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Abstract

Lucas polynomials are polynomials in s1 and s2 defined recursively by {0} = 0,
{1} = 1, and {m} = s1{m − 1} + s2{m − 2} for m ≥ 2. We generalize Lucas
polynomials from 2-variable polynomials to multivariable polynomials. This is done
by first defining r-Lucas polynomials {m}r in the variables s1, sr, and s2r. We show
that the binomial analogues of the r-Lucas polynomials are polynomial and give a
combinatorial interpretation for them. We then extend the generalization of Lucas
polynomials to an arbitrarily large set of variables. Recursively defined generating
functions are given for these multivariable Lucas polynomials. We conclude by
giving additional applications and insights.

1. Introduction

Let Z[s1, s2] denote the set of polynomials in variables s1 and s2 with coefficients

from the integers Z. Lucas recursively defined a set of polynomials in Z[s1, s2],

referred to as Lucas polynomials, by {0} = 0, {1} = 1, and {m} = s1{m − 1} +

s2{m − 2} [4, 5, 6]. These polynomials generalize many well-known important

mathematical and combinatorial numbers. It is easy to see that the corresponding

generating function of the Lucas polynomials is given by

L(x) =

∞∑
k=0

{k}xk =
x

1− s1x− s2x2
. (1)
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Thus, any theorem about the Lucas polynomials proves a corresponding theorem

about any series whose generating function is given in (1) for specific values of s1

and s2. If we set s1 = s2 = 1, the Lucas polynomials reduce to the Fibonnacci

sequence. With s1 = 1 + q and s2 = −q, the Lucas polynomials reduce to the

q-analogue of n, {n} = [n]q = 1 + q + q2 + q3 + · · · + qn−1. Setting s1 = 1 and

s2 = 2 generates the Pell numbers [7]. When s1 = 2 and s2 = −1, the integers are

generated.

Using the Lucas polynomials as substitutions for integers in combinatorial iden-

tities has led to surprising analogues. For example, substituting the Lucas polyno-

mials into the formula for binomial coefficients yields the rational functions—called

Lucanomials—

CL(m,n) =

{
m
n

}
=

{m}!
{m− n}!{n}!

, (2)

where {m}! = {m} · {m− 1}! for m ≥ 1 and {0}! = 1. Several authors have given

combinatorial interpretations to the Lucanomials [2, 3, 8, 9] that show that they

are in fact polynomials. In [2], a combinatorial interpretation using partial tiling

paths is given and the Catalan analogues of the Lucas polynomials are shown to be

polynomial.

In this paper, we generalize Lucanomials from polynomials in two variables to

polynomials in many variables. This is done by first defining polynomials {m}r in

terms of certain tiling words in Section 2. These polynomials have variables s1, sr,

and s2r, where s1, sr, and s2r correspond to tiles of length 1, r, and 2r, respectively.

We define rational functions

Cr(m,n) =

{
m
n

}
r

=
{m}r!

{m− n}r!{n}r!

analogously to binomials. The proof that Cr(m,n) is polynomial is given in Section

4 by constructing a bijection sγ1 · φr, for an appropriate value of γ, that maps

Z[s1, s2] into Z[s1, s2, . . . , ]. Essentially, each Cr(m,n) is the image of a product

of r Lucanomials under the map sγ1 · φr. In Section 5, we give a combinatorial

interpretation of the polynomial Cr(m,n). In Section 6, we give simple conditions

for when the Catalan analogues

Catr(m) =
1

{m+ 1}r

{
2m
m

}
r

(3)

are polynomial. In Section 7, we show how to generalize Lucanomials to an ar-

bitrary set of variables S = {s1, s2, . . . } and give conditions under which these

are polynomial. We also give recursively-defined generating functions for these new

polynomials enabling anybody with a computer algebra system to explore this space

using the analogous Taylor series command. Finally, in Section 8, we give some ad-

ditional applications and insights into these polynomials. We should note that while
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the techniques described in this paper are applied to Lucas polynomials, they are

applicable to any set of polynomials whose binomial analogues are polynomial.

2. Tilings

Set S = {s1, s2, . . . } and Z[S] = Z[s1, s2, . . . ]. For the purposes of this paper, we

assume that r is a positive integer. Let τ = {τ1, τ2, . . . } be a collection of tiles in

which τi has length i. A tiling word of k is a word T = τi1τi2 · · · τij consisting of

an ordered sequence of entries from τ such that k = i1 + i2 + · · ·+ ij . For example,

line (4) gives a tiling T of 10 cells given by T = τ2τ3τ
2
1 τ3.

0 1 2 3 4 5 6 7 8 9 10 (4)

Define the weight of T by

wt(T) =
∏
τi∈T

s
# of tiles of length i
i .

Therefore, with T = τ2τ3τ
2
1 τ3 as in line (4), we have wt(T) = s2

1s2s
2
3. While the

variables in S are commutative, the variables in τ are not.

Recall that the Lucas polynomials are polynomials in Z[s1, s2] defined by {0} = 0,

{1} = 1 and {m} = s1 · {m− 1}+ s2 · {m− 2}. It is not difficult to show that

{m+ 1} =
∑

T∈∆m

wt(T ),

where ∆m is the collection of tiling words of m with monominoes (τ1’s) and domi-

noes (τ2’s). Lucas polynomials are known to satisfy the recurrence relation [8]

{m} = {k} · {m− k + 1}+ s2 · {k − 1} · {m− k}. (5)

Define the Lucanomial {
m
n

}
=

{m}!
{m− n}!{n}!

. (6)

Thus, the Lucanomials have the recurrence relation{
m
n

}
= {m− n+ 1} ·

{
m− 1
n− 1

}
+ s2 · {n− 1} ·

{
m− 1
n

}
. (7)

Example 1. With

{
m
1

}
= {m}, it is not hard to see that

{
3
2

}
= s2

1 + s2 and{
4
2

}
= s4

1 + 3s2
1s2 + 2s2

2.
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Let ∆m,r be the collection of tiling words of m that begin with m (mod r) τ1 tiles

and then uses tiles from {τr, τ2r} indiscriminately. Note that our use of (mod r)

is as a function with codomain {0, 1, . . . , r − 1}, not as a relation. Set the r-Lucas

polynomial {m}r to be

{m+ 1}r =
∑

T∈∆m,r

wt(T), (8)

with {0}r = 0 and {1}r = 1.

Example 2. Computationally, with r = 3 and m = 11,

{11}3 = s1s
3
3 + 2s1s3s6.

This correspond to the following tilings:

The r-Lucas polynomials satisfy a similar recurrence relation to that of the Lucas

polynomials.

Lemma 1. We have {0}r = 0, {i}r = si−1
1 for 1 ≤ i ≤ r and for m > r,

{m}r = {m− r}r · sr + {m− 2r}r · s2r. (9)

Furthermore, the generating function for {m}r is given by

Lr(x) =
x+ s1

1x
2 + · · ·+ sr−1

1 xr

1− srxr − s2rx2r
. (10)

Proof. Let T ∈ ∆m−1,r, where m > r. It is either the case that T ends with the tile

τr or the tile τ2r. The collection of all words fulfilling the first case is enumerated by

{m− r}r · sr and the second by {m− 2r}r · s2r. The recursion immediately implies

the generating function.

From the definition of {m}r, one can see that {m}r ∈ Z[S]. Define the r-

Lucanomial by

Cr(m,n) =

{
m
n

}
r

=
{m}r!

{m− n}r!{n}r!
. (11)

We will show that these are in fact always polynomials. It is these polynomials–and

their generalizations–that will be the focus of the remainder of paper.
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3. A Useful Formula

With 0 ≤ n ≤ m, define γr(m,n) by

γr(m,n) =

m∑
i=1

((i− 1) (mod r))−
n∑
i=1

((i− 1) (mod r))−
m−n∑
i=1

((i− 1) (mod r)).

Let a and h be defined by a = n (mod r) and h = (m − n) (mod r). It is not

difficult to show that

γr(m,n) =

{
ah if 0 ≤ h ≤ r − a,

(r − a)(r − h) if r − a < h < r.
(12)

Example 3. With r = 11, m = 37, and n = 20 we have a = 9, h = 6 and

γ11(37, 20) = 171− 91− 70 = 10 = (11− 9)(11− 6).

4. The Function sγ1 · φr

Construct the homomorphism φr : Z[s1, s2]→ Z[S] by multiplicatively and linearly

extending

φr(x) =


1 if x = 1,

sr if x = s1,

s2r if x = s2.

(13)

Since the map φr substitutes one set of variables with another we have the following

lemma.

Lemma 2. Let P (s1, s2), Q(s1, s2) ∈ Z[s1, s2]. If

P (s1, s2)

Q(s1, s2)
∈ Z[s1, s2],

then

φr

(
P (s1, s2)

Q(s1, s2)

)
=
φr

(
P (s1, s2)

)
φr

(
Q(s1, s2)

) =
P (sr, s2r)

Q(sr, s2r)
∈ Z[S].

Set

εr(m) = ((m− 1) (mod r)) + 1. (14)

Observe that εr(m) = m (mod r) unless m (mod r) = 0. In that case, εr(m) = r.

If d = (m− 1)(div r), then dmr e = d+ 1. This leads to the following.
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Lemma 3. Suppose ε = εr(m) and d = (m− 1)(div r), then

{m}r = {ε}r · φr
({m− ε

r
+ 1
})

= sε−1
1 · φr({d+ 1}) = sε−1

1 · φr
({⌈m

r

⌉})
and

{m}r{m− r}r · · · {ε}r =s
(ε−1)(d+1)
1 · φr

(
{d+ 1}!

)
=s

(ε−1)(d+1)
1 · φr

({⌈m
r

⌉}
!
)
.

Proof. Recall {m}r is determined by the tiling words of m − 1 that begin with

(m−1) (mod r) τ1 tiles and then uses tiles from {τr, τ2r} indiscriminately. Both τr
and τ2r have tiles that are lengths that are multiples of r. Thus, each tiling word

involved in the computation of {m}r starts with (ε−1) τ1 tiles. The remaining d · r
cells are tiled by τr and τ2r, in the same way that d cells can be tiled by τ1 and

τ2.

This immediately yields the next result.

Lemma 4. We have

{m}r! = s
hr(m)
1 · φr(R(s1, s2)),

where

R(s1, s2) =

r−1∏
j=0

{⌈m− j
r

⌉}
!,

and

hr(m) =

m∑
i=1

((i− 1) (mod r)).

It follows immediately from Lemma 4, that the power of s1 in Cr(m,n) (11) is

given by γr(m,n).

Theorem 1. Suppose m = n+ k. Let M , N , and K be the multisets

M =
{⌈m

r

⌉
,
⌈m− 1

r

⌉
, . . . ,

⌈m− r + 1

r

⌉}
,

N =
{⌈n

r

⌉
,
⌈n− 1

r

⌉
, . . . ,

⌈n− r + 1

r

⌉}
,

and

K =
{⌈k

r

⌉
,
⌈k − 1

r

⌉
, . . . ,

⌈k − r + 1

r

⌉}
.

Then there is some ordering M∗ = [M1,M2, · · · ,Mr], N
∗ = [N1, N2, · · · , Nr], and

K∗ = [K1,K2, · · · ,Kr] of the elements of the multisets M,N, and K, respectively,

such that Mi = Ni +Ki, for 1 ≤ i ≤ r.
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Proof. Let µ = m (mod r), α = n (mod r), and β = k (mod r). We break the

proof of this theorem into cases dependent on whether or not the following are true:

µ > 0 (if not, µ = 0), α+ β = µ (if not, α+ β = r + µ), and β > 0 (if not, β = 0).

Of the eight cases, three contain contradictory conditions: µ = 0, α+β = µ, β > 0;

µ = 0, α+ β = r + µ, β = 0; and µ > 0, α+ β = r + µ, β = 0.

We will create a 3-line array with entries of M on the first row, entries from N

on the second row, and entries from K on the third such that the entries in the

second and third rows of a given column sum to the entry in the first row. To do

this, list the entries of M and K in weakly decreasing order from left to right. In

the second row, list the entries of N in weakly increasing order starting in column

µ+ 1 and then continuing in the first column by wrapping around.

In Row 1, if µ = 0, then all of the entries are equal to m
r . Otherwise, there are

µ entries of m−µ+r
r and r − µ entries of m−µ

r . Recall that the entries in Row 2 are

listed in increasing order starting in column µ+ 1. Thus, in Row 2, the first r − α
entries (starting in column µ + 1) are n−α

r followed by α entries of n−α+r
r (with

wrap around). In Row 3, the first β entries are k−β+r
r followed by r − β entries of

k−β
r . In all five of the following cases, we will have Mj = Nj +Kj for 1 ≤ j ≤ r.

Case 1: µ > 0, α+ β = µ, β > 0.

Set θ = m−µ+r
r , η = n−α

r , and ρ = k−β+r
r . Note that Mj = θ for 1 ≤ j ≤ µ and

Mj = θ − 1 for µ+ 1 ≤ j ≤ r. Also, since β = µ− α, Nj = η − 1 for 1 ≤ j ≤ β and

µ + 1 ≤ j ≤ r as well as Nj = η for β + 1 ≤ j ≤ µ. Finally, Kj = ρ for 1 ≤ j ≤ β

and Kj = ρ− 1 for β + 1 ≤ j ≤ r.

Case 2: µ > 0, α+ β = r + µ, β > 0.

Set θ = m−µ+r
r , η = n−α+r

r , and ρ = k−β+r
r . Note that Mj = θ for 1 ≤ j ≤ µ and

Mj = θ − 1 for µ + 1 ≤ j ≤ r. Also, since β = µ + (r − α), we have Nj = η for

1 ≤ j ≤ µ and β + 1 ≤ j ≤ r as well as Nj = η − 1 for µ+ 1 ≤ j ≤ β = µ+ r − α.

Finally, Kj = ρ for 1 ≤ j ≤ β and Kj = ρ− 1 for β + 1 ≤ j ≤ r.

Case 3: µ = 0, α+ β = r + µ = r, β > 0.

Set θ = m
r , η = n−α+r

r , and ρ = k−β+r
r . Note that Mj = θ for 1 ≤ j ≤ r. Also, since

β = r − α, we have Nj = η − 1 for 1 ≤ j ≤ β as well as Nj = η for β + 1 ≤ j ≤ r.

Finally, Kj = ρ for 1 ≤ j ≤ β and Kj = ρ− 1 for β + 1 ≤ j ≤ r.

Case 4: µ > 0, α = α+ β = µ, β = 0.

Set θ = m−µ+r
r , η = n−α+r

r , and ρ = k
r . Note that Mj = θ for 1 ≤ j ≤ µ and

Mj = θ − 1 for µ+ 1 ≤ j ≤ r. Also, since α = µ, we have Nj = η for 1 ≤ j ≤ µ as

well as Nj = η − 1 for µ+ 1 ≤ j ≤ r. Finally, Kj = ρ for 1 ≤ j ≤ r.

Case 5: µ = 0, α = 0, β = 0.

Set θ = m
r , η = n

r , and ρ = k
r . Note that Mj = θ for 1 ≤ j ≤ r, Nj = η for 1 ≤ j ≤ r

and Kj = ρ for 1 ≤ j ≤ r.
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Example 4 illustrates the first case of the proof of Theorem 1.

Example 4. Suppose m = 37, n = 10. m− n = 27 and r = 8. It follows that

{37}8! = s122
1 · φ8

(
{5}! · {5}! · {5}! · {5}! · {5}! · {4}! · {4}! · {4}!

)
,

{27}8! = s87
1 · φ8

(
{4}! · {4}! · {4}! · {3}! · {3}! · {3}! · {3}! · {3}!

)
,

and

{10}8! = s29
1 · φ8

(
{2}! · {2}! · {1}! · {1}! · {1}! · {1}! · {1}! · {1}!

)
.

Now, write 55555444 decreasing, 44433333 increasing starting in column 1 + (37

(mod 8)) = 6 and then continuing with wrap-around and then 22111111 decreasing.

5 5 5 5 5 4 4 4
3 3 4 4 4 3 3 3
2 2 1 1 1 1 1 1

The columns add up correctly so that we can now create corresponding product of

binomials: {
37
27

}
8

= s6
1 · φ8

({
5
3

}2

·
{

5
4

}3

·
{

4
3

}3
)
.

The exponent of s1 is given by (12) with a = 27 (mod 8) = 3, h = (37 − 27)

(mod 8) = 2 and γ8(37, 27) = 3 · 2 = 6.

The previous computation, in which Cr(m,n) is written as the image of a product

of Lucas polynomials under the map s
γ8(37,27)
1 · φ8, is an example of a more general

theorem.

Theorem 2. For any Cr(m,n), there exists a product

R(s1, s2) =

r∏
i=1

{
ai
bi

}
of Lucanomials such that

Cr(m,n) =

{
m
n

}
r

= s
γr(m,n)
1 · φr

(
R(s1, s2)

)
, (15)

where γr(m,n) is given in (12). Therefore, Cr(m,n) is a polynomial.

Proof. The product of binomials R(s1, s2) is constructed in Theorem 1 and γr(m,n),

as shown in (12), solely counts the difference between the exponent of s1 in {m}r!
and the exponent of s1 in {m− n}r! · {n}r!. Lemma 2 implies the polynomiality of

the result.
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Theorem 1 and Theorem 2 give another method for computing Cr(m,n) as shown

in the following example.

Example 5. Using the recurrence relation in Lemma 1 with r = 3, computationally{
10
5

}
3

= s1s
8
3 + 5s1s

6
3s6 + 9s1s

4
3s

2
6 + 7s1s

2
3s

3
6 + 2s1s

4
6. (16)

Now,

{10}3! = s9
1 · φ3

(
{4} · {3} · {3} · {3} · {2} · {2} · {2} · {1} · {1} · {1}

)
,

{5}3! = s4
1 · φ3

(
{2} · {2} · {1} · {1} · {1}

)
,

and thus, using Theorem 1, gives

{10}3!

{5}3! · {5}3!
=
s9

1 · φ3

(
{4} · {3} · {3} · {3} · {2} · {2} · {2} · {1} · {1} · {1}

)
s8

1 · φ3

(
{2} · {2} · {1} · {1} · {1} · {2} · {2} · {1} · {1} · {1}

)
=s1 ·

φ3

(
{4}! · {3}! · {3}!)

)
φ3

(
({2}! · {2}!) · ({2}! · {1}!) · ({2}! · {1}!)

)
=s1 · φ3

({
4
2

}
·
{

3
2

}
·
{

3
2

})
(17)

=s1 · φ3

(
(s4

1 + 3s2
1s2 + 2s2

2) · (s2
1 + s2) · (s2

1 + s2)
)

=s1 · φ3

(
s8

1 + 5s6
1s2 + 9s4

1s
2
2 + 7s2

1s
3
2 + 2s4

2

)
. (18)

The action of φ3, which maps s1 → s3 and s2 → s6, in (18) yields (16). Finally,

we have γ3(10, 5) = (3 − 2)(3 − 2) = 1 since a = 5 (mod 3) = 2 and h = (10 − 5)

(mod 3) = 2.

5. Combinatorial Interpretation for Cr(m,n)

In [2], the authors give a combinatorial interpretation for CL(m,n) (2). This in-

terpretation considers certain lattice paths inside tilings of Young diagrams. The

combinatorial interpretation for Cr(m,n) (11) will consider sequences of lattice

paths inside tilings of Young diagrams.

Let λ = (λ1, λ2, . . . , λl) be an integer partition, that is, λ1 ≥ λ2 ≥ · · · ≥ λl > 0.

We say that each λi is a part of λ and the length, l(λ), of λ is the number of its

parts. The Young diagram of λ is an array of left-justified rows of boxes which we
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will write in French notation so that λi is the number of boxes in the ith, row from

the bottom of the diagram. We embed the Young diagram of λ in the Cartesian

plane in the following way: the bottom left corner of the leftmost box of the first

row is at the point (0, 0), and each box is a unit square. For a reason that will soon

become clear, we will include the line segment from (λ1, 0) to (λ1 + 1, 0) and the

line segment from (0, l(λ)) to (0, l(λ) + 1) as part of the embedding of the Young

diagram of λ in the Cartesian plane. We will use the notation λ to denote the

Young diagram of λ.

Define r · λ by

r · λ = (rλ1, rλ2, . . . , rλl).

An important partition in this section is the staircase partition δm, defined by

δm = (m− 1,m− 2, . . . , 1).

A tiling of λ is a sequence (w1, w2, . . . , wl(λ)), where for all i, wi is a tiling word

of λi by τ1 and τ2. This can be represented by tiling the cells of the rows of λ as

seen in Example 6. Let T (λ) be the set of all such tilings of λ and let

wt(λ) =
∑

T∈T (λ)

wt(T ).

It is easy to see that wt(δm) = {m}!. The authors of [2] show that CL(m,n) is

a polynomial by partitioning T (δn) into blocks, where {m − n}!{n}! divides the

weight of each block.

Example 6. The following is the embedding of δ7 in the Cartesian plane and a

tiling T of δ7. It follows that wt(T ) = s9
1 + s6

2.

A partial tiling path of δm is a lattice path p from (n, 0) to (0,m) consisting of

unit steps north (N) and west (W) that have the following properties: p is contained

in δm, every W step must be followed by an N step, and if p contains the point

(m− i, i) for some i, the step from that point is an N.

Let p be a partial tiling path of δm from (n, 0) to (0,m). A binomial partial tiling

of type p is a partial tiling of the rows of δm such that if the step N is immediately

preceded by W, the tiling is of the cells to the right of that N step and the first tile

must be τ2 if the number of cells is greater than 0. Otherwise, tile the cells in the

part of the row left of the N step with τ1’s and τ2’s.
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Example 7. The following is a partial tiling path p of δ7 and a binomial partial

tiling of type p. In this case, n = 4.

Theorem 3 ([2]). Given 0 ≤ n ≤ m, we have{
m
n

}
=
∑
B

wt(B),

where the sum is over all binomial partial tilings associated with partial tiling paths

of δm from (n, 0) to (0,m).

A r-partial tiling path of r · δm is a lattice path p from (r · n, 0) to (0,m) con-

sisting of unit steps north (N) and length r steps west (W) that have the following

properties: p is contained in r · δm, every W step must be followed by an N step,

and if p contains the point (r · (m− i), i) for some i, the step from that point is an

N. It is easy to see that the set of r-partial tiling paths of r · δm is in bijection with

the set of partial tiling paths of δm.

Let p be a partial tiling path of r · δm from (r · n, 0) to (0,m). A r-binomial

partial tiling of type p is a partial tiling of the rows of r · δm with τr’s and τ2r’s such

that if the step N is immediately preceded by W, the tiling is of the cells to the

right of that N step and the first tile must be τ2r if the number of cells is greater

than 0. Otherwise, tile the cells to the left of N with τr’s and τ2r’s.

The set of all r-binomial partial tilings is in bijection with set of all binomial

partial tilings.

Example 8. The following is a 3-partial tiling path p of 3 · δ7 and a 3-binomial

partial tiling of type p. In this case, n = 4.

Theorem 4. We have

φr

({
m
n

})
=
∑
C

wt(C),

where the sum is over all r-binomial partial tilings associated with r-partial tiling

paths of r · δm from (r · n, 0) to (0,m).
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Proof. Let Φr be the map that sends a binomial partial tiling to its associated r-

binomial partial tiling. This map sends the tile τ1 to τr and sends the tile τ2 to τ2r.

Therefore, wt(Φr(B)) = φr(wt(B)). Since φr is a homomorphism, we have

φr

({
m
n

})
= φr

(∑
B

wt(B)
)

=
∑
B

wt(Φr(B)),

where both sums are over all binomial partial tilings associated with partial tiling

path of δm from (n, 0) to (0,m).

For every r-partial tiling C, there is a unique partial tiling B such that C =

Φr(B). Therefore, we have

φr

({
m
n

})
=
∑
C

wt(C),

where the sum is over all r-binomial partial tilings associated with r-partial tiling

path of r · δm from (r · n, 0) to (0,m) as desired.

A combinatorial interpretation for Cr(m,n) is found by combining Theorem 2

and Theorem 4.

6. Catalan Analogues

In [2], the authors showed that the Catalan analogues of Lucas polynomials,

{2m}!
{m+ 1}! · {m}!

=
1

{m+ 1}

{
2m
m

}
are polynomial. We will now show that this result does not always extend to

Catr(m) =
1

{m+ 1}r

{
2m
m

}
r

,

but there are cases in which it does.

Example 9. Not all rational functions of the form

1

{m+ 1}r

{
2m
m

}
r

are polynomial. With r = 5, computationally it is not hard to show that

1

{10}5

{
18
9

}
5

=
(s2

5 + 2s10)3 · (s2
5 + s10)5

s3
1s5

.
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Note that

1

{10}5

{
18
9

}
5

=
s33

1 · φ5

(
({4}!)3 · ({3}!)2

)
s32+4

1 · φ5

(
{2} · ({2}!)8 · ({1}!)2

)
=

1

s3
1

· φ5

( 1

{2}
·
{

4
2

}
·
{

4
2

}
·
{

4
2

}
·
{

3
2

}
·
{

3
2

})
. (19)

There is no way to attach 1
{2} to any of the binomials in (19) to create a Catalan

analogue. Thus the corresponding term 1
{10}5

{
18
9

}
5

is not necessarily polynomial.

Also note that in this particular example, the exponent of s1 in the numerator is

smaller than the exponent of s1 in the denominator.

The previous example highlights what is required for Catr(m) to be polynomial.

First, using Theorem 2, check that the pre-image of Catr(m) is polynomial in

Z[s1, s2]. Second, check that the exponent of s1 in the numerator is at least as large

as the exponent of s1 in the denominator. If these two conditions hold, Catr(m) is

polynomial.

Theorem 5. If m (mod r) < r
2 , then

1

{m+ 1}r

{
2m
m

}
r

is polynomial.

Proof. Since m (mod r) < r
2 , m can be expressed as m = dr + a, where d ∈ Z and

0 ≤ a < r
2 . It follows that 2m = 2dr + 2a, where 0 ≤ 2a < r. Recall that{

2d+ 1
d+ 1

}
r

=

{
2d+ 1
d

}
r

.

By Theorems 1 and 2, we have{
2m
m

}
r

=

{
2dr + 2a
dr + a

}
r

= s
γr(2dr+2a,dr+a)
1 · φr

({
2d+ 1
d+ 1

}2a

·
{

2d
d

}r−2a
)
.

From (12), γr(2dr + 2a, dr + a) = a2. By Lemma 3, we have that

{m+ 1}r = {dr + a+ 1}r = sa1 · φr({d+ 1}).

Therefore,

1

{dr + a+ 1}r

{
2dr + 2a
dr + a

}
r

= sa
2−a

1 · φr

({
2d+ 1
d+ 1

}2a

· 1

{d+ 1}

{
2d
d

}r−2a
)
.
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Note that a2 − a ≥ 0 and r − 2a > 0. By Theorem 4.1 in [2], 1
{d+1}

{
2d
d

}
is

polynomial and thus, by Lemma 2, so is Catr(m) = Catr(dr + a).

In general, for large values of m, if Catr(m) is polynomial, then so is Catr(m+r).

This is due to the fact that (m+ r) (mod r) = m (mod r). For small values of m,

there may be some additional cancellations that do not happen generally.

7. Multivariable Lucanomials

In this section, we extend the generalization of Lucas polynomials to an arbitrarily

large set of variables. Recall from (14) that εr(m) = ((m − 1) (mod r)) + 1. Let

R = (r1, r2, . . . , r`) be a decreasing sequence of positive integers and let ∅ denote the

empty sequence. Define theR-Lucas polynomial {m}R recursively by {m}∅ = sm−1
1

and

{m}R = {εr1(m)}(r2,...,r`) · φr1
({⌈m

r1

⌉})
. (20)

Notice that when R = (r1), then {m}R = {m}r1 . As before, define {m}R! =

{m}R · {m− 1}R!, where {0}R! = 1. We will use the notation R′ for the sequence

(r2, . . . , r`).

Recursively, define ∆m,R to be the collection of tiling words of m that satisfy the

following: if R = ∅, then ∆m,∅ = {τm1 }, otherwise, use the tiles from {τr1 , τ2r1} to

tile the final m− εr1(m) tiles indiscriminately and tile the first εr1(m) tiles with a

tiling word from ∆εr1 (m),R′ .

Lemma 5. For m ≥ 0, we have

{m+ 1}R =
∑

T∈∆m,R

wt(T), (21)

This gives a combinatorial method for computing {m}R.

Example 10. Let R = (6, 2) and m = 18. The tilings corresponding to ∆17,(6,2)

Thus, by Lemma 5,

{18}(6,2) = s1s
2
2s

2
6 + s1s

2
2s12 + s1s4s

2
6 + s1s4s12.

Recursively, the generating function for {m}R is given by

LR(x) =
L̂R′,r1(x)

1− sr1xr1 − s2r1x
2r1

, (22)
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where L̂R′,r1(x) is the polynomial that corresponds to the partial sum of the terms

of degree r1 and smaller in LR′(x) and Lr(x) is given in (10). The differences and

similarities of this generating function with that given in (1) are worth noting.

Example 11. The generating function for {m}(5,2) is given by

L(5,2)(x) =
x+ s1x

2 + s2x
3 + s1s2x

4 + (s2
2 + s4)x5

1− s5x5 − s10x10

since

L2(x) = x+ s1x
2 + s2x

3 + s1s2x
4 + (s2

2 + s4)x5 + · · · .

Properties of the R-Lucas polynomials allow for a simple formula for the expan-

sion of {m}R!. In particular, we have the following.

Lemma 6. For m ≥ 1 and R 6= ∅, we have

{m}R! =
(
{r1}R′ !

)⌊m
r1

⌋
· {εr1(m)}R′ ! · φr1

(r1−1∏
j=0

{⌈m− j
r1

⌉}
!
)
. (23)

Proof. The interval [1,m] can be partitioned into
⌊
m
r1

⌋
intervals of the form [gr1 +

1, (g + 1)r1] and one interval of the form [bmr1 c · r1 + 1,m]. From (20), each of the⌊
m
r1

⌋
intervals of the form [gr1 + 1, (g + 1)r1] contributes a factor of {r1}R′ !. The

remaining interval contributes the factor of {εr1(m)}R′ !. The term

φr1

({⌈m− j
r1

⌉})
is the analogue from Lemma 4.

We will now consider the binomial analogues of the R-Lucas polynomials which

is defined by {
m
n

}
R

=
{m}R!

{n}R! · {m− n}R!
. (24)

Example 12. Suppose (r1, r2) = (9, 3), m = 52, n = 31, and thus m − n = 21.

Then by Lemma 6, we have

{52}(9,3)! =
(
{9}3!

)5

· {7}3! · φ9

((
{6}!

)7

·
(
{5}!

)2
)
,

{31}(9,3)! =
(
{9}3!

)3

· {4}3! · φ9

((
{4}!

)4

·
(
{3}!

)5
)
, and

{21}(9,3)! =
(
{9}3!

)2

· {3}3! · φ9

((
{3}!

)3

·
(
{2}!

)6
)
.
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With the matching from Theorems 1 and 2, we have{
52
31

}
(9,3)

=

{
7
4

}
3

· φ9

({
6
3

}3

·
{

6
4

}4

·
{

5
3

}2
)

=s0
1 · φ3

({
3
2

}
·
{

2
1

}2
)
· φ9

({
6
3

}3

·
{

6
4

}4

·
{

5
3

}2
)
.

Note that

{
52
31

}
(9,3)

is a polynomial in the five variables {s1, s3, s6, s9, s18}.

For 1 ≤ i ≤ `, let ν1 = m, νi+1 = εri(νi), α1 = n, αi+1 = εri(αi), β1 = m−n and

βi+1 = εri(βi). As can be seen in the previous example, the exponent of {9}3! in

the numerator is greater than or equal to the exponent of {9}3! in the denominator.

If νi = αi + βi and νi, αi, βi ≥ 0, then⌊νi
ri

⌋
=
⌊αi + βi

ri

⌋
≥
⌊αi
ri

⌋
+
⌊βi
ri

⌋
. (25)

This ensures the cancellation like that of the previous example.

We will now give sufficient conditions for when the binomial analogues of the

R-Lucas polynomials is polynomial.

Theorem 6. If νi = αi + βi for 1 ≤ i ≤ `+ 1, then{
m
n

}
R

=
{m}R!

{n}R! · {m− n}R!

is polynomial.

Proof. The combination of Theorem 1 and Theorem 2 along with (23) and (25)

immediately yields the result.

The condition that νi = αi + βi for 1 ≤ i ≤ `+ 1 is sufficient but not necessary

for the corresponding polynomiality.

Example 13. One can see that

{
76
50

}
(15,5)

is polynomial even though ν2 = 1,

α2 = 5 and β2 = 11. In this particular case, everything cancels normally except for

the term
{1}5 · {15}5!

{5}5! · {11}5!

which does in fact turn out to be polynomial. This corresponds to a special case of

the form α2 + β2 = r1 + 1 in which α2 ≤ r2.
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8. Further Comments, Applications, and Conclusions

It is not hard to match up the equivalence classes(mod r) of the integers so that the

product of Lucanomials in Theorem 1 get mapped to different sets of variables with

different rules for tilings, left-right paths, or substitutions. This would allow, for

example, the multiplication of Fibonacci binomials with the q-binomials. For such

an application, however, one would need to be careful to match up the integers so

that the corresponding substitutions are consistent with the matching of M∗, N∗

and K∗ given in Theorem 1.

Example 14. With Si = {si,1, si,2, . . .}, define Υi : Z[sr, s2r] → Z[si,r, si,2r] for

1 ≤ i ≤ r by Υi(sj) = si,j . Then apply Υi to the ith term in the binomial expansion.

For example, (17) would become

s1 ·Υ1 ◦ φ3

({
4
2

})
·Υ2 ◦ φ3

({
3
2

})
·Υ3 ◦ φ3

({
3
2

})
=s1 ·Υ1 ◦ φ3

(
s4

1 + 3s2
1s2 + 2s2

2

)
·Υ2 ◦ φ3

(
s2

1 + s2

)
·Υ3 ◦ φ3

(
s2

1 + s2

)
.

The recursion formula for generating functions of {m}R given in (22) allows for

a wide assortment of rational functions of the form Q(x)
P (x) . Classifying these rational

functions into strict rules as to which Catalan analogues are polynomial would be

a potential next step.

In this work, we present methods for defining multivariable Lucas polynomials. It

is worth pointing out that at no point in our work did we ever use properties of Lucas

polynomials other than the the fact that their binomial and Catalan analogues are

polynomial. Thus, this work has applications to other collections of polynomials

associated with integers whose binomial and Catalan analogues are polynomial.
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