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Abstract

Quotient sets have attracted the attention of mathematicians in the past three
decades. The set of quotients of primes is dense in the positive real numbers and
the set of all quotients of Gaussian primes is also dense in the complex plane.
Sittinger has proved that the set of quotients of primes in an imaginary quadratic
ring is dense in the complex plane, and the set of quotients of primes in a real
quadratic number ring is dense in R. An interesting open question is introduced by
Sittinger: Is the set of quotients of Hurwitz primes dense in the quaternions? In
this paper, we answer the question and prove that the set of all quotients of Hurwitz
primes is dense in the quaternions.

1. Introduction

Quotient sets like {p/q : p, q are primes} have attracted the attention of mathemati-

cians in the past three decades. It has been proved (or observed) many times that

the set {p/q : p, q are primes} is dense in the positive real numbers (e.g., [2, Exer-

cise 218], [5, Corollary 5], [6, Theorem 4]). In 2013, Garcia [3] considered the set of

all quotients of Gaussian primes and proved that it is dense in the complex plane.

Later Garcia and Luca [4] proved that the set of quotients of nonzero Fibonacci

numbers is dense in the p-adic numbers for every prime p. Sanna [8] generalized

Garcia and Luca’s result and proved that for any integer k ≥ 2 and any prime

number p, the set of quotients of nonzero k-generalized Fibonacci numbers is dense

in the p-adic numbers.

Recently, Sittinger [9] proved that the set of quotients of primes in an imaginary

quadratic ring is dense in the complex plane and the set of quotients of primes

in a real quadratic number ring is dense in R. Sittinger also asked an interesting

open question in his paper: Is the set of quotients of Hurwitz primes dense in the
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quaternions (see Section 2 for the definitions)? In this paper, we answer Sittinger’s

question and prove the following theorem.

Theorem 1. The set of all quotients of Hurwitz primes is dense in the quaternions.

Remark 1. As the multiplication of quaternions is not commutative, for any two

non-zero quaternions a, b, their quotient could be defined by b
a = ba−1 or b

a = a−1b

and Theorem 1 holds for both cases. In this paper, we only prove the former case

and the proof of the latter case is very similar with obvious modifications.

Remark 2. In fact we prove a slightly stronger result than Theorem 1. Hurwitz

quaternions could be divided into two disjoint subsets (see Section 2 for the notation

and definitions)

H1 = {x1 + x2i+ x3j + x4k : x1, x2, x3, x4 ∈ Z}

and

H2 =

{
x1 + x2i+ x3j + x4k : x1, x2, x3, x4 ∈ Z +

1

2

}
.

Our proof indicates that the set{
p

q
: p and q are Hurwitz primes in H1

}
is dense in the quaternions. Moreover, for any two Hurwitz primes p, q ∈ H1

with odd norms, it is easy to see that pu, qu are Hurwitz primes belonging to H2

and pu
qu = (pu)(qu)−1 = p

q , where u = 1+i+j+k
2 is a unit in Hurwitz quaternions.

Therefore, the set {
p

q
: p and q are Hurwitz primes in H2

}
is also dense in the quaternions.

2. Hurwitz Quaternions

In this section, we introduce some properties of quaternions and most of the mate-

rials can be found in [1].

The quaternions were discovered by Irish mathematician Hamilton in 1843. They

have been widely used in the electrodynamics, general relativity, navigation, satellite

attitude control and other fields.

Definition 1. The set of quaternions is defined as

Q = {x1 + x2i+ x3j + x4k : x1, x2, x3, x4 ∈ R}
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where i, j, k commute with every real number and satisfy

ijk = i2 = j2 = k2 = −1.

Let a = a1 +a2i+a3j+a4k and b = b1 + b2i+ b3j+ b4k be any two quaternions.

The addition of quaternions is defined by

a + b = a1 + b1 + (a2 + b2)i+ (a3 + b3)j + (a4 + b4)k.

For any real number λ, the scalar multiplication is defined by

λa = λa1 + λa2i+ λa3j + λa4k.

Then the quaternions form a vector space with these two operations. Moreover, we

can define the multiplication of quaternions by

ab =(a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 − a4b3)i

+ (a1b3 + a3b1 + a4b2 − a2b4)j + (a1b4 + a4b1 + a2b3 − a3b2)k.

Clearly, we have

ij = k and ji = −k

so the multiplication of quaternions is not commutative.

For any a = a1 + a2i + a3j + a4k ∈ Q, a = a1 − a2i − a3j − a4k is called the

conjugate of a. It is easy to see that

aa = a2
1 + a2

2 + a2
3 + a2

4.

Definition 2. For any a = a1 + a2i+ a3j + a4k ∈ Q, its norm is defined by

‖a‖ = aa = a2
1 + a2

2 + a2
3 + a2

4.

The norm induces a metric d(a, b) = |a− b| on the quaternions by

|a− b| =
√
‖a− b‖

and the quaternions form a metric space.

Definition 3. A subset D of quaternions is said to be dense in the quaternions if

for any quaternion a and any ε > 0, there exists a quaternion b ∈ D such that

|a− b| < ε.

Definition 4. For any a = a1 + a2i + a3j + a4k ∈ Q and ‖a‖ 6= 0, its inverse is

defined by

a−1 =
a

‖a‖
=
a1 − a2i− a3j − a4k

‖a‖
.



INTEGERS: 21 (2021) 4

In this paper, the quotient of two quaternions is defined by

b

a
= ba−1.

One interesting subset of quaternions is the set of Hurwitz quaternions which

was introduced by Hurwitz in 1919.

Definition 5. The set of Hurwitz quaternions H is a subset of quaternions, defined

as

H =

{
x1 + x2i+ x3j + x4k : x1, x2, x3, x4 ∈ Z or x1, x2, x3, x4 ∈ Z +

1

2

}
.

We say that a is a unit in H if ‖a‖ = 1.

It is easy to see that for any a ∈ H, ‖a‖ ∈ Z. Moreover, we have the following

result.

Lemma 1. Let n be any positive integer. Then the number of Hurwitz quaternions

with norm n is

24
∑
d|n
2-d

d.

Definition 6. We say that p ∈ H is a Hurwitz prime if p is not zero or a unit and

is not a product of non-units in H.

We have the following result to determine whether a Hurwitz quaternion is a

Hurwitz prime.

Lemma 2. For any p ∈ H, p is a Hurwitz prime if and only if ‖p‖ is a prime

number.

3. Preliminaries

In this section, we introduce some tools which will be used later. We begin with

some well-known properties of R4. For any two vectors ~x = (x1, x2, x3, x4), ~y =

(y1, y2, y3, y4) ∈ R4, the metric is defined by

|~x− ~y| =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 + (x4 − y4)2

and the inner product is defined by

〈~x, ~y〉 = x1y1 + x2y2 + x3y3 + x4y4.

Clearly |~x| =
√
〈~x, ~x〉. It is well-known that

|~x− ~y|2 = |~x|2 + |~y|2 − 2〈~x, ~y〉. (1)
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Define a map σ from Q to R4 by

σ : Q → R4

x1 + x2i+ x3j + x4k → (x1, x2, x3, x4).

Then it is easy to see that σ is an isomorphism. Moreover, σ is also an isometry

and

|σ(a)− σ(b)| = |a− b| (2)

for any a, b ∈ Q.

Next, we introduce our main tool. Denote by S the four dimensional hypersphere

x2
1 + x2

2 + x2
3 + x2

4 = 1.

For any 0 < θ < π and ~x ∈ R4, define

Ω(~x, θ) =

{
~y ∈ R4 : |~y| = 1 and arccos

〈~x, ~y〉
|~x||~y|

≤ θ
}
.

Ω(~x, θ) is a hyperspherical cap in S and denote by A(Ω(~x, θ)) its surface area.

Clearly A(Ω(~x, θ)) is a positive real number and only depends on θ and ~x.

Define

r(n,Ω(~x, θ)) = #

{
~y ∈ Z4 : |~y| =

√
n and

~y√
n
∈ Ω(~x, θ)

}
. (3)

The following theorem is a special case of [7, Theorem 1] with Q(X) = x2
1 + x2

2 +

x2
3 + x2

4 and Ω = Ω(~x, θ).

Theorem 2. [7, Theorem 1] Let notation be as above. For any positive integer n

with (n, 2) = 1 and ε > 0, we have

r(n,Ω(~x, θ)) = r(n)
A(Ω(~x, θ))

A(S)

(
1 +O

(
n−1/7+ε

))
,

where r(n) is the number of integral solutions of x2
1 + x2

2 + x2
3 + x2

4 = n and A(S) is

the surface area of S.

Remark 3. By the famous Jacobi’s four-square theorem, we have

r(n) =


8
∑
m|n

m if n is odd,

24
∑
m|n
2-m

m if n is even.
(4)



INTEGERS: 21 (2021) 6

4. Proof of Theorem 1

Proof. It is sufficient to prove that for any quaternion h and any ε > 0, there exist

two Hurwitz primes p, q such that ∣∣∣∣h− p

q

∣∣∣∣ < ε.

We first consider the case ‖h‖ = 0. Since the set of all quotients of prime

numbers is dense in positive real numbers, there exist two prime numbers p, q such

that p/q < ε2. By Lemma 1 and Lemma 2, there exist two Hurwitz primes p, q such

that ‖p‖ = p, ‖q‖ = q and ∣∣∣∣pq
∣∣∣∣ =

√
p

q
< ε.

In what follows, we assume ‖h‖ 6= 0 and without loss of generality, we assume

ε < min(‖h‖, 1/‖h‖) ≤ 1. (5)

Put

ε1 =
ε2

10(‖h‖+ ε)
≤ 1. (6)

By Theorem 2 and Equation (4), for any positive odd integer n, we have

r(n,Ω(σ(h), ε1)) = 8
A(Ω(σ(h), ε1))

A(S)

∑
m|n

m
(

1 +O
(
n−1/7+ε1

))
.

Since A(Ω(σ(h),ε1))
A(S) is positive and only depends on ε and h, there existsN1 = N1(ε, h)

such that

r(n,Ω(σ(h), ε1)) > 1

if n > N1. By similar arguments, there exists N2 = N2(ε1, ~e1) such that

r(n,Ω(~e1, ε1)) > 1

if n > N2, where ~e1 = (1, 0, 0, 0). Moreover, by the Prime Number Theorem, there

exists N3 = N3(ε, h) such that the interval(
n(‖h‖ − ε2/10), n(‖h‖+ ε2/10)

)
contains at least one prime number if n > N3.

Let q be a prime number satisfying

q > max

(
N1

‖h‖ − ε2/10
, N2, N3

)
.
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Then

r(q,Ω(~e1, ε1)) > 1 (7)

and there exists a prime

p ∈
(
q(‖h‖ − ε2/10), q(‖h‖+ ε2/10)

)
. (8)

By our choice of q, we get that

p > q(‖h‖ − ε2/10) > N1.

Hence, we obtain

r(p,Ω(σ(h), ε1)) > 1. (9)

By Equation (3), (7) and (9), there exist

~x = (x1, x2, x3, x4) ∈ Z4 and ~y = (y1, y2, y3, y4) ∈ Z4

such that |~x| = √q, |~y| = √p,

arccos
x1√
q

= arccos
〈~x, ~e1〉
|~x|

≤ ε1 (10)

and

arccos
〈~y, σ(h)〉
|~y||σ(h)|

≤ ε1. (11)

By Equation (10), we have

0 ≤ 1− x1√
q
≤ 1− cos ε1 = 2 sin2 ε1

2
≤ ε2

1

2
(12)

and for ` = 2, 3, 4

0 ≤ x2
`

q
≤ 1− x2

1

q
≤ 1− cos2 ε1 = sin2 ε1 ≤ ε2

1. (13)

Here we have used the well-known inequality 0 ≤ sin t ≤ t if 0 ≤ t ≤ 1. Moreover,

by Equation (8), we have ∣∣∣∣ ~y√q
∣∣∣∣ =

√
p

q
≤
√
‖h‖+ ε2/10 (14)

and

(
|σ(h)| −

∣∣∣∣ ~y√q
∣∣∣∣)2

=

 |σ(h)|2 −
∣∣∣ ~y√q ∣∣∣2

|σ(h)|+
∣∣∣ ~y√q ∣∣∣


2

≤

(
‖h‖ − p

q

|σ(h)|

)2

≤ ε4

100‖h‖
.
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Therefore, by Equation (1), (11) and the last inequality in Equation (12), we obtain∣∣∣∣σ(h)− ~y
√
q

∣∣∣∣2 = |σ(h)|2 +

∣∣∣∣ ~y√q
∣∣∣∣2 − 2|σ(h)|

∣∣∣∣ ~y√q
∣∣∣∣ 〈σ(h), ~y√

q 〉

|σ(h)|
∣∣∣ ~y√q ∣∣∣

≤ |σ(h)|2 +

∣∣∣∣ ~y√q
∣∣∣∣2 − 2|σ(h)|

∣∣∣∣ ~y√q
∣∣∣∣ cos ε1

=

(
|σ(h)| −

∣∣∣∣ ~y√q
∣∣∣∣)2

+ 2|σ(h)|
∣∣∣∣ ~y√q

∣∣∣∣ (1− cos ε1)

≤ ε4

100‖h‖
+ ε2

1

√
‖h‖(‖h‖+ ε2/10) ≤ ε4

50‖h‖
≤ ε2

9
. (15)

Here we have applied Equation (5) and (6) in the last two steps.

Put

q = x1 + x2i+ x3j + x4k

and

p = y1 + y2i+ y3j + y4k.

Then ‖p‖ = p and ‖q‖ = q. By Lemma 2, p and q are Hurwitz primes. Furthermore,

by the triangle inequality we have∣∣∣∣h− p

q

∣∣∣∣ =

∣∣∣∣h− p(x1 − x2i− x3j − x4k)

‖q‖

∣∣∣∣
≤
∣∣∣∣h− x1

q
p

∣∣∣∣+

∣∣∣∣p(x2i)

q

∣∣∣∣+

∣∣∣∣p(x3j)

q

∣∣∣∣+

∣∣∣∣p(x4k)

q

∣∣∣∣ . (16)

By (13) and (8), we obtain∣∣∣∣p(x2i)

q

∣∣∣∣+

∣∣∣∣p(x3j)

q

∣∣∣∣+

∣∣∣∣p(x4k)

q

∣∣∣∣
=

4∑
`=2

√
x2
`‖p‖
q2

=

√
p

q

4∑
`=2

√
x2
`

q

≤ 3
√

(‖h‖+ ε2/10)ε1 ≤
3ε2

10
√
‖h‖
≤ ε

3
. (17)

Here we have applied Equation (5) and (6) in the last two steps. On the other hand,

by Equation (2), (15), (12) and (14), we get∣∣∣∣h− x1

q
p

∣∣∣∣ =

∣∣∣∣σ(h)− x1

q
σ(p)

∣∣∣∣ =

∣∣∣∣σ(h)− ~y
√
q

+

(
1− x1√

q

)
~y
√
q

∣∣∣∣
≤
∣∣∣∣σ(h)− ~y

√
q

∣∣∣∣+

(
1− x1√

q

) ∣∣∣∣ ~y√q
∣∣∣∣

≤ ε

3
+
ε2

1

2

√
(‖h‖+ ε2/10) ≤ 2ε

3
. (18)
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Here we have applied Equation (5) and (6) again in the last one step. Combining

Equation (16), (17) and (18), we have∣∣∣∣h− p

q

∣∣∣∣ ≤ 2ε

3
+
ε

3
= ε.

The proof is complete.
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