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Abstract
Let a,b be positive and coprime integers. By an integral geometric sequence we
mean a finite set of the form {a”*,a*=1b,a*=2b% ... b*}. We characterize integers
that can be uniquely expressed as a linear combination of an integral geometric
sequence over nonnegative integers.

1. The Result

The problem of determining the number of solutions of linear Diophantine equations
a1x1+- - -+apxE = n over nonnegative integers x1, . . ., £y has a long and rich history;
see [3]. The method of generating functions is a basic tool for this problem, and can
be found in many standard textbooks on Combinatorics; for instance, see [1, 4].
We explore the following variant of this problem that arises naturally. Given a

set A= {a,...,a} of positive integers, determine all n € Z>( for which there is a
unique k-tuple (z1,...,xy) of nonnegative integers such that
a1r1 + - +apTE = n. (1)

We denote the set of all n € Z>( such that Equation (1) has a unique solution by
S1(A). This problem has been resolved in the case when A is a modified arithmetic
sequence, i.e., A = {a,ha + d,ha + 2d,...,ha + kd}, with a,d,h,k are positive
integers and ged(a,d) = 1 in [2]. Observe that an arithmetic sequence is the special
case h = 1.

The case of a geometric sequence: A = {a,ar,ar?,...,ar*}, a,r k are positive

integers, r > 1, is easily dealt with. If n € S1(A), then a | n. With n = ma,
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Equation (1) can be rewritten as xzg + ra; + x4+ +rfzy=m. f0<m<r,
each x; = 0 for ¢ > 0, so that g = m. Thus, each such m is uniquely representable
by {1,7,72,...,7F}. On the other hand, the above equation has at least the two
solutions, viz., (i) xg =m, x; =0 for ¢ > 0, and (ii) xo =m —7r, z; = 1, 2; = 0 for
i > 1 when m > r. Therefore, S1(A) = {0, a,2a,...,(r — 1)a} in this case.

Since the problem of determining S7(A) when A is a geometric sequence is easily
resolved, we consider a relaxation on the requirement that r be a positive inte-
ger in a geometric sequence while maintaining that the elements in the set A are
positive integers. One way to achieve this is to consider a two parameter family,
parametrized by positive and coprime integers a and b, with first term a* and ratio
b/a. For positive and coprime integers a, b, with a < b, and any positive integer k,
by an integral geometric sequence we mean a sequence of the form

Ai(a,b) = {a* " 1b,a" 202, ... V7).

Note that the condition on coprimality of a,b can be assumed without loss of gen-
erality since ged(a, b) = d can be easily linked to the case where ged(a,b) = 1. The
purpose of this brief note is determine S7(Ay) when A is an integral geometric
sequence.

Let 'k (a,b) = {akxo +abFlbxy -+ bk ;€ Zzo}~ Each integer in 'k (a, b)
is of the form v(xq,...,xzx) := Z?:o a*~b'x;, with each x; € Z>o. The transfor-
mation (xg_1, k) — (x—1+b, x — a) maintains the value of v(xo, ..., xx), and we
repeatedly apply this until 0 < x; < a — 1. Note that the corresponding x;_1 > 0.
Next we repeatedly apply the transformation (zg_o,zk—1) — (Tk—2 + b, 2k—1 — @)
until 0 < zx—1 < a — 1. The corresponding x;_o > 0 while maintaining the
value of v(zg,...,z;). Continuing with this process with successive transforma-
tions (-1, ;) — (x;—1 + b, x; — a), i > 0 leads to the same value of v(zo,...,xx),
but with 0 < z; < a — 1 for each i > 0 and xy > 0. Therefore, each integer in
I'k(a,b) is of the form Zf:o ¢z, with 0 < z; < a—1 for each i > 0 and g > 0.

Definition 1. We say that the expression n = Zf:o c;x; is in standard form if we
can write 0 < z; < a —1 for each ¢ > 0 and zg > 0.

For brevity, let us denote (xo,...,xx) and (yo,...,yx) by x and y, respectively.
Lemma 1. If v(x) = v(y) with X,y in standard form, then x =y.
Proof. Suppose v(x) = v(y) with x,y in standard form. Then

a*xo+a* " thry + -+ 0Py = abyo + by + - + BEy,. (2)

Reducing Equation (2) modulo a gives z; =y, (mod a) since ged(a, b) = 1. There-
fore xy, = yx, and Equation (2) reduces to

" tag+ a2y o+ 0 e = P lyg 4+ a2y -+ 0y (3)
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Note that Equation (3) is of the form of Equation (2) with k replaced by k —
1. Reducing Equation (3) modulo a leads to zp_1 = yr—1, and continuing this
argument shows x; = y;, i € {0,...,k}, so that x = y. O

Theorem 1. A nonnegative integer n is uniquely representable by elements of

A (a,b) if and only if

k
n:Zak_ibixi, where) < zxg<b—1and0<z; <a—1,2=1,...,k.
i=0

In particular, the number of such integers equals a*b.

Proof. Let X = {(xg,...,25) : 0 <29 <b—-1,0<2; <a—1,i=1,...,k}. Let
n = v(x), with x € X. We must show that v(x) = v(y) with y € ZX5! implies
x = y. Repeated applications of the transformations described in the paragraph
above Lemma 1 leads to v(y) = v(y’), where y’ is in standard form. Since x is in
standard form, we have x =y’ by Lemma 1. Applying the inverse transformations
in reverse order to y’ must lead back to y. However, such transformations are not
applicable to x. Thus, y' =y, so that x = y.

Nonnegative integers that are not in I'y(a, b) have no representation by elements
in Ag(a,b). Therefore, we must show that any n = v(x), x ¢ X has at least two
representations by elements in Ay(a,b). Note that x ¢ X implies either zg > b or
x; > a for some i € {1,...,k}. Now

V(IEO*b,"Z}l‘Fa,II}'Q,...,ZEk), lfx()zbv
v(zo, 21, %2,...,2k) = § V(To, ..., Tj_2,2j—1 + b, —a,Tjq1,...,Tk)
ife; >a,je{1,...,k},

gives two representations of any such n by elements of Ag(a,b). O
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