such that

m3nβ4,mpnq “ B4,npmq for m “ 3, 4, ....

3. If n is positive, then the degree of B4,npxq is 6n.

4. The polynomial B4,0pxq is identically equal to 1 and, if n is positive, then

B4,npxq “ e4,npx
2 ´ 4qx4nb4,npxq,

where e4,n “ 16
ř

ν|n
νodd

p´1qn´νν3 and b4,npxq is a monic irreducible polyno-

mial in Qrxs.



INTEGERS: 21 (2021) 18

Conjecture 4. Let the Fourier expansion of Hλ,m be

Hλ,m “

8
ÿ

n“0

βmpnqX
n
m.

Then [10, notebooks “conjecture 4.1-4.3.ipynb”, “conjecture 4.4a.ipynb”, “conjec-

ture 4.4b.ipynb”, and “conjecture 4.5.ipynb”] the following statements are true.15

1. For each n there is a polynomial Bnpxq with rational coefficients such that

βmpnq “ Bnpmq for m “ 3, 4, ....

2. If n is positive, then the degree of Bnpxq is 3n´ 1.

3. The polynomial B0pxq is identically equal to 1 and B1pxq “ 16xpx` 2q.

4. Let Q be as in item 9 of our glossary and let en “ 16p´1qn`1
ř

ν|n
νodd

1{ν. If n

is greater than 2 and belongs to Q, then

Bnpxq “ enpx
2 ´ 4qpx´ 6qxnbnpxq,

where bnpxq is a monic irreducible polynomial. Otherwise (for n greater than

one) Bnpxq “ enpx
2 ´ 4qxnbnpxq where, again, bnpxq is a monic irreducible

polynomial in Qrxs.

5. The Fourier expansion of Hλ,3 reduces to E2 in the same sense as in Conjecture

3.1.

(We identified the en after reading [44, 45].)

Thus, in the range of our observations (3 ď m ď 302, 0 ď n ď 100q, the only

integer value of m such that Hλ,m has any vanishing coefficients is six, and βnp6q

is zero just if n is in Q.

Conjecture 5. Let the Fourier expansion of Hi,m be

Hi,m “

8
ÿ

n“0

δmpnqX
n
m.

Then [10, notebook “conjecture 5.ipynb”] the following statements are true.

1. For each non-negative integer n, there is a polynomial Dnpxq in Qrxs such

that

(a) The number Dnpmq is δmpnq for n “ 0, 1, ... and m “ 3, 4, ....

15Contrary to appearances, the function denoted “H4” in these SageMath notebooks is not the
function covered in the previous conjecture. “H4” is Hλ,m.
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(b) The degree of Dn is 3n.

(c) The number Dnpxq is rational and is equal to dnˆ a product of monic

irreducible polynomials.

(d) The number d0 is 1 and, for n a positive integer, dn “ 24p´1qn
ř˚

ν|n ν.

Again, the asterisk means that the sum is taken over the odd positive

divisors of n.

2. The number Dnpmq is p´1qmδnpmq for m “ 3, 4, ....

3. The polynomial D0pxq is identically equal to 1; D1pxq “ ´24px´ 2{3qx2, and

D2pxq “

24px´ 2{3qpx´ 2qx3px´ 14q.

4. For n larger than two, Dnpxq “ dnpx´ 2qpx´ 2{3qxn`1εnpxq where εnpxq is a

monic irreducible polynomial in Qrxs.

5. The Fourier expansion of Hi,3 reduces to Serre’s weight-6 Eisenstein series E3

in the sense that δ3p0q “ 1 and δ3pnq “ ´504σ5pnq for n “ 1, 2, 3, ....

8.2. Analogues of SLp2,Zq Cusp Forms

Let ∆ be the usual normalized discriminant, a weight 12 cusp form for SLp2,Zq “
Gpλ3q with integer coefficients. Its Fourier expansion is written

∆pτq “
8
ÿ

n“1

τpnqqn

where q “ e2πiτ and τpnq is Ramanujan’s function. (The reader will not confuse the

complex number τ with Ramanujan’s function τpnq or any of its relatives defined

below.) Whether or not the equation τpnq “ 0 has any solutions is, of course, an

open question [26]. Several authors have eliminated various classes of integers as

values of tau.16 It will be apparent that each of the conjectures about cusp-form

analogues implies that tau has no zeros.

From definition 10.2,

∆8,mpτq
m´2 “

J 1mpτq
2m

Jmpτq2m´2pJmpτq ´ 1qm

and, by Theorem 7 in our sketch of Hecke’s theory, its weight is 4m. Since it raises a

cusp form beginning with an X1 term to high powers, we will use the star operator

(definition 1.2) to state the following conjecture; it will be evident that the images

of power series in Xm under this operator typically have a constant term.

16These results are summarized in [25]. Relevant citations are [3, 4, 5, 6, 17, 29, 32] and [25]
itself.
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Conjecture 6. Let the Fourier expansion of p∆8,mpτqm´2q˚ be written as

p∆8,mpτqm´2q˚ “

8
ÿ

n“0

τmpnqX
n
m.

(See [10, notebooks “conjecture 6Laptop.nb”, “conjecture 6.ipynb” and “conjecture

6 no2.ipynb”].)

1. The number τ3pn´ 1q is equal to τpnq for n “ 1, 2, ....

2. There is a set of polynomials Tnpxq, n “ 1, 2, 3... such that, for each n, Tnpmq “

τmpnq.

3. The polynomial Tnpxq is equal to p´8qnpx ´ 2q3xntnpxq{n! where tn is a

polynomial with rational coefficients that is irreducible over Qrxs.

Conjecture 7. Let the Fourier expansion of ∆8,mpτq be

∆8,mpτq “
8
ÿ

n“1

τ8,mpnqX
n
m.

(See [10, notebook “conjecture 7.ipnyb”].)

1. For n “ 1, 2, 3, ..., the number τ8,3pnq is equal to τpnq.

2. There is a set of polynomials T8,npxq with coefficients in Q such that τ8,mpnq “

T8,npmq.

3. The polynomial T8,1pxq is identically equal to 1 and, if n is greater than one,

(a) T8,npxq “ s8,npx´2q2xn´1t8,npxq, where t8,npxq is a monic irreducible

polynomial over Q of degree 2n´ 4 and

(b) s8,n is (in the notation of [16, Chapter 7, Theorem 7]) the coefficient of

qn in the Fourier expansion of ∆8pzq [8].

(c) Also,

s8,n “ p´1qn`1
ÿ

ν|n
n{νodd

ν3r9s.

This sum is the coefficient of qn in the Fourier expansion of E8,4, the

unique normalized weight-4 modular form for Γ0p2q with simple zeros at

i8) [11, eq. (2-3)]; it is also the number of representations of n´ 1 as a

sum of 8 triangular numbers [33, Theorem 5].

(d) Finally, s8,n is the coefficient of qn in the expansion of ηp2zq16{ηpzq´8

where ηpzq is Dedekind’s function ([11, eq. (2-16)].)
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Conjecture 8. Let the Fourier expansion of ∆˛mpτq be

∆˛m “
8
ÿ

n“1

τ˛mpnqX
n
m.

(See [10, notebook “conjecture 8.ipynb”].)

1. For n “ 1, 2, 3, ..., the number τ˛3 pnq is equal to τpnq.

2. There is a set of polynomials T ˛npxq with coefficients in Q such that τ˛mpnq “

T ˛npmq.

3. The polynomials T ˛1 pxq, T
˛
2 pxq, and T ˛3 pxq are irreducible over Q of degrees

3, 6, and 9, respectively.

4. If n is greater than 3, T ˛1 pxq “ s˛n ¨ px ´ 2qxn´1t˛npxq, where s˛n is a rational

number and t˛npxq is a monic polynomial, irreducible over Q, of degree 2n´3.

Furthermore,

(a)
ř8

n“0 s
˛
nqpτq

n “

ź

nodd

p1´ qpτqnq24 ˆ
ź

n”2p4q

p1´ qpτqnq´24 “ η24pτqη24p4τqη´48p2τq.

(b) s˛n “ p´1qn`1ˆ the coefficient of qpτqn in pηp2τq{ηpτqq24.

5. There is no corresponding set of interpolating polynomials for ∆˛3.

The product decomposition in clause 4(a) above is a guess based on 43 terms

of the series using Euler’s method. (See [2, Theorem 14.8]; [19]; a printed English

translation of [19] is reproduced in [34]; and [47]. The second decomposition appears

in [43].)

Conjecture 9.

Let the Fourier expansion of ∆˛12,mpτq be

∆˛12,mpτq “
8
ÿ

n“1

τ˛12,mpnqX
n
m.

(See [10, notebook “conjecture 9.ipynb”].)

1. For n “ 1, 2, 3..., the number τ˛12,3pnq is equal to τpnq.

2. There is a set of polynomials T ˛12,npxq, n “ 1, 2, ... of degree 3n ´ 3 with

coefficients in Q such that τ˛12,mpnq “ T ˛12,npmq for each m “ 3, 4, ....
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3. For each n, there are zeros of T ˛12,npxq on both axes of the complex plane, and

there are no other complex zeros.17 (Figures 2 and 3 illustrate this for n “ 11

and 24.)

4. The polynomial T ˛12,npxq is equal to p´1qn`1τpnqxn´1t˛12,npxq, where t˛12,npxq

is monic and irreducible over Q.

9. Lehmer’s Question

Remark 5. By clause 4 of Conjecture 9, for m “ 3, 4, ... : τ˛12,mpnq “ 0 if and only

if τpnq “ 0.

More generally, we have the following conjecture.

Conjecture 10. Letting Tnpxq and τm stand for the various polynomials and

Fourier coefficients in Conjectures 6 through 9, none of the Tnpxq has an integer

root greater than two; consequently, none of the τm vanishes for m “ 3, 4, ....

Let dpm,nq be the minimum Euclidean distance to m of any complex root of

Tnpxq. We have (in effect) conjectured above that in each case Tnp3q “ τpnq, so the

behavior of dp3, nq measures how closely we can come to the assertion that τpnq “ 0

for some n.

Conjecture 11. For any positive real number r, dp3, nq is less that e´rn for suffi-

ciently large n. 18

10. Other Questions

1. Like Gn in clause 5 of Conjecture 1, the index-n hyperoctahedral group has

size 2nn! [18, 21, 31]. Are they isomorphic?

2. In Conjectures 1–9, the nth interpolating polynomial is written as a product

of a numerical term and several monic polynomials belonging to Qrxs. In

each case, all but one of the monic factors is given explicitly, i.e., in terms of

n, but without reference to the Fourier expansion of the underlying modular

form. The “inexplicit” factor can, of course, be written in terms of the first

n of these coefficients, but can it be expressed in the same way as the other

factors: without reference to the Fourier coefficients?

17[10, notebook “conjecture 9.nb”] contains plots of the complex zeros for n between 1 and 24.
18For this proposal, we depend on graphical evidence which we sample in Figures 10 – 17.

More extensive collections of plots are in [10, notebooks “conjecture 6.1.nb”, “conjecture 6.2.nb”,
“conjecture 7.nb”, and “conjecture 8.nb”].



INTEGERS: 21 (2021) 23

3. While checking our calculations, we compared the Fourier expansion of

Hλ,4px{A4q (abusing notation in the obvious way) with Leo’s expansion of the

weight 4 Eisenstein series at m “ 4 [28, page 54]. (Recall that A4 “ 1{256.)

Within the range of our observations, they do coincide. The expansions (in

our own notation) both begin

1` 48q
4
` 624q2

4
` 1344q3

4
` ....

Let

Eγ,2 “ 1` 24
8
ÿ

n“1

ÿ

ν|n
νodd

νqn.

Sloane comments that the sequence t1, 48, 624, ...u is the same as that of the

coefficients of E2
γ,2 [42]. E2

γ,2 is a weight 4, level 2 modular form, that is, a

weight 4 modular form for the SLp2,Zq subgroup Γ0p2q [12, eq. (2-1), page

260]. We propose in Conjecture 7.3 (c) above that s8,n is the coefficient of

qn in the Fourier expansion of E8,4, the unique normalized weight-4 modular

form for Γ0p2q with simple zeros at i8. We have also proposed in Conjectures

1, 2, 7 and 8 that interpolating polynomials are products of monic polynomials

with rational numbers equal or related to Fourier coefficients of other classical

Hauptmoduln. What is the relationship between modular forms for subgroups

of SLp2,Zq and modular forms for the other Gpλmq?

4. Both Jm and Jm (that is, jm) appear to be interpolated by polynomials. On

the other hand, ∆˛m appears to be interpolated by polynomials, but ∆˛m does

not. Why are the situations different?
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11. Figures

Figure 1: roots of polynomial interpolating the coefficient of q23m in

the Fourier series of jmpτq (Conjecture 1.) See [10, notebook “con-

jecture1clause4d.nb”].

-2 2 4 6 8

-4

-2

2

4

Figure 2: roots of T 17 (Conjecture 6.) See [10, notebook “conjecture

6Laptop.nb”].
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-10

-5

5

10

Figure 3: roots of T 35 (Conjecture 6.) See [10, notebook “conjecture

6Laptop.nb”].

5 10 15

-10

-5

5

10

Figure 4: roots of T8,20 (Conjecture 7.) See [10, notebook “conjec-

ture 7.nb”].
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-15

-10

-5

5

10

15

Figure 5: roots of T8,50 (Conjecture 7.) See [10, notebook “conjec-

ture 7.nb”].

-1 1 2 3

-5

5

Figure 6: roots of T ˛19 (Conjecture 8.) See [10, notebook “conjecture

8.nb”].
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15

Figure 7: roots of T ˛50 (Conjecture 8.) See [10, notebook “conjecture

8.nb”].

-5 5

-5

5

Figure 8: roots of T ˛12,11 (Conjecture 9.) See [10, notebook “Conjec-

ture 9.nb”].
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-20

-10

10

20

Figure 9: roots of T ˛12,24 (Conjecture 9.) See [10, notebook “Conjec-

ture 9.nb”].

5 10 15 20 25 30 35

-150

-100

-50

y= min log |root - 3| for polynomial n vs y= -π n

Figure 10: y = log(minimum distance of roots of Tn from 3) in blue vs

y “ ´πn in red (Conjectures 6 and 11.) See [10, notebook “conjecture

6Laptop.nb”].
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5 10 15 20 25 30 35

-150

-100

-50

y= min log |root - 3| for polynomial n vs y= -4 n

Figure 11: y = log(minimum distance of roots of Tn from 3) in blue vs

y “ ´4n in red (Conjectures 6 and 11.) See [10, notebook “conjecture

6Laptop.nb”].

10 20 30 40 50

-200

-150

-100

-50

y=min log |root - 3| for polynomial n vs y= -π n

Figure 12: y = log(minimum distance of roots of T8,n from 3) in blue vs

y “ ´πn in red (Conjectures 7 and 11.) See [10, notebook “conjecture

7.nb”].
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-200

-150

-100

-50

y=min log |root - 3| for polynomial n vs y= -4n

Figure 13: y = log(minimum distance of roots of T8,n from 3) in blue vs

y “ ´4n in red (Conjectures 7 and 11.) See [10, notebook “conjecture

7.nb”].
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-250

-200

-150

-100

-50

y=min log |root - 3| for polynomial n vs y= -π n

Figure 14: y = log(minimum distance of roots of T ˛n from 3) in blue vs

y “ ´πn in red (Conjectures 8 and 11.) See [10, notebook “conjecture

8.nb”].
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-250

-200

-150

-100

-50

y=min log |root - 3| for polynomial n vs y= -4n

Figure 15: y = log(minimum distance of roots of T ˛n from 3) in blue vs

y “ ´4n in red (Conjectures 8 and 11.) See [10, notebook “conjecture

8.nb”].
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-100
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-60

-40

-20

y=min log |root - 3| for polynomial n vs y= -π n

Figure 16: y = log(minimum distance of roots of T ˛12,n from 3) in blue

vs y “ ´πn in red (Conjectures 9 and 11.) See [10, notebook “Conjec-

ture 9.nb”].
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5 10 15 20

-100

-80

-60

-40

-20

y=min log |root - 3| for polynomial n vs y= -4n

Figure 17: y = log(minimum distance of roots of T ˛12,n from 3) in blue vs

y “ ´4n in red (Conjectures 9 and 11.) See [10, notebook “Conjecture

9.nb”].
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12. Tables

12.1. Table 1

Fourier coefficients cmpnq (Conjecture 1.) See [10, notebook “conjec-

ture 1 tables.ipynb”].
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12.2. Table 2

Polynomials Cnpxq (Conjecture 1.) See [10, notebook “conjecture 1

tables.ipynb”].
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12.3. Table 3

Factored Cnpxq (Conjecture 1.) See [10, notebook “conjecture 1 ta-

bles.ipynb”].
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12.4. Table 4

m: 3

31
72

+
1
X

+
1823 X
27 648

+
10 495 X2

2 519 424
+

1778395 X3

18 345 885 696
+

45 767 X4

34 828 517 376
+

41650 330075 X5

3 327 916 660 110 655488
+

711997 X6

7 703 510 787 293184
+

1653 962 743 405 X7

2 944 327 674 199660893 831168
+

1 021044 125 X8

349 351 379 311 776170 508288

m: 4

13
32

+
1
X

+
1093 X
16 384

+
47 X2

8192
+

620001 X3

2 147 483 648
+

653 X4

67 108 864
+

9303515 X5

35 184 372 088 832
+

52677 X6

8 796 093 022 208
+

2206741887 X7

18 446 744 073 709 551616
+

77 191 X8

36 028 797 018 963968

m: 5

79
200

+
1
X

+
42877 X
640 000

+
12957 X2

2 000 000
+

1335816657 X3

3 276 800 000 000
+

1493611 203 X4

80 000 000 000 000
+

1458 495926 643 X5

2 097 152 000 000000 000
+

64664568664389 X6

2 867 200 000 000000 000000
+

3494406888 864013 731 X7

5 368 709 120 000 000000 000000 000
+

23 644062 224068813 X8

1 376 256 000 000 000000000000000

m: 6

7
18

+
1
X

+
29 X
432

+
271 X2

39 366
+

269 X3

559 872
+

215 X4

8 503 056
+

1741655 X5

1 586 874 322 944
+

307 X6

7 346 640 384
+

491999 X7

342 764 853 755904
+

235 733 X8

5 205 741 216 417 792

m: 7

151
392

+
1
X

+
165 229 X
2458624

+
107 365 X2

15 059 072
+

25493858865 X3

48 358 655 787 008
+

2771 867459 X4

92 561 489 592320
+

168 351462 893475 X5

118 895 751 725676756992
+

36826135 390421541 X6

624 462 781 016 702 892113 920
+

20845419 590657 658847 X7

9 354 238 358 105289 311446 368256
+

53 674329 840187738667 X8

690 893 631 231 484559 139312 500736

m: 8

49
128

+
1
X

+
17629 X
262 144

+
11465 X2

1 572 864
+

307116945 X3

549 755 813 888
+

34283983 X4

1 030 792 151 040
+

2150 678672 875 X5

1 297 036 692 682702 848
+

52614413 973 X6

720 575 940 379 279 360
+

31836737635 032599 X7

10 880 332 376 531662572355584
+

83 000417 975587 X8

765 023 370 224882 524618 752

m: 9

247
648

+
1
X

+
150 671 X
2239488

+
13 589191 X2

1 836 660 096
+

69901 012027 X3

120 367 356 051456
+

366 770621371 X4

10 282 945 612 677120
+

3257 500 444 698134635 X5

1 768 591 357 765 866863 198208
+

108551656 609834 559 X6

1 289 597 865 037611 254415 360
+

2222620238316 981329803 361 X7

633 718 259 619 258 503956 804 550 000 640
+

641719347824464 135620 559 X8

4 737 105 877 202 748260290391042949120

m: 10

19
50

+
1
X

+
673 X
10000

+
701 X2

93 750
+

59679 X3

100 000 000
+

2194 921 X4

58 593 750 000
+

17843 561 X5

9 000 000 000 000
+

254289321 X6

2 734 375 000 000000
+

89594891393 X7

22 500 000 000 000000000
+

87629178911 X8

553 710 937 500 000000 000

Fourier coefficients ampnq (Conjecture 2.) See [10, notebook “conjec-

ture 2.nb”].
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12.5. Table 5

n: -1

1

n: 0

1
2

+
3 x2

8

n: 1

-
3
64

-
x2

128
+
69 x4

1024

n: 2

1
54

+
x2

216
-
29 x4

864
+

x6

128

n: 3

-
303

32 768
-
101 x2

32 768
+
5195 x4

262 144
-
3821 x6

524 288
+

5601 x8

8 388 608

n: 4

373
72000

+
373 x2

172 800
-
21809 x4

1 728 000
+

7961 x6

1 382 400
-

16 367 x8

18 432 000
+

3 x10

65 536

n: 5

-
4754693

1528823808
-

4754693 x2

3 057 647 616
+
68420351 x4

8 153 726 976
-
106154 827 x6

24 461 180 928
+

338577733 x8

391 378 894 848
-

2254159 x10

28 991 029 248
+

23003 x12

8 589 934 592

n: 6

8 241137
4214784000

+
8241137 x2

7 225 344 000
-
4736509 x4

825 753 600
+

288608923 x6

89 915 392 000
-

345473249 x8

462 422 016 000
+

23556341 x10

264 241 152 000
-

94778 521 x12

17 263 755 264 000
+

75 x14

536 870 912

n: 7

-
165768 344647

130459631616000
-

165768344647 x2

195 689 447 424000
+

6 257828 375189 x4

1 565 515 579 392 000
-

491 256042 839 x6

208 735 410 585 600
+

30 381 472 425 073 x8

50 096 498 540544000
-

4325861596 609 x10

50 096 498 540 544000
+

963243270647 x12

133 590 662 774784000
-

3307 958239 x14

9 895 604 649 984 000
+

1 881471 x16

281 474 976 710 656

n: 8

124848553201
147483 721728000

+
124848 553 201 x2

196 644 962 304 000
-
185194889077 x4

65 548 320 768 000
+
1 351150 410331 x6

786 579 849 216000
-

8955809117293 x8

18 877 916 381 184 000
+

1918266195 107 x10

25 170 555 174 912000
-

1168380534109 x12

151 023 331 049472000
+

298544 975777 x14

604 093 324 197888 000
-

19594805623 x16

1 073 943 687 462912000
+

41 x18

137 438 953 472

Polynomials Anpxq (Conjecture 2.) See [10, notebook “conjecture

2.nb”].
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12.6. Table 6

n: -1

{{1, 1}}

-------------------------------------------------------------------------

n: 0


3
8
, 1, 

4
3

+ x2, 1

-------------------------------------------------------------------------

n: 1


69
1024

, 1, -
16
23

-
8 x2

69
+ x4, 1

-------------------------------------------------------------------------

n: 2


1
128

, 1, {-2 + x, 1}, {2 + x, 1}, -
16
27

-
8 x2

27
+ x4, 1

-------------------------------------------------------------------------

n: 3


5601

8388608
, 1, {-2 + x, 1}, {2 + x, 1}, 

6464
1867

+
11312 x2

5601
-
38732 x4

5601
+ x6, 1

-------------------------------------------------------------------------

n: 4


3

65536
, 1, {-2 + x, 1}, {2 + x, 1}, -

95488
3375

-
190976 x2

10 125
+
650144 x4

10 125
-
51968 x6

3375
+ x8, 1

-------------------------------------------------------------------------

n: 5


23003

8 589934 592
, 1, {-2 + x, 1}, {2 + x, 1},


4 868805 632
16769187

+
1 217201408 x2

5 589 729
-
452 733 568 x4

621 081
+
3 737 957344 x6

16 769 187
-
15548 948 x8

621 081
+ x10, 1

-------------------------------------------------------------------------

n: 6


75

536870912
, 1, {-2 + x, 1}, {2 + x, 1}, -

33755697152
9646875

-
16877 848576 x2

5 788 125
+

18398435 584 x4

1 929 375
-
32414868736 x6

9 646 875
+
14381852 336 x8

28 940 625
-
340 526584 x10

9 646 875
+ x12, 1

-------------------------------------------------------------------------

n: 7


1881 471

281474976710656
, 1, {-2 + x, 1}, {2 + x, 1},


2 715948 558696448

57149 681625
+
7468858536415232 x2

171 449 044 875
-
2640538932296704 x4

19 049 893 875
+

3050057679448832 x6

57 149 681 625
-
320257042164544 x8

34 289 808 975
+
51129660553424 x10

57 149 681 625
-
97 388044 148 x12

2 116 654 875
+ x14, 1

-------------------------------------------------------------------------

n: 8


41

137438953472
, 1, {-2 + x, 1}, {2 + x, 1},

-
8182074782580 736

11533417875
-
8182074782580736 x2

11 533 417 875
+
25262578868092928 x4

11 533 417 875
-
1 469613 075017728 x6

1 647 631 125
+

2013551386772992 x8

11 533 417 875
-
46645 274 445 568 x10

2 306 683 575
+
16469 761126 016 x12

11 533 417 875
-
73253 258992 x14

1 281 490 875
+ x16, 1

-------------------------------------------------------------------------

Anpxq factored in Mathematica (Conjecture 2.) See [10, notebook “conjecture

2.nb”].
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12.7. Table 7

Anpxq factored in SageMath (Conjecture 2.) (See [10, notebook “conjecture 2

clause 1b.ipynb”].)
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