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Abstract

We prove new exact formulas for the generalized sum-of-divisors functions, σα(x) :=∑
d|x d

α, for fixed α ∈ R and any integers x ≥ 1. The formulas for σα(x) involve
finite sums over the primes p ≤ x with terms involving the r-order harmonic number

sequences, H
(r)
n :=

∑n
k=1 k

−r, and the Ramanujan sums, cd(x) :=
∑
r|(d,x) rµ(d/r).

We focus on the computational aspects of the resulting exact expressions with em-
phasis on obtaining new, and more precise asymptotic properties satisfied by the
scaled summatory functions

∑
n≤x σα(n)n−β for integers α > 1 and 2 ≤ β ≤ α.

1. Introduction

We begin our search for interesting formulas for the generalized sum-of-divisors

functions, σα(x) for α ∈ R, by expanding the partial sums of the Lambert series

which generate these functions in the form of [6, §17.10] [13, §27.7]

Lα(q) :=
∑
n≥1

nαqn

1− qn
=
∑
m≥1

σα(m)qm, α ∈ R, |q| < 1. (1)

We find new expansions of the partial sums of Lambert series generating functions

in Equation (1) which generate our special arithmetic functions as

σα(x) = [qx]

(
x∑
n=1

nαqn

1− qn

)
=
∑
d|x

dα, x ≥ 1, α ∈ Z+ ∪ {0}. (2)

The identity in Equation (2) is proved by evaluating the series coefficients of the

Lambert series expansions in Equation (1) considering expansions of the truncated

generating function series, each scaled by a factor of qn.

The formulas we arrive at to express σα(x) when x ≥ 1 involving sums over prime

powers pk ≤ x follow from repeated use of properties of the sequence of cyclotomic
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polynomials, Φn(q). For n ≥ 1 and any indeterminate q ∈ C, these polynomials are

defined by (see [4, §3] and [10, §13.2])

Φn(q) :=
∏

1≤k≤n
(k,n)=1

(
q − e2πı kn

)
. (3)

For each integer n ≥ 1 we have an initial insight provided by the factorizations

qn − 1 =
∏
d|n

Φd(q). (4)

Equivalently we have that

Φn(q) =
∏
d|n

(qd − 1)µ(n/d), (5)

where µ(n) denotes the Möbius function.

If n = pmr with p prime and (p, r) = 1, we have the identity that Φn(q) =

Φpr(q
pm−1

). In later results stated and proved within the article, we use the next

few known expansions of the cyclotomic polynomials which reduce the order n of

the polynomials by exponentiation of the indeterminate q when n contains a factor

of a prime power. A short list summarizing these transformation properties is given

as follows for p an odd prime, integers r, k ≥ 1, and where p - r:

Φ2p(q) = Φp(−q),Φpk(q) = Φp

(
qp
k−1
)
,Φpkr(q) = Φpr

(
qp
k−1
)
,Φ2k(q) = q2k−1

+1.

(6)

The next definitions expand our Lambert series generating functions further by

factoring its terms by the cyclotomic polynomials1.

Definition 1.1 (Notation and logatithmic derivatives). For n ≥ 2 and an indeter-

minate q, we define the following rational functions of q related to the logarithmic

derivatives of the cyclotomic polynomials:

Πn(q) :=

n−2∑
j=0

(n− 1− j)qj(1− q)
(1− qn)

=
(n− 1)− nq − qn

(1− q)(1− qn)
(7)

Φ̃n(q) :=
1

q
· d
dw

[log Φn(w)]
∣∣∣
w→ 1

q

.

For any natural number n ≥ 2 and prime p, we use νp(n) to denote the largest

power of p dividing n. If p - n, then νp(n) = 0 and if n = pγ11 p
γ2
2 · · · p

γk
k denotes the

1Iverson’s convention compactly specifies boolean-valued conditions and is equivalent to the
Kronecker delta function, δi,j , as [n = k]δ ≡ δn,k. Similarly, [cond]δ ≡ δcond,True ∈ {0, 1}, which is
1 if and only if the boolean-valued predicate cond is true, and 0 otherwise.
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prime factorization of n then νpi(n) = γi. That is, νp(n) is the valuation function

indicating the exact non-negative exponent of the prime p dividing any n ≥ 2 so

that νp(n) = α if and only if pα||n. In the notation that follows, we consider sums

indexed by p to be summed over only the primes. Finally, we define the function

χ̃PP(n) 7→ {0, 1} to denote the indicator function of the positive natural numbers n

which are not of the form n = pk, 2pk for any primes p and exponents k ≥ 1.

n Series Term Expansions
(
nqn

1−qn + n− 1
1−q

)
Formula
Expansions

Reduced-Index
Formula

2 1
1+q Φ̃2(q) --

3 2+q
1+q+q2 Φ̃3(q) --

4 1
1+q + 2

1+q2 Φ̃2(q)+Φ̃4(q) Φ̃2(q)+2Φ̃2(q2)

5 4+3q+2q2+q3

1+q+q2+q3+q4 Φ̃5(q) --

6 1
1+q + 2−q

1−q+q2 + 2+q
1+q+q2 Φ̃2(q)+Φ̃3(q)+Φ̃6(q) --

7 6+5q+4q2+3q3+2q4+q5

1+q+q2+q3+q4+q5+q6 Φ̃7(q) --

8 1
1+q + 2

1+q2 + 4
1+q4 Φ̃2(q)+Φ̃4(q)+Φ̃8(q) Φ̃2(q)+2Φ̃2(q2)+4Φ̃2(q4)

9 2+q
1+q+q2 +

3(2+q3)
1+q3+q6 Φ̃3(q)+Φ̃9(q) Φ̃3(q)+3Φ̃3(q2)

10 1
1+q + 4−3q+2q2−q3

1−q+q2−q3+q4 + 4+3q+2q2+q3

1+q+q2+q3+q4 Φ̃2(q)+Φ̃5(q)+Φ̃10(q) --

11 10+9q+8q2+7q3+6q4+5q5+4q6+3q7+2q8+q9

1+q+q2+q3+q4+q5+q6+q7+q8+q9+q10 Φ̃11(q) --

12 1
1+q + 2

1+q2 + 2−q
1−q+q2 + 2+q

1+q+q2 −
2(−2+q2)
1−q2+q4 Φ̃2(q)+Φ̃3(q)+Φ̃4(q) Φ̃2(q)+2Φ̃2(q2)+Φ̃3(q)

+Φ̃6(q)+Φ̃12(q) +Φ̃6(q)+2Φ̃6(q)

13 12+11q+10q2+9q3+8q4+7q5+6q6+5q7+4q8+3q9+2q10+q11

1+q+q2+q3+q4+q5+q6+q7+q8+q9+q10+q11+q12 Φ̃13(q) --

14 1
1+q + 6−5q+4q2−3q3+2q4−q5

1−q+q2−q3+q4−q5+q6 + 6+5q+4q2+3q3+2q4+q5

1+q+q2+q3+q4+q5+q6 Φ̃2(q)+Φ̃7(q)+Φ̃14(q) --

15 2+q
1+q+q2 + 4+3q+2q2+q3

1+q+q2+q3+q4 + 8−7q+5q3−4q4+3q5−q7
1−q+q3−q4+q5−q7+q8 Φ̃3(q)+Φ̃5(q)+Φ̃15(q) --

16 1
1+q + 2

1+q2 + 4
1+q4 + 8

1+q8 Φ̃2(q)+Φ̃4(q)+Φ̃8(q)+Φ̃16(q) Φ̃2(q)+2Φ̃2(q2)+4Φ̃2(q4)+8Φ̃2(q8)

Table 1: Expansions of Lambert series terms by cyclotomic polynomial
primitives. The double dashes (--) in the rightmost column of the
table indicate that the entry is the same as the previous column to
distinguish between the cases where we apply our special case
reduction formulas.

To provide intuition behind the factorizations of the terms in our Lambert se-

ries generating functions defined above, the listings in Table 1 provide the first

several expansions of the right-hand-side of the next equations. These expanded

and factored terms are generated with Mathematica according to applications of

the identities in Equation (6). The components highlighted by the examples in the

table form the key terms of our new exact formula expansions. Notably, we see that
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we may write the expansions of the individual Lambert series terms as follows:

qn

1− qn
= −1 +

1

n(1− q)
+

1

n

∑
d|n
d>1

Φ̃d(q), n ≥ 2. (8)

We can reduce the index orders of the cyclotomic polynomials, Φn(q), and their

logarithmic derivatives, denoted by Φ̃d(q), in terms of lower-indexed cyclotomic

polynomials with q transformed into powers of q raised to powers of primes, as qp
k

(see [4, cf. §3] and [10, cf. §13.2]).

Remark 1.2 (Experimental intuition for the new formulas). We begin by observing

that the start of the formulas proved in Section 2 (stated precisely below) were

initially recognized by experimentally factoring the exact polynomial expansions of

the Lambert series terms qn

1−qn . Namely, the computer algebra routines employed

by default in Mathematica are able to produce the already suggestive semi-factored

output reproduced in Table 1 (cf. Section 1.2). The third and fourth columns

of Table 1 naturally suggest by computation the exact forms of the (logarithmic

derivative) polynomial expansions we are looking for to expand our Lambert series

terms. The observation of these trends in the polynomial factorizations of 1 − qn
into products of irreducible polynomials led to the intuition motivating our new

results proved rigorously in the next sections of this article.

1.1. Statements of Key Results and Characterizations

Definition 1.3 (Notation for component divisor sums). For fixed q and any n ≥ 1,

we define the component sums, S̃i,n(q) for i = 0, 1, 2, as follows:

S̃0,n(q) =
∑
d|n
d>1

d6=pk,2pk

Φ̃d(q)

S̃1,n(q) =
∑
p|n

Πpνp(n)(q)

S̃2,n(q) =
∑
2p|n
p>2

Πpνp(n)(−q).

We use the following notation for the generalized α-order harmonic number se-

quences to state our next few results:

H(α)
n :=

n∑
k=1

k−α, n ≥ 0, α ∈ R.

The generalized harmonic number sequences correspond to the partial sums of the

Riemann zeta function ζ(α) when α > 1 and are related to generalized Bernoulli

numbers and polynomials when α ≤ 0 is integer-valued.
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Proposition 1.4 (Series coefficients of the component sums). For any fixed α ∈ R
and integers x ≥ 1, we have the following component sum expressions:

Ŝ
(α)
0 (x) := [qx]

x∑
n=1

S̃0,n(q)nα−1 =: τα(x) (i)

Ŝ
(α)
1 (x) := [qx]

x∑
n=1

S̃1,n(q)nα−1

=
∑
p≤x

νp(x)+1∑
k=1

pαk−1H
(1−α)⌊
x

pk

⌋ (p⌊ x
pk

⌋
− p

⌊
x

pk
− 1

p

⌋
− 1

)
(ii)

Ŝ
(α)
2 (x) := [qx]

x∑
n=1

S̃2,n(q)nα−1

=
∑

3≤p≤x

νp(x)+1∑
k=1

pαk−1

21−α H
(1−α)⌊
x

2pk

⌋(−1)

⌊
x

pk−1

⌋(
p

⌊
x

pk

⌋
− p

⌊
x

pk
− 1

p

⌋
− 1

)
.

(iii)

The precise form of the expansions in (i) of the previous proposition, denoted

by τα(x), and its particular natural connection to the Ramanujan sums, cq(n), is

explored by the results stated in Proposition 2.3 of the next section.

Theorem 1.5 (Exact formulas for the generalized sum-of-divisors functions). For

any fixed α ∈ R and natural numbers x ≥ 1, the following formula holds:

σα(x) = H(1−α)
x + Ŝ

(α)
0 (x) + Ŝ

(α)
1 (x) + Ŝ

(α)
2 (x).

While our new exact sum formulas in Theorem 1.5 are deeply tied to the distri-

bution of the prime numbers p ≤ x for any large x, we observe that the expansions

of sums for the divisor function special case given in the references (see [7, §9; p.

141] and [2]) are of a much more distinctive character than our new exact finite

sum formulas proved by the theorem. We also recall the following prime product

formula expansion that classically characterizes these multiplicative functions for

comparision (cf. [13, §27.3] and [6, §16.7]):

σα(n) =
∏
pγ ||n

(
p(γ+1)α − 1

pα − 1

)
, n ≥ 1, α ∈ R.

We next have a few remarks about symmetry in the identity from the theorem in

the context of negative-order divisor functions of the form

σ−α(x) =
∑
d|x

d−α =
∑
d|x

(x
d

)−α
=
σα(x)

xα
, x ≥ 1, α ≥ 0. (9)
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For integers α ∈ Z+ ∪ {0}, we can express sums corresponding to the so-called

negative-order harmonic numbers, H
(−α)
n , in terms of the generalized Bernoulli

numbers (polynomials) by Faulhaber’s formula in the following forms:

n∑
m=1

mα =
1

α+ 1
(Bα+1(n+ 1)−Bα+1)

=
1

(α+ 1)

α∑
j=0

(
α+ 1

j

)
Bj · nα+1−j . (10)

Since the convolution formula in equation (9) above proves that σ−β(n) = σβ(n) ·
n−β whenever β > 0, we also expand the right-hand-side of the theorem in the

symmetric form of

σα(x) = xα
(
H(α+1)
x + τ−α(x) + Ŝ

(−α)
1 (x) + Ŝ

(−α)
2 (x)

)
, α > 0.

In particular, we are able to restate Proposition 1.4 and Theorem 1.5 together in the

following alternate form where cd(x) denotes a Ramanujan sum (see Proposition

2.3):

Theorem 1.6 (Symmetric Forms of the Exact Formulas). For any fixed α ∈ R and

integers x ≥ 1, we have the following formulas:

Ŝ
(−α)
0 (x) =

x∑
d=1

H
(α+1)

b xdc
· cd(x)

dα+1
· χPP(d) (i)

Ŝ
(−α)
1 (x) =

∑
p≤x

νp(x)∑
k=1

(p− 1)

pαk+1
H

(α+1)⌊
x

pk

⌋ − 1

pα·νp(x)+α+1
H

(α+1)⌊
x

p
νp(x)+1

⌋
 (ii)

Ŝ
(−α)
2 (x) =

(−1)x

2α+1

∑
p≤x

νp(x)∑
k=1

(p− 1)

pαk+1
H

(α+1)⌊
x

2pk

⌋ − 1

pα·νp(x)+α+1
H

(α+1)⌊
x

2p
νp(x)+1

⌋
 . (iii)

The generalized sum-of-divisors functions are then expanded in the following form:

σα(x) = xα
(
H(α+1)
x + Ŝ

(−α)
0 (x) + Ŝ

(−α)
1 (x) + Ŝ

(−α)
2 (x)

)
. (11)

We notice that the symmetric form of the identity given in Theorem 1.6 provides

a curious, and necessarily deep, relation between the Bernoulli numbers and the

partial sums of the Riemann zeta function involving the nested sums over the primes.

It also leads to a direct proof of the known asymptotic results for the summatory

functions [13, §27.11]∑
n≤x

σα(n) =
ζ(α+ 1)

α+ 1
xα+1 +O

(
xmax(1,α)

)
, α > 0, α 6= 1. (12)
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We will explore this direct proof based on Theorem 1.6 in more detail as an ap-

plication given in Section 3. The new results in the two theorems also identify a

method by which we can sum the left-hand-side of Equation (12) using a heuristic

on the distribution of νp(n) for p ≤ n ≤ x.

1.2. Supplementary computational data reference

A Mathematica notebook containing definitions that can be used to computationally

verify the formulas proved in this manuscript is made freely available to readers

online at the following link:

https://github.com/maxieds/ManuscriptComputationalData/blob/master/

sod-formulas-updated.nb.

The functional definitions provided in this notebook are intended to be of use to

readers for experimental mathematics based on the contents of this article. Without

this computationally driven means motivating our experimental work with new

polynomial expansions involving the generating functions of these special classical

functions, we would most likely never have noticed these subtle new formulas for

the often studied classical sum-of-divisors functions.

2. Proofs of Our New Results

2.1. Motivating the Proof of the New Formulas

Example 2.1. We first revisit a computational example of the rational functions

defined by the logarithmic derivatives in Definition 1.1 that is illustrated in the

computations in Table 1. We will make use of the next variant of the identity in

Equation (4) in the proof below which is again obtained by Möbius inversion:

Φn(q) =
∏
d|n

(qd − 1)µ(n/d). (13)

In the case of our modified rational cyclotomic polynomial functions, Φ̃n(q), when

n := 15, we use this product to expand the definition of the function as

Φ̃15(q) =
1

q
· d
dq

[
log

(
(1− q3)(1− q5)

(1− q)(1− q15)

)]∣∣∣∣∣
q→1/q

=
3

1− q3
+

5

1− q5
− 1

1− q
− 15

1− q15

=
8− 7q + 5q3 − 4q4 + 3q5 − q7

1− q + q3 − q4 + q5 − q7 + q8
.

The procedure for transforming the difficult-looking terms involving the cyclotomic

polynomials when the Lambert series terms, qn · (1− qn)−1, are expanded in partial

https://github.com/maxieds/ManuscriptComputationalData/blob/master/sod-formulas-updated.nb
https://github.com/maxieds/ManuscriptComputationalData/blob/master/sod-formulas-updated.nb
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fractions as in Table 1 is essentially the same as this example for the cases we will

encounter here. More generally, we have the next lemma for any n ≥ 1.

Lemma 2.2 (Key characterizations of the divisor sums, τα(x)). For integers n ≥ 1

and any indeterminate q that is not a dth root of unity for any of the divisors d of

n, we have the following expansion:

Φ̃n(q) =
∑
d|n

d · µ(n/d)

(1− qd)
.

In particular, we have that

S̃0,n(q) =
∑
d|n

∑
r|d

r · χ̃PP(d) · µ(d/r)

(1− qr)
.

Proof. The proof is essentially the same as the example given above. Since we can

refer to this illustrative example, we only need to sketch the details to the remainder

of the proof. In particular, we notice that since we have the known identity for the

cyclotomic polynomials given by Equation (13), we can take logarithmic derivatives

to obtain that

1

x
· d
dq

[
log
(
1− qd

)±1
]∣∣∣∣∣
q→1/q

= ∓ d

qd
(

1− 1
qd

) = ± d

1− qd
,

where for d|n and n
d not squarefree, we have that the resulting terms log(1) = 0

vanish. This observation applied iteratively leads us to conclude the result.

Proposition 2.3 (Connections to Ramanujan sums). Let the following notation

denote a shorthand for the divisor sum terms in Theorem 1.5:

τα(x) := Ŝ
(α)
0 (x) = [qx]

x∑
n=1

S̃0,n(q)nα−1, x ≥ 1, α ∈ R.

We have the following characterizations of the function τα(x) expanded in terms
of Ramanujan’s sum, cq(n), where µ(n) denotes the Möbius function and ϕ(n) is
Euler’s totient function:

τα+1(x) =

x∑
d=1
d 6=pk

H
(−α)
b xd c

· dα · cd(x), x ≥ 1, α ∈ R

τα+1(x) =

x∑
d=1
d 6=pk

H
(−α)
b xd c

· dα · µ
(

d

(d, x)

)
ϕ(d)

ϕ
(

d
(d,x)

) , x ≥ 1, α ∈ R,

τ−α(x) =
∑
d≤x

H
(α+1)

b xd c
· cd(x)

dα+1
−
∑
pk|x
pk≤ x

p

H
(α+1)⌊
x
pk

⌋ · (p− 1)

pαk+1
+
∑
pk≤x
pk> x

p

H
(α+1)⌊
x
pk

⌋ · p−k, x ≥ 1, α ∈ R.
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Proof. First, we observe that the contribution of the first (zero-indexed) sums in

Theorem 1.5 correspond to computing the coefficients

τα+1(x) = [qx]

 x∑
k=1

∑
d|k
d6=ps

∑
r|d

r · µ(d/r)

(1− qr)
kα


=

x∑
k=1

∑
r|x

∑
d|k
d 6=ps

r · µ(d/r) · [r|d]δ · k
α

=

x∑
k=1

∑
d|k
d 6=ps

∑
r|(d,x)

r · µ(d/r) · kα.

Since we can easily prove the identity that [1, cf. §2.14; §3.10; §3.12]

x∑
k=1

∑
d|k

f(d)g(k/d) =

x∑
d=1

f(d)

b xdc∑
k=1

g(k)

 , x ≥ 1,

for any fixed arithmetic functions f and g, we can also expand the right-hand-side

of the previous equation for τα+1(x) as follows:

τα+1(x) =

x∑
d=1
d6=pk

 ∑
r|(d,x)

rµ(d/r)

H
(−α)

b xdc
· dα. (14)

Thus the identities stated in the proposition follow by expanding out Ramanujan’s

sum in the form of the divisor sums (see [13, §27.10], [12, §A.7] and [6, cf. §5.6])

cq(n) =
∑
d|(q,n)

d · µ(q/d), for n, q ∈ Z+.

The last identity stated in this proposition follows from the first by re-writing the

formula for cd(x) at prime powers pd given in cases by the formulas

cpd(n) =


0, if pd−1 - n;

−pd−1, if pd−1 | n ∧ pd - n;

pd − pd−1, if pd | n ∧ pd+1 | n.

The last set of identities in the proof above implies that with k ≈ logp(x) on the

last terms, we have that

τα+1(x) =
∑
pk≤x
pk≤ xp

H
(α+1)⌊
x

pk

⌋ · (p− 1)

pαk+1
+O

(
1

x

)
.
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Remark 2.4. Ramanujan’s sum satisfies the upper bound that |cq(n)| ≤ (n, q) for

all n, q ≥ 1. This known bound can be used to obtain asymptotic estimates in the

form of upper bounds for these sums when q is not prime or a prime power. For

positive integers n, q ≥ 1, Ramanujan’s sum also has the following representation

as a finite degree exponential sum:

cq(n) =
∑
d|q

[
d∑
k=1

exp

(
2πı · kn

d

)]
µ
( q
d

)
, for n, q ∈ Z+.

This formula for cq(n) is related to periodic exponential sums (modulo k) of the

more general form

sk(n) =
∑
d|(n,k)

f(d)g

(
k

d

)
.

The functions sk(n) are periodic in n (modulo k) with a finite Fourier series expan-

sion

sk(n) =

k∑
m=1

ak(m)e2πın/k,

and coefficients given by the auxiliary divisor sums [13, §27.10]

ak(m) =
∑

d|(m,k)

g(d)f

(
k

d

)
d

k
.

It turns out that the terms in the formulas for σα(x) represented by the sums τα(x)

from Theorem 1.5 and Theorem 1.6 provide detailed insight into the error estimates

for the summatory functions over the generalized sum-of-divisors functions. We use

these resulting estimates in proving the main applications in Section 3.

2.2. Proofs of the Key New Theorems and Results

Proof of Theorem 1.5. We begin with the divisor product formula from Equation

(4) involving the cyclotomic polynomials when n ≥ 1 and q is fixed. Then by

logarithmic differentiation we can see that

qn

1− qn
= −1 +

1

n(1− q)
+

1

n

∑
d|n
d>1

Φ̃d(q) (15)

= −1 +
1

n(1− q)
+

1

n

(
S̃0,n(q) + S̃1,n(q) + S̃2,n(q)

)
.

The last equation is obtained from the first expansion in Equation (15) above by

identifying the next two sums as

Πn(q) =
∑
d|n
d>1

Φ̃n(1/q) =

n−2∑
j=0

(n− 1− j)qj(1− q)
1− qn

.
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Here we are applying the known expansions of the cyclotomic polynomials which

condense the order n of the polynomials by exponentiation of the indeterminate

q when n contains a factor of a prime power given by Equation (6). Finally, we

complete the proof by summing the right-hand-side of Equation (15) over n ≤ x

times the weight nα to obtain the xth partial sum of the Lambert series gener-

ating function for σα(x) (cf. [6, §17.10] and [13, §27.7]). Since each term in the

summation contains a power of qn, replacing the infinite Lambert series generating

function sums by this partial summation expression forms an (x+1)-order accurate

generating series for the terms in the infinite series.

Proof of Proposition 1.4. The identity in (i) follows from Lemma 2.2. Since Φ2p(q) =

Φp(−q) for any prime p > 2, we are essentially in the same case with the two com-

ponent sums in (ii) and (iii). We outline the proof of our expansion for the first sum,

S̃1,n(q), and note the small changes necessary along the way to adapt the proof to

the other sum cases. By the properties of the cyclotomic polynomials expanded in

Equation (6), we may factor the denominators of Πpνp(n)(q) into smaller irreducible

factors of the same polynomial, Φp(q), with inputs varying as prime-power powers

of the series variable q. More precisely, we define the functions

Q
(n)
p,k(q) :=

p−2∑
j=0

(p− 1− j)qpk−1j

p−1∑
i=0

qpk−1i

,

and use them to expand the sums

S̃1,n(q) =
∑
p≤n

νp(n)∑
k=1

Q
(n)
p,k(q) · pk−1.

In evaluating the coefficients of powers of q in the sum
∑
n≤xQ

(n)
p,k(q)pk−1nα−1,

these terms have a repeat coefficient, every pk terms, so that we can form the

coefficient sums for these terms as follows:⌊
x

pk

⌋∑
i=i

(
ipk
)α−1 · pk−1 = pkα−1 ·H(1−α)⌊

x

pk

⌋ .
We can also compute the inner sums in the previous equations exactly for any fixed

t as
p−2∑
j=0

(p− 1− j)tj =
(p− 1)− pt− tp

(1− t)2
,

where the corresponding paired denominator sums in these terms are given by

1 + t + t2 + · · · + tp−1 = (1 − tp) · (1 − t)−1. We now assemble the full sum
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over n ≤ x as

∑
n≤x

S̃1,n(q) · nα−1 =
∑
p≤x

νp(x)∑
k=1

pkα−1H
(1−α)⌊
x

pk

⌋ (p− 1)− pqpk−1

+ qp
k

(1− qpk−1)(1− qpk)
.

The analogous result for the second sum cases is obtained similarly with the excep-

tion of sign changes on the coefficients of the powers of q in the last expansion.

We compute the series coefficients of one of the three cases in the last equation

to show our method of obtaining the full formula with the remaining two sum cases.

The right-most term in these expansions leads to the double sum

C3,x,p := [qx]
qp
k

(1∓ qpk−1)(1∓ qpk)

= [qx]
∑
n,j≥0

(±1)n+jqp
k−1(n+p+jp).

We must have that pk−1|x in order to have a non-zero coefficient and for n :=

x/pk−1 − jp − p with 0 ≤ j ≤ x/pk − 1. We can then compute these coefficients

explicitly as

C3,x,p := (±1)bx/p
k−1c ×

bx/pk−1c∑
j=0

1 = (±1)bx/p
k−1c

⌊
x

pk
− 1

⌋
+ 1 = (±1)bx/p

k−1c
⌊
x

pk

⌋
.

With minimal simplifications we have arrived at the claimed result in the proposi-

tion. The other two cases of the series coefficient computations follow similarly.

Proof of Theorem 1.6. Since we first have that Equation (9) holds for any α ≥ 0, we

can see that the formula in Equation (11) follows immediately from Theorem 1.5. It

remains to prove the subformulas in tagged equations (i)–(iii) of the theorem. The

first formula for S
(−α)
0 (x) corresponds to the formulas we derived in Proposition 2.3

of the previous subsection for these cases of negative-order α. The second two

formulas follow from Proposition 1.4 by expanding the cases of the floor function

inputs according to the inner index k in the ranges k ∈ [1, νp(x)], i.e., where x/pk ∈
Z+, and then in the single index case where k := νp(x) + 1.

3. Applications to New Asymptotics for Power Scaled Partial Sums of
the Generalized Sum-of-divisor Functions

We can use the new exact formula proved by Theorem 1.5 to asymptotically estimate

partial sums, or average orders, of the respective arithmetic functions, of the next
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form for integers x ≥ 1:

Σ(α,β)(x) :=
∑
n≤x

σα(n)

nβ
, α, β ≥ 0. (16)

We similarly define Σα(x) := Σ(α,0)(x) using the notation in Equation (16). In

the special cases where α := 0, 1, we restate a few more famous formulas providing

classically well-known (and newer established) asymptotic bounds for sums of this

form as follows where γ ≈ 0.577216 is Euler’s gamma constant, d(n) ≡ σ0(n)

denotes the divisor function, and σ(n) ≡ σ1(n) is the (ordinary) sum-of-divisors

function (see [9, 2, 8] and [13, cf. §27.11]):

Σ0(x) :=
∑
n≤x

d(n) = x log x+ (2γ − 1)x+O
(
x

131
416

)
(17)

Σ(0,1)(x) :=
∑
n≤x

d(n)

n
=

1

2
(log x)2 + 2γ log x+O

(
x−2/3

)
Σ1(x) :=

∑
n≤x

σ(n) =
π2

12
x2 +O(x log2/3 x).

We can extend the known classical result for the sums Σα(x) given by Equation (12)

and for the special cases in Equation (17) to the cases of the modified summatory

functions Σ(α,β)(x) using the new formulas proved in Theorem 1.6. The next result

provides the precise details of the limiting asymptotic relations we obtain for the

sums Σ(α,β)(x) over some restricted integer-order cases of (α, β) ∈ Z+×Z+ that arise

in applications. The new results in Theorem 3.1 provide lower-order polynomial

terms in the expansions of Σ(α,β)(x) for integers α ≥ 2 and 2 ≤ β ≤ α.

Theorem 3.1 (Asymptotics for Summatory Functions). For integers α > 1 and

integer-valued 2 ≤ β ≤ α, we have that

Σ(α,β)(x) =
ζ(α+ 1)xα+1−β

(α+ 1− β)
(1− C1(α) + C2,0(α) + C3(α) + C6(β) + C7,0(α))

+

α−β∑
j=1

(
α+ 1− β

j

)
Bjx

α+1−β−j

α+ 1− β
(1 + C2,j(α) + C7,j(α))

+

α−β∑
j=0

C4,j(α, β)ζ(α+ 1)xj

+

α−β∑
j=0

(
α− β
j

)
C5(α, β)(−1)α−β−jEj

22α+2−β +O

(
x

log x

)
,

where Bn is a Bernoulli number and En denotes an Euler number. The parame-

terized absolute constants (depending only on α, β and m, respectively) in the last
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expression are defined by the sums

C1(α) :=
∑
p≥2

(p− 2)

p(p− 1)(pα+1 − 1)

[
(p− 1)

p(pα − 1)
− 1

pα

]

C2,m(α) :=
∑
p≥2

(p− 1)

pα+2−m(pα − 1)

C3(α) :=
∑
p≥3

(p− 2)

2α+1p(p− 1)(pα+1 − 1)

[
(p− 1)

p(pα − 1)
− 1

pα

]

C4,m(α, β) :=
∑
p≥2

α−β∑
k=0

(
α− β
k

)(
α− β − k

m

)
(−1)k+mEk · (p− 1)

22α+2−β−mpβ+1+m(pα − 1)

C5(α, β) :=
∑
p≥2

(p− 1)

pβ+1(pα − 1)

C6(β) :=
∑
p≥2

(p− 2)

p(p− 1)(pβ+1 − 1)

C7,m(α) := −
∑
p≥2

1

pα+1−m .

Lemma 3.2. For any arithmetic functions f, g, h : N → C, and natural numbers

x ≥ 1, we have the following pair of divisor sum summatory function identities:

x∑
n=1

f(n)
∑
d|n

g(d)h
(n
d

)
=
∑
d≤x

g(d)

b xdc∑
n=1

h(n)f(dn)

x∑
d=1

f(d)

 ∑
r|(d,x)

g(r)h

(
d

r

) =
∑
r|x

g(r)

 ∑
1≤d≤x/r

h(d)f(rd)

 .

Since the proofs of these identities are not difficult, and are in fact fairly standard

exercises, we will not prove the two formulas from Lemma 3.2 here.

Proof of Theorem 3.1. We decompose the proof into four separate tasks of estimat-

ing the component term sums from Theorem 1.6. We will evaluate the limiting

asymptotics for each of the next summations:

Σ0
α,β(x) :=

∑
n≤x

nα−β ×H(α+1)
n (Step I)

Σ′α,β(x) :=
∑
n≤x

nα−β · S(−α)
1 (n) (Step II)

Σ′′α,β(x) :=
∑
n≤x

nα−β · S(−α)
2 (n) (Step III)
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Σ′′′α,β(x) :=
∑
n≤x

τ−α(n)nα−β . (Step IV)

The combined approximation we obtain is then given in terms of this notation by

Σ(α,β)(x) = Σ0
α,β(x) + Σ′α,β(x) + Σ′′α,β(x) + Σ′′′α,β(x).

Step (I). Leading Term Estimates: For α > 0 and x ≥ 1, we have that the (α+ 1)-

order harmonic numbers satisfy

H(α+1)
x = ζ(α+ 1) +O

(
x−(α+1)

)
,

where ζ(s) is the Riemann zeta function. The leading terms in the formula for
σα(n) from Theorem 1.6 then correspond to∑

n≤x

nα−β ·H(α+1)
n =

∑
n≤x

nα−β
(
ζ(α+ 1) +O

(
1

nα+1

))

=
∑
n≤x

(
ζ(α+ 1)nα−β +O

(
1

n1+β

))

= ζ(α+ 1)

[
xα+1−β

α+ 1− β +
xα−β

2
+

α−β∑
j=2

(
α+ 1− β

j

)
Bj

xα+1−β−j

α+ 1− β

]

+

{
O(log x), if β = 0;

O(1), if β > 0,
(18)

by Faulhaber’s formula stated in Equation (10) of the introduction, where the Bn
denote the Bernoulli numbers for n ≥ 0. This establishes the leading dominant term
in the asymptotic expansion which confirms the classical result cited in Equation
(12) above.
Step (II). Second Terms Estimate: We can expand the first component sum in
Theorem 1.6 as

S
(−α)
1 (n) =

∑
p≤n

νp(n)∑
k=1

(p− 1)

p

(
ζ(α+ 1)

pαk
+O

(
pk

nα+1

))
− ζ(α+ 1)

pανp(n)+α+1
+O

(
pνp(n)

nα+1

)
=
∑
p≤n

[
ζ(α+ 1)(p− 1)

pανp(n)+1 (pα − 1)
− ζ(α+ 1)(p− 1)

pα+1 (pα − 1)

]
[p|n]δ

−
∑
p≤n

ζ(α+ 1)

pανp(n)+α+1
+O

(
1

nα−1

)
.

The last error term results by observing that νp(n) ≤ logp(n). Next, we use Abel
summation together with a divergent asymptotic expansion for the exponential
integral function to determine that for real r > 0, the next sums satisfy∑

p≤x

1

pr+1
= Cr +

r + 1

r · xr log x
+O

(
1

xr log2 x

)
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∑
p≤x

1

pr+1 log p
= Dr +

(r + 2)

2xr log x
− (r + 2) log x+ 1

2xr log2 x
+O

(
1

xr log2 x

)
.

The terms Cr, Dr used to express the formulas in the previous equations are absolute
constants depending only on r. Hence, we see that

Σ′α,β(x) :=
∑
n≤x

nα−β · S(−α)
1 (n)

=
∑
p≤x

[
x∑

n=p

nα−β
(

ζ(α+ 1)(p− 1)

pανp(n)+1 (pα − 1)
− ζ(α+ 1)(p− 1)

pα+1 (pα − 1)

)
[p|n]δ

]
(19)

−
∑
p≤x

x∑
n=p

nα−βζ(α+ 1)

pανp(n)+α+1
+O

(
1

nβ+1

)
.

For β > 1, the error term in the last equation corresponds to

∑
p≤x

x∑
n=p

O

(
1

nβ+1

)
= O

∑
p≤x

[
ζ(β) +

1

xβ+1

] = O

(
x

log x
+

1

xβ log x

)
= O

(
x

log x

)
,

by applying the known asymptotic estimate for the prime counting function given
by

π(x) =
x

log x
+O

(
x

log2 x

)
.

The error terms estimated in the previous equation comprise the dominant error
term in our complete asymptotic expression for Σα,β(x). As it turns out, this
error term is fixed and independent in form for any of our restricted choices of the
integer-valued parameters (α, β).

At this point we evaluate the main terms in Equation (19). We consider asymp-
totic approximations to sums of the next form at fixed primes p so we can use the
resulting estimates with Abel summation.

T1,p(x) :=

x∑
n=p

nα−β [p|n]δ
pανp(n)

We can then form the approximations to the next summatory functions in the
following way to approximate T1,p(x) for large x:

A1,p(t) =
∑
i≤t

[p|i]δ
pανp(i)

=
∑
i≤t/p

1

pανp(p·i)

=

logp(t)∑
k=1

1

pαk
#{i ≤ t/p : νp(i) = k}

=

∞∑
k=0

1

pα(k+1)

(
#{i ≤ t/p : pk+1|i} −

∞∑
s=k+2

#{i ≤ t/p : ps|i}

)
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=

∞∑
k=0

1

pα(k+1)

[
t

pk+2
−

∞∑
i=k+2

t

pi+1

]
+O(1)

=
(p− 2)t

p(p− 1) (pα+1 − 1)
+O(1).

Then we have by Abel’s summation formula that

T1,p(x) = xα−β ·A1,p(x)−
∫ x

0

A1,p(t)Dt[t
α−β ]dt

∼ (p− 2)xα+1−β

(α+ 1− β)p(p− 1) (pα+1 − 1)
.

Similarly, we can estimate the asymptotic order of the sums

T2,p(x) :=

x∑
n=p

nα−β

pανp(n)+α+1

∼ (p− 2)xα+1−β

(α+ 1− β)(p− 1)pα+1 (pα+1 − 1)
.

Since C1(α) is finite for any integers α ≥ 2, it follows that

∑
p≤x

[
ζ(α+ 1)(p− 1)

p(pα − 1)
T1,p(x)− ζ(α+ 1)T2,p(x)

]
∼ C1(α)ζ(α+ 1)xα+1−β

(α+ 1− β)
.

We estimate the second (inner) sum forms in Equation (19) as follows:

∑
p≤x

x∑
n=p

nα−β · ζ(α+ 1)(p− 1)

pα+1 (pα − 1)
[p|n]δ =

∑
p≤x

x/p∑
n=1

(pn)α−β · ζ(α+ 1)(p− 1)

pα+1 (pα − 1)

=

α−β∑
j=0

(
α+ 1− β

j

)
Bjx

α+1−β−j

(α+ 1− β)
· ζ(α+ 1)(p− 1)

pα+1−j (pα − 1)

∼
α−β∑
j=0

(
α+ 1− β

j

)
C2,j(α)Bjx

α+1−β−j

(α+ 1− β)
.

In total, we obtain that

Σ′α,β(x) =
C1(α)ζ(α+ 1)xα+1−β

(α+ 1− β)
−
α−β∑
j=0

(
α+ 1− β

j

)
C2,j(α)Bjx

α+1−β−j

(α+ 1− β)
+O

(
x

log x

)
.

(20)

Step (III). Third Component Terms Estimate: We have that

Σ′′α,β(x) =
∑
n≤x

nα−βS
(−α)
2 (n)
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=
∑
p≤x

[
x∑

n=p

(−1)n · nα−β

2α+1

(
ζ(α+ 1)(p− 1)

pανp(n)+1 (pα − 1)
− ζ(α+ 1)(p− 1)

pα+1 (pα − 1)

)
[p|n]δ

]

−
∑
p≤x

x∑
n=p

(−1)n · nα−βζ(α+ 1)

2α+1pανp(n)+α+1
+O

(
1

nβ

)
.

Hence, our estimates in this case are based on evaulating the main components of
the following formulas by Abel summation for large x:

U1,p(x) :=

x∑
n=p

(−1)n · nα−β [p|n]δ
pανp(n)

.

To bound the main and error terms in this sum for large enough x, we proceed as
before to form the summatory functions

B1,2(t) =
∑
i≤t

(−1)i · [2|i]δ
2αν2(i)

=
∑

1≤i≤t/2

1

2αν2(2i)

=

log2(t)∑
k=1

1

2αk
#{i ≤ t/2 : ν2(i) = k}

=

∞∑
k=0

1

2α(k+1)

(
#{i ≤ t/2 : 2k+1|i} −

∞∑
s=k+2

#{i ≤ t/2 : 2s|i}

)

=
(p− 2)t

(p− 1) (pα+1 − 1)

∣∣∣∣∣
p=2

= 0,

For p ≥ 3 any odd prime, we expand analogously as

B1,p(t) =
∑
i≤t

(−1)i · [p|i]δ
pανp(i)

= −
∑
i≤t/p

1

pανp(p·i)

= −
logp(t)∑
k=1

1

pαk
#{i ≤ t/p : νp(i) = k}

= −
∞∑
k=0

1

pα(k+1)

(
#{i ≤ t/p : pk+1|i} −

∞∑
s=k+2

#{i ≤ t/p : ps|i}

)

= −
∞∑
k=0

1

pα(k+1)

[
t

pk+2
−

∞∑
i=k+2

t

pi+1

]

= − (p− 2)t

p(p− 1) (pα+1 − 1)
.
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It follows that

U1,p(x) ∼ − (p− 2)xα+1−β

(α+ 1− β)p(p− 1) (pα+1 − 1)
[p ≥ 3]δ .

Then we have a resulting formula in the form of

U2,p(x) :=

x∑
n=p

(−1)n · nα−β

2α+1pανp(n)+α+1

∼ − (p− 2)xα+1−β

(α+ 1− β)(p− 1)pα+1 (pα+1 − 1)
[p ≥ 3]δ .

When we sum the corresponding terms in these two auxiliary functions over all odd
primes p ≤ x, we obtain that∑

3≤p≤x

[
ζ(α+ 1)(p− 1)

p(pα − 1)
U1,p(x)− ζ(α+ 1)U2,p(x)

]
∼ −C3(α)ζ(α+ 1)xα+1−β

(α+ 1− β)
.

To complete the estimate for the full formula in this section (for Case III), it remains
to estimate [13, cf. §24.4(iii)]

U3,p(x) :=

x∑
n=p

(−1)n · nα−β

2α+1

(
ζ(α+ 1)(p− 1)

pα+1 (pα − 1)

)
[p|n]δ

=

x/p∑
n=1

(−1)n · (pn)α−β

2α+1

(
ζ(α+ 1)(p− 1)

pα+1 (pα − 1)

)

=

[
α−β∑
k=0

(
α− β
k

)
(−1)α−βEk

2k+α+2

(
x

p
− 1

2

)α−β−k
+

(−1)α−β

22α+2−β

α−β∑
k=0

(
α− β
k

)
(−1)kEk

]

×
(
ζ(α+ 1)(p− 1)

pβ+1 (pα − 1)

)
Thus in total, for Case (III) we have that

Σ′′α,β(x) ∼ −C3(α)ζ(α+ 1)xα+1−β

(α+ 1− β)
+

α−β∑
r=0

C4,r(α, β)xr

+
(−1)α−β

22α+2−β

α−β∑
k=0

(
α− β
k

)
(−1)kEk ×

∑
p≥2

ζ(α+ 1)(p− 1)

pβ+1 (pα − 1)
+ o(1), as x→∞.

(21)

Step (IV). Last Remaining Estimates: Finally, we have only one component in the
sums from Theorem 1.6 left to bound. Namely, we must bound the sums

Σ′′′α,β(x) :=
∑
n≤x

τ−α(n)nα−β =
∑
n≤x

n∑
d=1

nα−β

dα+1
H

(α+1)

bnd c
cd(n)χPP(d).
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Now by expanding the previous sums according to the identities in Lemma 3.2, we
obtain that

Σ′′′α,β(x) =
∑
n≤x

n∑
d=1

 ∑
r|(d,n)

rµ(d/r)

H
(α+1)

bnd c
χPP(d)

dα+1
nα−β

=
∑
n≤x

n∑
d=1

 ∑
r|(d,n)

rµ(d/r)

H
(α+1)

bnd c
nα−β

dα+1

−
∑
n≤x

∑
p≤n

logp(n)∑
k=1

Cpk(n)

(
ζ(α+ 1) +O

(
p(α+1)k

nα+1

))
nα−β

p(α+1)k

=
∑
n≤x

∑
r|n

∑
1≤d≤r

rα

nβ
µ(d)

dα+1
H

(α+1)

b rdc

−
∑
p≤x

x/p∑
n=1

νp(n)−1∑
k=1

pk ×
(
ζ(α+ 1)

(pkn)α−β

p(α+1)k
+O

(
1

nβ+1

))
. (22)

In the transition from the second to last to the previous equation, we have used
a known fact about the Ramanujan sums, cpk(n), at prime powers. In particular,
cpk(n) = 0 whenever pk−1 - n, and where the function is given by cpk(n) = −pk−1 if
pk−1|n, but pk - n or cpk(n) = φ(pk) = pk − pk−1 if pk|n. For the first sum terms in
Equation (22), observe that a formula we obtain by applying ordinary summation
by parts corresponds to the identity that

H
(m)

b r+1
d c
−H(m)

b rdc
=
( r
d

)−m
[d|r]δ .

Then we see that this first sum is bounded by

∑
n≤x

∑
r|n

∑
1≤d≤r

rα

nβ
µ(d)

dα+1
H

(α+1)

b rdc
= O

∑
n≤x

n∑
r=1

(
rα+1 +O(rα)

)∑
d|r

|µ(d)|
dα+1

(
d

r

)α+1


= O

∑
n≤x

1

nβ

n∑
r=1

∑
d|r

|µ(d)|


= O

∑
n≤x

1

nβ

n∑
r=1

2ω(r)


= O

∑
n≤x

1

nβ

∑
k≥1

2k ·#{1 ≤ r ≤ n : ω(r) = k}

 .

We can draw upon the result of Erdős in [5] to approximately sum (non-uniformly
for k > log log x) the right-hand-side of the last equation as follows for any integers
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β > 1:

O

∑
n≤x

2(1 + o(1))n1−β log n

 =

{
O
(
log2 x

)
, if β = 2;

O
(

2(β−2) log x+1
(β−2)2xβ−2

)
, if β ≥ 3.

We bound the order of the second sum in Equation (22) as

V2,p(x) :=

x/p∑
n=1

νp(n)−1∑
k=1

pk ×
(
ζ(α+ 1)

(pkn)α−β [p|n]δ
p(α+1)k

+O

(
1

nβ+1

))

=

x/p∑
n=1

ζ(α+ 1)nα−β

pβνp(n)
− 1

pβ

α−β∑
j=0

(
α+ 1− β

j

)
ζ(α+ 1)Bj
(α+ 1− β)

(
x

p

)α+1−β−j

+O

(
1

(p− 1)nβ
− p

(p− 1)nβ+1

)
,

where we have again used the upper bound νp(n) ≤ logp(n). To evaluate the first
sum in the last equation, we can use Abel summation much like we have in the prior
estimates of this proof. Namely, we form the summatory functions

A3,p(t) =
∑
i≤t

[p|i]δ
pβνp(i)

=
∑
i≤t/p

1

pβνp(pi)

=
∑
k≥1

1

pβk
#{i ≤ t/p : νp(i) = k}

=
∑
k≥1

1

pβk

 t

pk+1
−
∑
i≥k+1

t

pi+1


=

(p− 2)t

p(p− 1)(pβ+1 − 1)
.

The complete first sum above is given by

∑
p≤x

x/p∑
n=1

ζ(α+ 1)nα−β

pβνp(n)
=
∑
p≤x

ζ(α+ 1)(p− 2)xα+1−β

(α+ 1− β)p(p− 1)(pβ+1 − 1)
.

We then obtain that

∑
p≤x

V2,p(x) ∼ C6(β)ζ(α+ 1)xα+1−β

(α+ 1− β)
+

α−β∑
j=0

(
α+ 1− β

j

)
C7,j(α)ζ(α+ 1)Bjx

α+1−β−j

(α+ 1− β)

+O

(
x

log x

)
.
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4. Conclusions

In this article, we started by considering the algebraic building blocks of the Lambert

series generating functions for the sum-of-divisors functions in Equation (1). The

new exact formulas for these special arithmetic functions are obtained in this case

by our observations that reconcile the expansions of the series terms, qn ·(1−qn)−1,

with representations involving the cyclotomic polynomials and their logarithmic

derivatives. We also employed the formulas for the logarithmic derivatives of the

cyclotomic polynomials along with known formulas for reducing cyclotomic poly-

nomials of the form Φprm(q) when p - m to establish the Lambert series term

expansions cited in Equation (8). The expansions of our new exact formulas for the

generalized sum-of-divisors functions are closely related to the distribution of the

primes p ≤ x for any large x ≥ 2.
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