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Abstract

The polynomials

Pn(x) =

∫ 1

0

(1− 2t)(x− t)ndt =

n−1∑
k=0

An,kx
k (n = 1, 2, 3, ...)

appear in an asymptotic expansion for Euler’s gamma function. We investigate the
properties of the coefficients An,k and show that the coefficients can be expressed
in terms of the unsigned Stirling numbers of the first kind. We also show that these
numbers appear in series representations for some mathematical constants, like, for
instance, Euler’s constant, log(2) and ζ(3).

1. Introduction

The Stirling numbers of the first kind have interesting applications in various fields,

like, calculus of finite differences, number theory, numerical analysis and they play

a role in combinatorics. These numbers can be defined by the recurrence relation

s(0, 0) = 1, s(n, 0) = s(0, k) = 0 (n, k ≥ 1),

s(n+ 1, k) = s(n, k − 1)− ns(n, k) (n ≥ 0, k ≥ 1).

A combinatorial interpretation states that s(n, k) is (−1)n−k times the number of

permutations of {1, 2, ..., n} with precisely k cycles. For more information on this

subject we refer to Roman [22].
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The Stirling numbers appear in the expansions of the falling factorial polynomials

and the rising factorial polynomials,

xn =

n−1∏
j=0

(x− j) =

n∑
k=0

s(n, k)xk

and

xn =

n−1∏
j=0

(x+ j) =

n∑
k=0

(−1)n−ks(n, k)xk. (1)

Our work was inspired by an interesting paper published in 2006 by Shi et al.

[23]. The authors presented the following new asymptotic series for Euler’s gamma

function:

log Γ(s+ 1) =
1

2
log(2π) +

(
s+

1

2

)
log s− s+

∞∑
n=1

Pn(x)

2n
∏n−1
j=0 (s+ x+ j)

.

Here, x is a nonnegative real number, s is a complex number with <(s) ≥ 1, and

Pn is the function

Pn(x) =

∫ 1

0

(1− 2t)

n−1∏
j=0

(x+ j − t) dt =

∫ 1

0

(1− 2t)
Γ(x+ n− t)

Γ(x− t)
dt. (2)

It is not difficult to show that Pn (with n ≥ 1) is a polynomial of degree n− 1 with

leading coefficient n/6. For n = 1, 2, 3, 4 we have

P1(x) =
1

6
, P2(x) =

1

3
x, P3(x) =

1

2
x2 +

1

2
x− 1

60
,

P4(x) =
2

3
x3 + 2x2 +

19

15
x− 1

15
.

Throughout this paper, we set

Pn(x) =

n−1∑
k=0

An,k x
k and An = An,0 = Pn(0). (3)

A result discovered by Yu and Yang [25] states that if n ≥ 3, then the constant

coefficient of Pn is negative, whereas all other coefficients are positive. Thus,

An < 0 and An,k > 0 (k = 1, ..., n− 1;n ≥ 3). (4)

The aim of this paper is to study further properties of An,k.

The paper is organized as follows. In the next section, we provide some repre-

sentations for An,k. It turns out that An,k can be expressed in terms of the Stirling
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numbers of the first kind. In Section 3, we prove that the sequence (An,k)1≤k≤n−1
is strictly log-concave with respect to k, and in Section 4, we present new series

representations for some mathematical constants, like, for example, 1/ log 2, log 3

and Euler’s constant γ. The terms of our series involve An,k. Finally, we show that

the numbers An and An,1 can be expressed in terms of the Cauchy numbers and

the Gregory coefficients.

2. Representations for An,k

In what follows, we use the notation[
n

k

]
= (−1)n−ks(n, k) = |s(n, k)|. (5)

The numbers
[
n
k

]
are called the unsigned Stirling numbers of the first kind; see [15,

section 6]. Our first theorem provides an explicit formula for An,k.

Theorem 1. We have

An,k =

n∑
j=k+1

(−1)j−k+1

[
n

j

](
j

k

)
j − k

(j − k + 1)(j − k + 2)

(k = 0, 1, ..., n− 1; n ≥ 1).

(6)

Proof. Using (1), (2) and (5), we obtain

Pn(x) =

∫ 1

0

(1− 2t)(x− t)ndt

=
1

2

∫ 1

−1
u
(
x+

u− 1

2

)n
du

=
1

2

∫ 1

−1
u

n∑
k=0

[
n

k

](
x+

u− 1

2

)k
du

=
1

2

∫ 1

−1
u

n∑
k=0

[
n

k

] k∑
j=0

(
k

j

)
xj
(u− 1

2

)k−j
du

=

n∑
k=0

k∑
j=0

[
n

k

](
k

j

)
xj
∫ 1

−1

u

2

(u− 1

2

)k−j
du.

The fact ∫ 1

−1

u

2

(u− 1

2

)m
du = (−1)m+1 m

(m+ 1)(m+ 2)
(0 ≤ m ∈ Z)



INTEGERS: 21 (2021) 4

implies

Pn(x) =

n∑
k=0

k∑
j=0

(−1)k−j+1

[
n

k

](
k

j

)
xj

k − j
(k − j + 1)(k − j + 2)

=

n−1∑
k=0

n∑
j=k+1

(−1)j−k+1

[
n

j

](
j

k

)
j − k

(j − k + 1)(j − k + 2)
xk.

(7)

Comparing the coefficients we conclude from (3) and (7) that (6) holds.

Remark 1. The special case k = 0 leads to the simple formula

An =

n∑
j=1

(−1)j+1

[
n

j

]
j

(j + 1)(j + 2)
.

Inverting this identity gives

n∑
k=0

(−1)k+1

{
n

k

}
Ak =

n

(n+ 1)(n+ 2)
,

where {
n

k

}
=

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn

denotes the Stirling numbers of the second kind; see [15, Section 6]. From (6) with

k = 1, 2, 3 we obtain

An,1 =

n∑
j=2

(−1)j
[
n

j

]
j − 1

j + 1
, An,2 =

1

2

n∑
j=3

(−1)j+1

[
n

j

]
(j − 2),

and

An,3 =
1

6

n∑
j=4

(−1)j
[
n

j

]
j(j − 3).

In Section 4, we give several series representations for various mathematical con-

stants which involve these expressions.

The next theorem provides two additional representations for An,k.

Theorem 2. We have

An,k =

n∑
j=k

[
j

k

](
n

j

)
An−j (8)

and

An,k =
1

n+ 1

n∑
j=k+1

(−1)j−k−1
(
j

k

)
An+1,j . (9)
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Proof. (i) Using the formula

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k

(see [1, p. 105]) together with (1), (2) and (5), we obtain

Pn(x) =

∫ 1

0

(1− 2t)(x− t)ndt

=

∫ 1

0

(1− 2t)

n∑
k=0

(
n

k

)
xk(−t)n−kdt

=

n∑
k=0

(
n

k

)
xk
∫ 1

0

(1− 2t)(−t)n−kdt

=

n∑
k=0

(
n

k

)
xkPn−k(0)

=

n∑
k=0

(
n

k

)
An−kx

k

=

n∑
k=0

(
n

k

)
An−k

k∑
j=0

[
k

j

]
xj

=

n∑
k=0

n∑
j=k

[
j

k

](
n

j

)
An−jx

k

which concludes (8).

(ii) We have

Pn+1(x) =

∫ 1

0

(1− 2t)(x− t)n+1dt

=

∫ 1

0

(1− 2t)(x− t)n(x− t+ n)dt

= (x+ n)

∫ 1

0

(1− 2t)(x− t)ndt−
∫ 1

0

(1− 2t)t(x− t)ndt

= (x+ n)Pn(x)−
∫ 1

0

(1− 2t)t(x− t)ndt

and

Pn+1(x− 1) =

∫ 1

0

(1− 2t)(x− 1− t)n+1dt
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=

∫ 1

0

(1− 2t)(x− t)n(x− 1− t)dt

= (x− 1)

∫ 1

0

(1− 2t)(x− t)ndt−
∫ 1

0

(1− 2t)t(x− t)ndt

= (x− 1)Pn(x)−
∫ 1

0

(1− 2t)t(x− t)ndt.

It follows that

Pn+1(x)− Pn+1(x− 1) = (n+ 1)Pn(x). (10)

Thus,

(n+ 1)

n−1∑
k=0

An,kx
k =

n∑
k=0

An+1,k

(
xk − (x− 1)k

)
=

n∑
k=0

An+1,k

k−1∑
j=0

(−1)k−j−1
(
k

j

)
xj

=

n−1∑
k=0

n∑
j=k+1

(−1)j−k−1
(
j

k

)
An+1,jx

k.

This leads to (9).

Remark 2. From (10) with x = 1 and x = 1/2 we obtain

(n+ 1)

n−1∑
k=0

An,k =

n∑
k=1

An+1,k and (n+ 1)

n−1∑
k=0

An,k
2k

=

n∑
k=1
k odd

An+1,k

2k−1
,

respectively.

3. A Log-concavity Property

A positive sequence (ak)1≤k≤m is called strictly log-concave, if

ak−1ak+1 < a2k (k = 2, ...,m− 1).

In this section, we present a log-concavity property of the sequence (An,k)1≤k≤n−1.

We need the following theorem which might be of independent interest.

Theorem 3. The polynomial Pn (n ≥ 3) has only simple zeros. More precisely, Pn
has one positive and n− 2 negative zeros.
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Proof. Let m ∈ {0, 1, ..., n− 2}. From (2) we obtain

Pn(−m+ 1/2) = 2

∫ −m+1/2

−m−1/2

m−1∏
j=0

(t+ j) · (t+m)2 ·
n−1∏

j=m+1

(t+ j)dt.

If −m − 1/2 < t < −m + 1/2, then t + j < 0 for j = 0, 1, ...,m − 1, and t + j > 0

for j = m+ 1, ..., n− 1. This implies that

Pn(−m+ 1/2) > 0, if m is even, (11)

and

Pn(−m+ 1/2) < 0, if m is odd. (12)

We have

Pn(−m− 1/2) = 2

∫ −m+1/2

−m−3/2

m∏
j=0

(t+ j) · (t+m+ 1)2 ·
n−1∏

j=m+2

(t+ j)dt.

If −m − 3/2 < t < −m − 1/2, then t + j < 0 for j = 0, 1, ...,m, and t + j > 0 for

j = m+ 2, ..., n− 1. Hence,

Pn(−m− 1/2) < 0, if m is even, (13)

and

Pn(−m− 1/2) > 0, if m is odd. (14)

Applying (11)-(14) gives that Pn has a zero in the interval

(−m− 1/2,−m+ 1/2) for m = 0, 1, ..., n− 2.

This implies that Pn has at least n − 2 negative zeros. From (4) and (11) with

m = 0 we obtain Pn(0) < 0 < Pn(1/2). Thus, Pn has a positive zero. Since Pn
has the degree n− 1, we conclude that Pn has one positive zero and n− 2 negative

zeros.

The following lemma is due to Newton. A proof can be found, for instance, in

[16, pp. 104-105].

Lemma 1. If the real polynomial

m∑
j=0

aj
j!(m− j)!

xm−j (m ≥ 2; a0am 6= 0)

has only real zeros, then

aj−1aj+1 < a2j (j = 1, 2, ...,m− 1),

unless all zeros are equal.
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We are now in a position to prove that (An,k)1≤k≤n−1 is strictly log-concave with

respect to k.

Theorem 4. Let n ≥ 3 be an integer. Then,

An,k−1An,k+1 <

(
1− n

(n− k)(k + 1)

)
A2
n,k (k = 1, 2, ..., n− 2). (15)

Proof. We apply Theorem 3 and Lemma 1 with

m = n− 1 and aj = j!(n− 1− j)!An,n−1−j (j = 0, 1, ..., n− 1).

Then we obtain (15).

4. Series Representations

Finding representations for mathematical constants by series, products, integrals

and continued fractions has attracted the attention of researchers for many years.

Detailed information on this subject with many interesting historical comments

can be found in Finch’s monographs Mathematical Constants and Mathematical

Constants II [13, 14]. Here, we give three examples:

1

log 2
=

∞∑
n=0

∫ 1

0

(
x

n

)
dx, log 2 =

1

6

∞∑
n=1

pn + qn
n

,

where

pn =

n∏
k=1

(
1− 1

4k

)
and qn =

n∏
k=1

(
1− 3

4k

)
,

log 3 = 1 +
1

2
− 2

3
+

1

4
+

1

5
− 2

6
+

1

7
+

1

8
− 2

9
+ +− · · · .

The above representations can be found in [19], [4] and [18, p. 312], respectively.

We show that the numbers An,k can be used to obtain new series representations

for several mathematical constants. Throughout, we use the notations A∗n = An/n!

and A∗n,k = An,k/n!.

The following theorem presents the exponential generating series for An.

Theorem 5. For |t| < 1, we have

A(t) =

∞∑
n=0

An
tn

n!
=

(t− 2) log(1− t)− 2t

(log(1− t))2
. (16)



INTEGERS: 21 (2021) 9

Proof. Let |t| < 1 and let N be a nonnegative integer. Then,

N∑
n=0

An
tn

n!
=

N∑
n=0

∫ 1

0

(1− 2u)(−u)ndu
tn

n!

=

N∑
n=0

∫ 1

0

(1− 2u)

(
u

n

)
du(−t)n

=

∫ 1

0

(1− 2u)

N∑
n=0

(
u

n

)
(−t)ndu.

We let N tend to ∞ and obtain

∞∑
n=0

An
tn

n!
=

∫ 1

0

(1− 2u)(1− t)udu

=

[
(1− 2u)(1− t)u

log(1− t)
+

2(1− t)u

(log(1− t))2

]u=1

u=0

=
(t− 2) log(1− t)− 2t

(log(1− t))2
.

This settles (16).

As a first consequence of Theorem 5, we obtain the following result.

Corollary 1. We have

2

(log 2)2
− 3

log 2
=

∞∑
n=0

(−1)nA∗n. (17)

Proof. Let xn = (−1)nA∗n. We obtain for n ≥ 1:

|xn| ≤
1

n!

∫ 1

0

|1− 2t|t
n−1∏
j=1

(j − t)dt ≤ 1

n!

∫ 1

0

|1− 2t|t(n− 1)!dt =
1

4n
.

Using (4) we get for n ≥ 3:

(n+ 1)!(|xn| − |xn+1|) = An+1 − (n+ 1)An =

∫ 1

0

u(t)vn(t)dt

with

u(t) = t(1− 2t)(2− t)(1− t2) and vn(t) =

n−1∏
j=3

(j − t).

We have u ≥ 0 on [0, 1/2], u ≤ 0 on [1/2, 1], and vn is decreasing on [0, 1]. This

gives

u(t)
(
vn(t)− vn(1/2)

)
≥ 0 (0 ≤ t ≤ 1).
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Thus, ∫ 1

0

u(t)vn(t)dt ≥ vn(1/2)

∫ 1

0

u(t)dt = 0.

It follows that |xn| is decreasing for n ≥ 3 and tends to 0 as n → ∞, so that the

Leibniz criterion for alternating series reveals that the series in (17) is convergent.

Applying Abel’s limit theorem and (16) gives

∞∑
n=0

(−1)nA∗n = lim
t→−1

∞∑
n=0

A∗nt
n = lim

t→−1

(t− 2) log(1− t)− 2t

(log(1− t))2
=

2

(log 2)2
− 3

log 2
.

Remark 3. From (16) with t = m/(m+ 1) (m = 1, 2, 3, 4), we obtain the following

series representations:

1

(log 2)2
=

3

2 log 2
−
∞∑
n=0

A∗n
2n

=
5

3 log 2
− 8

3

∞∑
n=0

A∗n

(3

4

)n
, (18)

1

(log 3)2
=

1

log 3
− 3

4

∞∑
n=0

A∗n

(2

3

)n
, (19)

1

(log 5)2
=

3

4 log 5
− 5

8

∞∑
n=0

A∗n

(4

5

)n
. (20)

Remark 4. A Sheffer matrix [2, p. 309], [20] (or exponential Riordan array) is

an infinite matrix S = [sn,k]n,k≥0 = (g(t), f(t)), whose columns are generated, for

every k ∈ N, by the exponential series

∞∑
n=0

sn,k
tn

n!
= g(t)

(f(t))k

k!
,

where g(t) =
∑∞
n=0 gnt

n/n! and f(t) =
∑∞
n=0 fnt

n/n! are two exponential series

with g0 6= 0, f0 = 0 and f1 6= 0. If g0 = 0, then we have an improper Sheffer matrix.

Moreover, a polynomial sequence (sn(x))n≥0 is a Sheffer sequence [8, 20, 21, 22]

if the polynomials sn(x) =
∑n
k=0 sn,kx

k are the row polynomials of a Sheffer matrix

S = (g(t), f(t)). So, in particular, we have the exponential generating series

∞∑
n=0

sn(x)
tn

n!
= g(t) exf(t).

The ordinary powers, the falling and the rising factorials, the Bernoulli and the

Euler polynomials, the Hermite polynomials, the Laguerre polynomials and the

Mittag-Leffler polynomials are all classical examples of Sheffer sequences. Many

other examples of this kind arise in the context of enumerative combinatorics.
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In our case, the matrix A = [An,k]n,k≥0 turns out to be an improper Sheffer

matrix, and the polynomials Pn(x) form an improper Sheffer sequence. Applying

(16) and (8) with the fact that

1

k!

(
log

1

1− t

)k
=

∞∑
n=k

[
n

k

]
tn

n!
(|t| < 1; 0 ≤ k ∈ Z),

(see [15, p. 337]), we obtain for |t| < 1 and nonnegative integers k:

A(t)

k!

(
log

1

1− t

)k
=

∞∑
n=0

n∑
j=k

[
j

k

](
n

j

)
An−j

tn

n!
=

∞∑
n=k+1

A∗n,kt
n. (21)

Hence, we have the Sheffer matrix A = (A(t),− log(1 − t)) and the exponential

generating series

A(t)

(1− t)x
=

∞∑
n=0

Pn(x)
tn

n!
.

In particular, Pn(x) can be expressed in terms of the Narumi polynomials; see [8,

p. 37], [22, p. 127].

Remark 5. From (4) and (21) we conclude that the function

Fk(t) = A(t)
(

log
1

1− t

)k
(2 ≤ k ∈ N)

is absolutely monotonic on [0, 1), that is, we have F
(ν)
k (t) ≥ 0 (0 ≤ t < 1; ν =

0, 1, 2, ...). Absolutely monotonic functions have applications in the theory of ana-

lytic functions and other fields. For more information on this subject we refer to

[9] and [24, chapter IV].

Remark 6. Applying the same technique as in the proof of Corollary 1 we obtain

from (16) and (21) with k = 1 the following counterpart of (17):

1

log 2
=

3

2
− 1

2

∞∑
n=2

(−1)nA∗n,1.

Next, we apply (21) with k = 1, 2, 3 and t = m/(m+ 1) (m = 1, 2, 3, 4). For k = 1

we find
1

log 2
=

3

2
−
∞∑
n=2

A∗n,1
2n

=
5

3
− 4

3

∞∑
n=2

A∗n,1

(3

4

)n
,

1

log 3
= 1− 3

4

∞∑
n=2

A∗n,1

(2

3

)n
,

1

log 5
=

3

4
− 5

8

∞∑
n=2

A∗n,1

(4

5

)n
.
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Setting k = 2 leads to

log 2 =
2

3
+

4

3

∞∑
n=3

A∗n,2
2n

=
3

5
+

4

5

∞∑
n=3

A∗n,2

(3

4

)n
,

log 3 = 1 +
3

2

∞∑
n=3

A∗n,2

(2

3

)n
,

log 5 =
4

3
+

5

3

∞∑
n=3

A∗n,2

(4

5

)n
,

and for k = 3 we find

(log 2)2 =
2

3
log 2 + 4

∞∑
n=4

A∗n,3
2n

=
3

5
log 2 +

6

5

∞∑
n=4

A∗n,3

(3

4

)n
,

(log 3)2 = log 3 +
9

2

∞∑
n=4

A∗n,3

(2

3

)n
,

(log 5)2 =
4

3
log 5 + 5

∞∑
n=4

A∗n,3

(4

5

)n
.

From (21) with k = 2 and k = 3 we obtain

∞∑
n=3

A∗n,2t
n =

1

2
(t− 2) log(1− t)− t =

1

2

∞∑
n=3

n− 2

(n− 1)n
tn

and

∞∑
n=4

A∗n,3t
n =

1

3
t log(1− t)− 1

6
(t− 2)(log(1− t))2

=
1

6

∞∑
n=4

n−4∑
j=0

n− j − 3

(j + 1)(n− j − 1)(n− j − 2)
tn,

respectively. This implies that for A∗n,2 and A∗n,3 we have the formulas

A∗n,2 =
n− 2

2(n− 1)n
(n ≥ 3)

and

A∗n,3 =
1

6

n−4∑
j=0

n− j − 3

(j + 1)(n− j − 1)(n− j − 2)
(n ≥ 4).
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Remark 7. Further applications of (21) provide more series representations for

mathematical constants. For instance, from (21) with k = 1 we obtain

1

log(1− t)
= −1

t
+

1

2
+

1

2

∞∑
n=2

A∗n,1t
n−1. (22)

Differentiating both sides of the above equation gives

1

(log(1− t))2
=

1− t
t2

(
1 +

1

2

∞∑
n=2

(n− 1)A∗n,1t
n
)
. (23)

Setting t = m/(m + 1) (m = 1, 2, 3, 4) in (23) leads to counterparts of (18), (19)

and (20). Here, we just state the representations for 1/(log 2)2. For m = 1, 3 we get

1

(log 2)2
= 2 +

∞∑
n=2

(n− 1)

2n
A∗n,1 =

16

9
+

8

9

∞∑
n=2

(n− 1)A∗n,1

(3

4

)n
.

Remark 8. Formula (22) can be applied to find various new series representations

for Euler’s constant γ. We give two examples. Let

H(y) =

∫ y

0

( 1

log(1− t)
+

1

t

)
dt (0 < y < 1). (24)

Using (22) gives

H(y) =
1

2

∫ y

0

(
1 +

∞∑
n=2

A∗n,1t
n−1
)

dt =
1

2
y +

1

2

∞∑
n=2

A∗n,1
yn

n
. (25)

From (24) we obtain

H(1/2) = γ − Ei(− log 2)− log 2,

H(1/3) = γ − Ei(− log(3/2))− log 3,
(26)

where

Ei(x) =

∫ x

−∞

es

s
ds (x < 0)

denotes the exponential integral. Applying (25) with y = 1/2, y = 1/3 and (26)

leads to

γ =
1

4
+ log 2 + Ei(− log 2) +

∞∑
n=2

A∗n,1
2n+1n

=
1

6
+ log 3 + Ei(− log(3/2)) +

1

2

∞∑
n=2

A∗n,1
3nn

.
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Next, we supplement Theorem 5. We obtain a formula for the m-th derivative

of the generating series A(t).

Theorem 6. Let m ≥ 0 be an integer and |t| < 1. Then,

∞∑
n=0

An+m
tn

n!
=

1

(1− t)m−1
m∑
k=0

[
m

k

] k∑
j=0

(−1)k−j+1

(
k

j

)
k + j + 1

k − j + 1

j!

(log(1− t))j+1

− 1

(1− t)m
m∑
k=0

[
m

k

]
k!

(log(1− t))k+1
− 2t

(1− t)m
m∑
k=0

[
m

k

]
(k + 1)!

(log(1− t))k+2
.

(27)

Proof. It follows from (2), (3) and (16) that

A(m)(t) =

∞∑
n=0

An+m
tn

n!

=

∞∑
n=0

(−1)n+m
tn

n!

∫ 1

0

(1− 2x)xn+mdx

=

∞∑
n=0

(−1)n+m
tn

n!

∫ 1

0

(1− 2x)xm(x−m)ndx

= (−1)m
∫ 1

0

(1− 2x)xm
∞∑
n=0

(x−m)n
(−t)n

n!
dx

= (−1)m
∫ 1

0

(1− 2x)xm
∞∑
n=0

(
x−m
n

)
(−t)ndx

= (−1)m
∫ 1

0

(1− 2x)xm(1− t)x−mdx

=
(−1)m

(1− t)m

∫ 1

0

(1− 2x)xm(1− t)xdx

=
(−1)m

(1− t)m

∫ 1

0

m∑
k=0

(−1)m−k
[
m

k

]
(xk − 2xk+1)(1− t)xdx

=
1

(1− t)m
m∑
k=0

(−1)k
[
m

k

] ∫ 1

0

(xk − 2xk+1)(1− t)xdx. (28)

Next, we apply the integral formula∫ 1

0

xnsxdx = s

n∑
k=0

(−1)k
(
n

k

)
k!

(log s)k+1
− (−1)n

n!

(log s)n+1
(n = 0, 1, 2, ..., s > 0)
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with s = 1− t. Then,∫ 1

0

(xk − 2xk+1)(1− t)xdx = (1− t)
k∑
j=0

(−1)j+1

(
k

j

)
k + j + 1

k − j + 1

j!

(log(1− t))j+1

− (−1)k
k!

(log(1− t))k+1
− (−1)k

2t(k + 1)!

(log(1− t))k+2
.

Inserting this formula in (28) we conclude that (27) is valid.

Remark 9. For t = 1/2 and m ≥ 0, (27) yields

∞∑
n=0

An+m
2nn!

= 2m−1
m∑
k=0

(−1)k
[
m

k

] k∑
j=0

(
k

j

)
k + j + 1

k − j + 1

j!

(log 2)j+1

+2m
m∑
k=0

(−1)k
[
m

k

]
k!

(log 2)k+1
− 2m

m∑
k=0

(−1)k
[
m

k

]
(k + 1)!

(log 2)k+2
.

In particular, for m = 1, 2, 3, 4 we obtain

∞∑
n=0

An+1

2nn!
= − 1

log 2
− 5

(log 2)2
+

4

(log 2)3
,

∞∑
n=0

An+2

2nn!
= − 2

(log 2)2
+

36

(log 2)3
− 24

(log 2)4
,

∞∑
n=0

An+3

2nn!
= − 12

(log 2)2
+

128

(log 2)3
− 360

(log 2)4
+

192

(log 2)5
,

∞∑
n=0

An+4

2nn!
= − 80

(log 2)2
+

784

(log 2)3
− 2880

(log 2)4
+

4416

(log 2)5
− 1920

(log 2)6
.

5. Relations with Cauchy Numbers and Gregory Coefficients

Comtet [11, p. 294] introduced the Cauchy numbers of the first kind Cn and the

Cauchy numbers of the second kind Ĉn by

Cn =

∫ 1

0

xn dx =

n∑
k=0

[
n

k

]
(−1)n−k

k + 1
, Ĉn =

∫ 1

0

xn dx =

n∑
k=0

[
n

k

]
1

k + 1

with the exponential generating series

C(t) =

∞∑
n=0

Cn
tn

n!
=

t

log(1 + t)
, (29)
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Ĉ(t) =

∞∑
n=0

Ĉn
tn

n!
=

−t
(1− t) log(1− t)

.

These numbers are related by the identity

Cn = (−1)n(Ĉn − nĈn−1) (n = 1, 2, ...). (30)

The Gregory coefficients Gn (also known as Bernoulli numbers of the second kind

[11, p. 294], [22, p. 114] or logarithmic numbers [12]) are given by

Gn =

∫ 1

0

(
x

n

)
dx

with the ordinary generating series

G(t) =

∞∑
n=0

Gnt
n =

t

log(1 + t)
.

Obviously, we have Cn = n!Gn. We also consider the generalized Cauchy numbers

C
(ν)
n . They are defined by

(C(t))ν =

∞∑
n=0

C(ν)
n

tn

n!
=
( t

log(1 + t)

)ν
.

In particular, we obtain

C(2)
n =

n∑
k=0

(
n

k

)
CkCn−k.

Moreover, as proved in [26] we have

C(2)
n = −(n− 1)Cn − n(n− 2)Cn−1 (n = 1, 2, ...). (31)

Next, we show that An and An,1 can be expressed in terms of the Cauchy numbers

or, equivalently, in terms of the absolute value of the Gregory coefficients.

Theorem 7. We have for n ≥ 1,

An = (−1)n+1
(
(2n− 1)Cn + 2Cn+1

)
, (32)

An = (2n− 1)nĈn−1 − (4n+ 1)Ĉn + 2Ĉn+1, (33)

and

A∗n = (2n− 1)|Gn| − 2(n+ 1)|Gn+1|. (34)

Moreover, we have for n ≥ 2,

An,1 = 2(−1)n−1Cn, A∗n,1 = 2|Gn|. (35)
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Proof. From (16) and (29) we obtain

tA(t) = (2− t)C(−t)− 2(C(−t))2.

Comparing the coefficients of the series gives

(n+ 1)An = (−1)n+1
(
(n+ 1)Cn + 2Cn+1 − 2C

(2)
n+1

)
.

Applying (31) yields

(n+ 1)An = (−1)n+1
(
(n+ 1)Cn + 2Cn+1 + 2(nCn+1 + (n2 − 1)Cn)

)
= (n+ 1)(−1)n+1

(
(2n− 1)Cn + 2Cn+1

)
.

This gives (32). From (30) and (32) we obtain (33). Using Gn = (−1)n−1|Gn|
(n ≥ 1) we conclude from (32) that (34) is valid.

Applying (21) with k = 1 and (29) we find

∞∑
n=2

An,1
tn

n!
= 2− t+

2t

log(1− t)
= 2− t− 2C(−t) = −2

∞∑
n=2

(−1)nCn
tn

n!
.

This leads to (35).

Remark 10. Alabdulmohsin [3], Blagouchine [5, 6], Blagouchine and Coppo [7],

Candelpergher and Coppo [10], Kowalenko [17] and others presented several inter-

esting series with Gregory coefficients, like, for instance,

∞∑
n=1

|Gn| = 1,

∞∑
n=1

|Gn|
n

= γ,

∞∑
n=2

|Gn|
n− 1

= −1

2
+

1

2
log(2π)− γ

2
,

∞∑
n=3

|Gn|
n− 2

= −1

8
+

1

12
log(2π)− ζ ′(2)

2π2
,

∞∑
n=4

|Gn|
n− 3

= − 1

16
+

1

24
log(2π) +

ζ(3)

8π2
− ζ ′(2)

4π2
,

∞∑
n=1

|Gn|
n+m

=
1

m
+

m∑
j=1

(−1)j
(
m

j

)
log(j + 1) (m = 1, 2, 3, ...).

Using these formulas and (34) we obtain the following identities involving the num-

bers A∗n:
∞∑
n=1

A∗n
n

= 2− log(2π),
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∞∑
n=1

A∗n
n+ 1

= 3 log 2− 2,

∞∑
n=2

A∗n
n− 1

=
1

6
− 1

2
γ +

1

6
log(2π) + 2

ζ ′(2)

π2
,

∞∑
n=3

A∗n
n− 2

=
1

12
− 3

4

ζ(3)

π2
,

and for integers m ≥ 2, we have

∞∑
n=1

A∗n
n+m

=
1

m

m∑
j=1

(−1)j−1
(
m

j

)(
2(m− 1)j + 3m

)
log(j + 1).

In particular, for m = 2, 3, 4,

∞∑
n=1

A∗n
n+ 2

= 8 log 2− 5 log 3,

∞∑
n=1

A∗n
n+ 3

= 27 log 2− 17 log 3,

∞∑
n=1

A∗n
n+ 4

= 78 log 2− 36 log 3− 9 log 5.
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