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Abstract

The Frobenius number g(S) of a set S of non-negative integers with gcd(S) = 1 is the
largest integer not expressible as a linear combination of elements of S. Given a se-
quence s = (si)i≥0, we can define the associated sequence Gs(i) = g({si, si+1, . . .}).
In this paper we compute Gs(i) for some classical automatic sequences: the evil
numbers, the odious numbers, and the lower and upper Wythoff sequences. In con-
trast with the usual methods, our proofs are based largely on automata theory and
logic.

1. Introduction

Let N = {0, 1, 2, . . .} be the natural numbers. Let S be a nonempty set of natural

numbers with gcd(S) = 1, possibly infinite. A classical result then says that every

sufficiently large integer can be written as a linear combination of elements of S

with natural number coefficients. Then g(S), the Frobenius number of S, is defined

to be the greatest integer t such that t does not have such a representation. For

example, g({6, 9, 20}) = 43.

The Frobenius number has received a lot of attention in recent years. For a

detailed discussion of the function g, see the books of Ramı́rez Alfonśın [17] and

Rosales and Garćıa-Sánchez [19].

Let s = (si)i≥0 be an increasing sequence of natural numbers such that

gcd(si, si+1, . . .) = 1

for all i ≥ 0. For i ≥ 0 define Gs(i) = g({si, si+1, . . .}), the Frobenius number of a

final segment of s, beginning with si. Given a sequence s, it can be an interesting and

challenging problem to compute the Frobenius numbers Gs(i) exactly, or estimate

their growth rate. Computing the Frobenius number is notoriously difficult because

the problem is NP-hard [16].
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For example, for the case where s is 1, 4, 9, 16, . . ., the sequence of squares, Dutch

and Rickett [8] proved that Gs(n) = o(n2+ε) for all ε > 0, and this bound was

improved to O(n2) by Moscariello [13].

In this paper we are interested in calculating Gs(i) for some famous integer se-

quences s whose characteristic sequence is automatic. (The characteristic sequence

is the binary sequence b = (bi)i≥0 where bi = 1 if i occurs in s and bi = 0 other-

wise.) By “automatic” we mean generated by a finite automaton in a certain way,

described in the next section. In particular, we completely characterize the Frobe-

nius number for the sequence of evil numbers, the sequence of odious numbers, and

the lower and upper Wythoff sequences. Although our results are number-theoretic

in nature, our approach is largely via combinatorics, automata theory, and logic.

2. Automatic and Synchronized Sequences

A numeration system is a method for writing a non-negative integer N as a linear

combination N =
∑

0≤i≤t aidi of some increasing sequence d0 = 1 < d1 < d2 < · · ·
of integers, where the ai are chosen from a finite set that includes 0. Suppose

(a) the representation for N is always unique (up to leading zeros);

(b) the set of all valid representations forms a regular language;

(c) there is a finite automaton recognizing the triples (x, y, z) for which x + y =

z, where the inputs to the automaton are representations of integer triples,

padded with leading zeros, if necessary, to make them all of the same length.

If all three conditions hold, then we call the numeration system regular. A sequence

a = (ai)i≥0 over a finite alphabet is automatic if it is computed by an automaton

taking the representation of i as input, starting with the most significant digit, and

returning ai as the output associated with the last state reached. For more about

automatic sequences, see [3].

If a sequence is automatic, then there is a decision procedure for proving or dis-

proving assertions about it, provided these assertions are phrased in first-order logic

and using only the logical operations, comparisons of natural numbers, addition,

and indexing into the sequence [7]. This decision procedure has been incorporated

in a theorem-proving system called Walnut, written by Hamoon Mousavi [14], and

it is the main tool we use to prove the results in this paper.

Automatic sequences are restricted in scope because they take their values in a

finite alphabet. However, it is possible for automata to compute sequences taking

their values in N, the natural numbers, using a different meaning of “compute”.

We say a sequence (ai)i≥0 is synchronized if there is a finite automaton recognizing

exactly the representations of pairs (i, ai), read in parallel. In this case, the alphabet
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of the automaton consists of pairs of symbols; by reading the first element of each

pair we get the representation of i and by the reading the second element of each

pair we get ai. It may be necessary to pad the shorter representation with leading

zeros to ensure that the two inputs have the same length.

If a sequence is synchronized, then we can compute it in linear time. If the under-

lying numeration system is base k, then the quantities lim supi ai/i and lim infi ai/i

are computable [20]. For more about synchronized sequences, see [6, 22].

3. The Odious and Evil Numbers

Let s2(n) denote the sum of bits of n when represented in base 2. Define t(n) =

s2(n) mod 2, the famous Thue-Morse sequence [2]. The evil numbers 0, 3, 5, 6, 9, . . .

are those n with t(n) = 0, and the odious numbers 1, 2, 4, 7, . . . are those n with

t(n) = 1. (The somewhat painful terminology is from [4, p. 431].) More precisely

we have [1]

en = 2n+ t(n)

on = 2n+ 1− t(n)

for n ≥ 0. Observe that both sequences have gcd 1, because

gcd(ei, ei+1, ei+2) = gcd(oi, oi+1, oi+2) = 1

for all i ≥ 0. Additive properties of these numbers were studied previously in [15,

Thm. 2].

Our first goal is to prove the following result.

Theorem 1. Let e = (e0, e1, e2, . . .) be the sequence of evil numbers. The function

Ge(n) is 2-synchronized.

In order to prove this we need two lemmas.

Lemma 1. If n ≥ 1 can be written as the sum of four evil numbers greater than

or equal to m, then n can be written as the sum of one, two, or three evil numbers

greater than or equal to m.

Lemma 2. Let n ≥ 1 be a non-negative integer linear combination of evil numbers

greater than or equal to m. Then n can be written as the sum of either one, two,

or three evil numbers greater than or equal to m.

Remark 1. When we speak of such sums we never insist that the sum be of distinct

integers.
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Proof of Lemma 1. This assertion can be phrased as a first-order formula, namely,

∀m,n evil4(m,n) =⇒ evil1,2,3(m,n),

where

evil1,2,3(m,n) := ∃j, k, ` t(j) = t(k) = t(`) = 0 ∧ j, k, ` ≥ m∧
(n = j ∨ n = j + k ∨ n = j + k + `)

evil4(m,n) := ∃i, j, k, ` t(i) = t(j) = t(k) = t(`) = 0 ∧ i, j, k, ` ≥ m∧
n = i+ j + k + `.

To prove this, we use the theorem-proving software called Walnut, where we can

simply translate the statement of the previous paragraph into Walnut’s syntax and

evaluate it [14].

def evil123rep "Ej,k,l (T[j]=@0) & (T[k]=@0) & (T[l]=@0) &

j>=m & k>=m & l>=m & (n=j | n=j+k | n=j+k+l)":

def evil4rep "Ei,j,k,l (T[i]=@0) & (T[j]=@0) & (T[k]=@0) &

(T[l]=@0) & i >= m & j>=m & k>=m & l>=m & (n=j+k+l+m)":

eval evilcheck "Am,n $evil4rep(m,n) => $evil123rep(m,n)":

This last line returns TRUE, so the lemma is proved.

Remark 2. To help in understanding the syntax of Walnut, we note the following:

• E represents ∃

• A represents ∀

• T represents the Thue-Morse sequence

• the natural number constant i is written @i

• & represents logical “and”

• | represents logical “or”

• ~ represents logical negation

• => is logical implication

• def defines a formula for future use

• eval evaluates a logical formula and returns TRUE or FALSE.

See [14] for more information.
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Proof of Lemma 2. Let n be written as a non-negative integer linear combination

of evil numbers greater than or equal to m. Without loss of generality choose a

representation for n that minimizes s, the sum of the coefficients. If this sum is at

least 4, we can write n = u + v where u is the sum of 4 evil numbers and v is the

sum of s − 4 evil numbers, all greater than or equal to m. But then by Lemma 1,

we can write u as the sum of 3 evil numbers greater than or equal to m, so n is the

sum of s − 1 evil numbers greater than or equal to m, a contradiction. So s is no

more than 3, as desired.

We can now prove Theorem 1.

Proof. It suffices to give a first-order definition of Ge(n). We can do this as follows:

def evilg "(Aj (j>n) => $evil123rep(2*m,j)) & ~$evil123rep(2*m,n)":

This gives a 58-state synchronized automaton computing Ge(n), which we omit

because it is too large to display compactly.

Now that we have a synchronized automaton, we can determine the asymptotic

behavior of Ge(n).

Theorem 2. We have 4m ≤ Ge(m) ≤ 6m + 7 for all m ≥ 0. These bounds are

optimal, because they are attained for infinitely many m.

Proof. We run the following Walnut commands, which all evaluate to TRUE.

eval upperb "Am,n $evilg(m,n) => n <= 6*m+7":

eval upperopt "Ai Em,n (m>i) & $evilg(m,n) & n=6*m+7":

eval lowerb "Am,n $evilg(m,n) => n >= 4*m":

eval loweropt "Ai Em,n (m>i) & $evilg(m,n) & n=4*m":

Corollary 1. We have

inf
i≥1

Ge(i)/i = 4 sup
i≥1

Ge(i)/i = 7

lim inf
i≥1

Ge(i)/i = 4 lim sup
i≥1

Ge(i)/i = 6.

The sequence (Ge(i))i≥0 has a rather erratic behavior. In particular we can prove

the following result.

Theorem 3.

(a) The difference Ge(i+ 1)−Ge(i) can be arbitrarily large.

(b) There are arbitrarily long blocks of indices on which Ge(i) is constant.
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OEIS
number n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A001969 en 0 3 5 6 9 10 12 15 17 18 20 23 24 27 29 30
A342581 Ge(n) 7 7 13 14 16 31 31 31 32 55 55 55 55 55 61 62
A000069 on 1 2 4 7 8 11 13 14 16 19 21 22 25 26 28 31
A342579 Go(n) −1 5 10 17 23 23 24 34 39 39 45 46 71 71 71 71

Table 1: The evil and odious sequences and their Frobenius numbers.

Proof. We use the following Walnut code.

eval evilgdiff "Ai Ej,m,n1,n2 (j>=i) & $evilg(m,n1) &

$evilg(m+1,n2) & n2=n1+j":

eval evalmonotone "Ai Ej,m,u (j>=i) & $evilg(m,u) &

(At,v ((t>m) & (t<m+j) & $evilg(t,v)) => u=v)":

Both return TRUE.

We can carry out exactly the same analysis for the odious numbers. The ana-

logues of Theorem 1 and Lemma 1 and 2 all hold. Here are the results.

Theorem 4. Let o = (o0, o1, o2, . . .) be the sequence of odious numbers. We have

4m ≤ Go(m) ≤ 6m− 1 for all m ≥ 1. These bounds are optimal, because they are

attained for infinitely many m.

Corollary 2. We have

inf
i≥1

Go(i)/i = 4 sup
i≥1

Go(i)/i = 6

lim inf
i≥1

Go(i)/i = 4 lim sup
i≥1

Go(i)/i = 6.

Furthermore, the analogue of Theorem 3 also holds.

The first few terms of the sequences we have discussed in this section, together

with their numbers from the On-Line Encyclopedia of Integer Sequences (OEIS)

[23], are given in Table 1.

4. Results for the Wythoff sequences

We can carry out a similar analysis for the lower and upper Wythoff sequences,

defined as follows. Here we find substantially different behavior than for the odious

and evil numbers.

https://oeis.org/A001969
https://oeis.org/A342581
https://oeis.org/A000069
https://oeis.org/A342579
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Let ϕ = (1 +
√

5)/2, the golden ratio. As usual we write bxc for the greatest

integer less than or equal to x. Define

Ln = bnϕc
Un = bnϕ2c

for n ≥ 0. Here, instead of base-2 representation, all numbers are represented in

Fibonacci representation (also called Zeckendorf representation) [12, 26]. In this

representation a number is represented as a linear combination
∑

2≤i≤t aiFi with

ai ∈ {0, 1} and subject to the condition that aiai+1 = 0. We then define (n)F =

atat−1 · · · a2 and [x]F =
∑

1≤i≤t aiFt+2−i if x = a1 · · · at. For example, (7)F = 1010

and [1010]F = 7.

The additive properties of the upper and lower Wythoff sequences were studied

previously in [11, 21]. Also see [25].

Theorem 5. The functions Ln and Un are Fibonacci synchronized.

Proof. We start by showing that the function n+ 1 is Fibonacci synchronized. We

can construct an automaton inc(x, y) that computes the relation y = x + 1 for x

and y in Fibonacci representation. Using the following easily-proven identities,

(a) [x00(10)i]F + 1 = [x0102i]F ; and

(b) [x0(01)i]F + 1 = [x0102i−1]F ,

we can obtain the incrementer depicted in Figure 1.

0

[0,0] 1
[0,1]

2

[1,1]

3[1,0]

[0,0]

[0,0]

Figure 1: Incrementer for Fibonacci representation

As an example, this automaton accepts the input [0, 1][1, 0][0, 0][1, 0]. Here the

first components spell out 0101, which represents 4 in Fibonacci representation, and
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the second components spell out 1000, which represents 5 in Fibonacci representa-

tion.

Next, we use the identities

[(n)F 0]F = b(n+ 1)ϕc − 1

[(n)F 01]F = b(n+ 1)ϕ2c − 1

for n ≥ 0, whose proof can be found, for example, in [18]. Substituting n− 1 for n,

this gives us formulas for bnϕc and bnϕ2c in terms of shifting and incrementation in

the Fibonacci representation. Shifting can be carried out using the finite automaton

in Figure 2.

q0

[0,0]

q1[0,1]
[1,0]

[1,1]

Figure 2: Synchronized automaton for the shift.

So we get synchronized automata computing Ln and Un as follows:

def lower "?msd_fib ((s=0)&(n=0)) | Et,u $fibinc(u,n) & $shift(u,t)

& $fibinc(t,s)":

def upper "?msd_fib ((s=0)&(n=0)) | Et,u,v,w $fibinc(u,n)

& $shift(u,t) & $shift(t,v) & $fibinc(v,w) & $fibinc(w,s)":

with the automata depicted in Figure 3.

Let L = (L0, L1, L2, . . .) denote the lower Wythoff sequence. Our next goal is to

prove that GL(n) is Fibonacci synchronized (that is, there is an automaton recog-

nizing the pairs (n,GL(n)) represented in the Fibonacci numeration system). We

start with some lemmas. Recall that f = (fn)n≥0 = 01001010 · · · is the Fibonacci

word [5], the fixed point of the morphism 0→ 01, 1→ 0.

Lemma 3. Let n be a positive integer. Then n is a member of the lower Wythoff

sequence (Ln)n≥1 if and only if fn−1 = 0, and n is a member of the upper Wythoff

sequence (Un)n≥1 if and only if fn−1 = 1.

Proof. See [22].
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0

[0,0]

1
[0,1] 2

[1,1]

3
[1,0]

4[0,0]

[0,1]
5

[0,0]

[0,1]

[0,1]
[1,1]

6

[0,0]

[0,1] [1,1][0,0]

0

[0,0]

1[0,1]

2

[0,0]

3

[1,0]

4

[1,0]

5
[1,1]

6[0,1]

[0,1]

7
[0,0]

[0,0]

[0,0]

[0,1]

[0,0]

Figure 3: Synchronized automata for Ln = bnϕc (top) and Un = bnϕ2c (bottom).

Lemma 4. Let n ≥ 1 be a non-negative integer linear combination of lower Wythoff

numbers greater than or equal to m. Then n can be written as the sum of either

one or two lower Wythoff numbers greater than or equal to m.

Proof. It can be carried out with Walnut in analogy with the proof of Lemma 2.

Here F[n] is Walnut’s way of expressing fn, the n’th bit of the Fibonacci word.

def lower12rep "?msd_fib Ej,k (F[j-1]=@0) & (F[k-1]=@0) &

j>=m & k>=m & (n=j|n=j+k)":

def lower3rep "?msd_fib Ej,k,l (F[j-1]=@0) & (F[k-1]=@0) &

(F[l-1]=@0) & j>=m & k>=m & l>=m & n=j+k+l":

eval lowercheck "?msd_fib Am An $lower3rep(m,n) => $lower12rep(m,n)":

We can now prove the result announced above.



INTEGERS: 21 (2021) 10

Theorem 6. The function GL(n) is Fibonacci synchronized.

Proof. We use the Walnut commands:

def lowerunrep "?msd_fib (Aj (j>n) => $lower12rep(m,j)) &

~$lower12rep(m,n)":

def lowerg "?msd_fib Et $lower(m,t) & $lowerunrep(t,n)":

This last command gives us a synchronized automaton with 24 states computing

GL(n), depicted in Figure 4.

We can now use this automaton to determine the behavior of GL(n).

Theorem 7. We have −3 ≤ GL(n) − 2Ln ≤ 1, and the upper and lower bounds

are achieved infinitely often.

Proof. We use the following Walnut commands:

eval lowerb1 "?msd_fib Am En,r $lowerg(m,n) & $lower(m,r) & n+3>=2*r":

eval lowerb2 "?msd_fib Am En,r $lowerg(m,n) & $lower(m,r) & n<=2*r+1":

eval lowerbinf1 "?msd_fib As Em,n,r (m>=s) & $lowerg(m,n) &

$lower(m,r) & n+3>=2*r":

eval lowerbinf2 "?msd_fib As Em,n,r (m>=s) & $lowerg(m,n) &

$lower(m,r) & n<=2*r+1":

and Walnut returns TRUE for all of them.

Corollary 3. We have limn→∞GL(n)/n = 1 +
√

5.
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Theorem 8. We have GL(n+ 1)−GL(n) ∈ {0, 2, 3, 5, 6, 8}, and furthermore each

difference occurs infinitely often.

Proof. We use the following Walnut commands:

eval lowerdiff "?msd_fib Am Eu,v $lowerg(m,u) & $lowerg(m+1,v)

& (v=u|v=u+2|v=u+3|v=u+5|v=u+6|v=u+8)":

def ldi "?msd_fib Am Et,u,v (t>=m) & $lowerg(t,u)

& $lowerg(t+1,v) & v=u+d":

eval lowerdiffinfcheck "?msd_fib $ldi(0) & $ldi(2) & $ldi(3) & $ldi(5)

& $ldi(6) & $ldi(8)":

and Walnut returns TRUE twice.

Theorem 9. There exists a Fibonacci automaton of 11 states computing the first

difference GL(n+ 1)−GL(n).

The automaton is depicted in Figure 5.

ε/0

0

1/51

10/2

0

100/60

101/2

1
1000/0

0

1001/5

1

1010/3
0

1

10000/3
0

0

1 10100/80

0

100001/6
1

0

1

0

Figure 5: Fibonacci automaton computing GL(n+ 1)−GL(n)

Now we turn to the upper Wythoff sequence. The results are completely analo-

gous to the results for the lower Wythoff sequence, and the proofs are also analogous.

We omit the details.

Lemma 5. Let n ≥ 1 be a non-negative integer linear combination of upper Wythoff

numbers greater than or equal to m, for m ≥ 3. Then n can be written as the sum

of either one, two, or three Wythoff numbers greater than or equal to m.

Remark 3. Lemma 5 fails for m = 2 because 8 is not the sum of one, two, or

three Wythoff numbers greater than or equal to 2, while it is the sum of four (since

8 = 2 + 2 + 2 + 2).

Theorem 10. Let U = (U0, U1, U2, . . .) denote the upper Wythoff sequence. The

function GU(n) is Fibonacci synchronized.
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OEIS
number n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A000201 Ln 0 1 3 4 6 8 9 11 12 14 16 17 19 21 22
A342715 GL(n) −1 −1 5 7 13 15 15 20 23 26 31 31 39 41 41
A001950 Un 0 2 5 7 10 13 15 18 20 23 26 28 31 34 36
A342716 GU(n) −1 3 16 19 42 42 42 55 58 76 79 79 110 110 110

Table 2: The lower and upper Wythoff sequences and their Frobenius numbers.

Theorem 11. We have −5 ≤ GU(n)−3Un ≤ 20, and these upper and lower bounds

are achieved infinitely often.

Corollary 4. We have limn→∞GU(n)/n = (9 + 3
√

5)/2.

Theorem 12. We have GU(n + 1) − GU(n) ∈ {0, 3, 5, 8, 11, 13, 18, 21, 23, 26, 31}
for n ≥ 1, and furthermore each difference occurs infinitely often.

Theorem 13. There exists a Fibonacci automaton computing the first difference

GU(n+ 1)−GU(n).

The first few terms of the sequences we have discussed in this section, together

with their numbers from the OEIS, are given in Table 2.

5. A Counterexample Sequence

In all of the examples we have seen so far, if a sequence had automatic characteristic

sequence, then the characteristic sequence of the associated Frobenius sequence was

also automatic. It is natural to conjecture this might always be the case. However,

we now prove the following result.

Theorem 14. Let si = 2i + 1 for i ≥ 0 and s = (si)i≥0. Then Gs(i) = 22i + 2i + 1

for i ≥ 1.

Proof. It suffices to prove that 22i + 2i + 1 cannot be written as a non-negative

integer linear combination of 2i + 1, 2i+1 + 1, . . . 22i + 1, while every larger integer

can be so expressed.

Suppose 22i + 2i + 1 = a0(2i + 1) + a1(2i+1 + 1) + · · ·+ ai(2
2i + 1) with a0, . . . , ai

non-negative integers. Considering both sides modulo 2i, we see the left-hand side

is 1, while the right-hand side is a0 + a1 + · · ·+ ai. So either a0 + a1 + · · ·+ ai = 1

or a0 +a1 + · · ·+ai ≥ 2i+ 1. In the former case we would have 22i+ 2i+ 1 = 2j + 1

for some j, i ≤ j ≤ 2i, which is clearly impossible. In the latter case we would have

22i + 2i + 1 = a0(2i + 1) + a1(2i+1 + 1) + · · ·+ ai(2
2i + 1)

≥ (a0 + a1 + · · ·+ ai)(2
i + 1) ≥ (2i + 1)2,

https://oeis.org/A000201
https://oeis.org/A342715
https://oeis.org/A001950
https://oeis.org/A342716
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which is also impossible. This shows 22i + 2i + 1 is not representable.

We now argue that if 22i+2i+1 < x ≤ 22i+2i+1+2, then x has a representation.

This suffices to show that all x > 22i + 2i + 1 are representable, because this

range contains 2i + 1 consecutive integers, and any x > 22i + 2i+1 + 2 can then be

represented by adding the appropriate multiple of 2i + 1.

Given a particular linear combination

x = a0(2i + 1) + a1(2i+1 + 1) + · · ·+ ai(2
2i + 1),

call its weight a0 + · · ·+ ai. We now repeat the following transformation: given a

linear combination x = a0(2i + 1) + · · ·+ ai(2
2i + 1), find the largest nonzero aj in

the combination. Then form the linear combination of x+ 1 by adding 2 · (2j−1 +

1) − (2j + 1) = 1 to the representation for x. Doing so increases the weight of the

linear combination by 1, because we add 2 to one coefficient and subtract 1 from

another.

Now let us start the process with the number (22i + 1) + (2i + 1), which has a

representation of weight 2. When we carry out the transformation of the previous

paragraph once, the 1 coefficient of 22i+1 in the linear combination disappears and

a 2 appears as the coefficient of 22i−1 + 1. Doing it twice more causes this 2 to

disappear, and a 4 appears as the coefficient of 22i−2 + 1. This process continues

for a total of 1 + 2 + 4 + · · · + 2i−1 = 2i − 1 times, eventually resulting in the

representation 22i+2i+2+2i−1 = 22i+2i+1 +1 as (2i+1)(2i+1) of weight 2i+1.

Finally, 22i + 2i+1 + 2 has the representation (22i + 1) + (2i+1 + 1). This gives us

2i + 1 consecutive representable numbers, as desired, and completes the proof.

We have now shown that Gs(i) = 22i+ 2i+ 1 for i ≥ 1. Hence we get our desired

counterexample: the characteristic sequence of (2i + 1)i≥0 is automatic, as the set

of its base-2 representations is specified by the regular expression 10∗1. But the

characteristic sequence of (Gs(i))i≥1 = (22i + 2i + 1)i≥1 is not automatic, as the

set of its base-2 representations is of the form {10i10i1 : i ≥ 0}, which can easily

be seen to be non-regular using a standard tool from formal language theory called

the pumping lemma [10, Lemma 3.1].

Remark 4. Theorem 14, in more generality, was stated in a recent paper of Song

[24]. However, the proof was omitted there, so we give it here.

6. Concluding remarks

We conjecture that the analogue of Corollary 3 holds for all Beatty sequences.

For other results of additive number theory based on automata theory, see [15].

All the Walnut code we used is available from the author’s website, https:

//cs.uwaterloo.ca/~shallit/papers.html. For Walnut itself, see https://cs.

https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/walnut.html
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uwaterloo.ca/~shallit/walnut.html.

I am grateful to the referee for pointing out several mistakes in the original draft.
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