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Abstract

Let f, g : N2 → C be two arithmetic functions of two variables. We study the shifted
convolution sum defined by

∑
n15N1, n25N2

f(n1, n2)g(n1 + h1, n2 + h2), where h1
and h2 are nonnegative integers. We use the method of Ramanujan expansions
used by Gadiyar, Murty, and Padma, who treated the case of arithmetic functions
of one variable. We extend their results to the case of arithmetic functions of two
variables.

1. Introduction

For an arithmetic function f : N → C, the mean value M(f) is defined to be the

limit

lim
N→∞

1

N

∑
n5N

f(n),

if this limit exists. There are many results concerning M(f). For example, from

the well-known formula
∑
n5N ϕ(n) = (3/π2)N2 + O(N logN) where ϕ is Euler’s

totient function, we have by partial summation

lim
N→∞

1

N

∑
n5N

ϕ(n)

n
=

6

π2
.

Similarly, from the well-known formula
∑
n5N σ(n) = (π2/12)N2 + O(N logN)

where σ(n) =
∑
d|n d, we have by partial summation

lim
N→∞

1

N

∑
n5N

σ(n)

n
=
π2

6
.
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On the other hand, Gadiyar, Murty, and Padma [2] studied the shifted convolu-

tion sum defined by ∑
n5N

f(n)g(n+ h),

where f and g are two arithmetic functions, and h is a nonnegative integer. They

obtained

lim
N→∞

1

N

∑
n5N

ϕ(n)

n

ϕ(n+ h)

n+ h
=
∏
p∈P

(1− 2

p2
)
∏
p|h

p3 − 2p+ 1

p(p2 − 2)
, (1)

and, if α, β > 1/2,

lim
N→∞

1

N

∑
n5N

σα(n)

nα
σβ(n+ h)

(n+ h)β
=
ζ(α+ 1)ζ(β + 1)

ζ(α+ β + 2)
σ−α−β−1(h), (2)

where P is the set of prime numbers, σα(n) =
∑
d|n d

α, and ζ(s) is the Riemann

zeta function.

In this paper, we study the shifted convolution sum of arithmetic functions of

two variables defined by

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

f(n1, n2)g(n1 + h1, n2 + h2),

where f, g are two arithmetic functions of two variables, and h1, h2 are fixed nonneg-

ative integers. We extend the method of Ramanujan expansions used by Gadiyar,

Murty, and Padma [2] in the case of arithmetic functions of one variable, to the

case of arithmetic functions of two variables. We give some examples including

extensions of (1) and (2).

2. Ramanujan Sums and the Method of Gadiyar, Murty and Padma

Let cr(n) be the Ramanujan sums defined in [4] by

cr(n) =

q∑
k=1

gcd(k,r)=1

exp(
2πikn

r
),

where gcd(k, r) is the greatest common divisor of k and r. Let f : N 7→ C be

an arithmetic function. Ramanujan [4] investigated its Ramanujan-Fourier series

which is an infinite series of the form

f(n) =

∞∑
r=1

f̂(r)cr(n), (3)
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where f̂(r) are called the Ramanujan-Fourier coefficients of f , and he obtained, for

example, the following results.

σs(n)

ns
= ζ(s+ 1)

∞∑
r=1

cr(n)

rs+1
, (4)

ϕs(n)

ns
=

1

ζ(s+ 1)

∞∑
r=1

µ(r)

ϕs+1(r)
cr(n), (5)

where ϕs(n) = ns
∏
p|n(1− 1/ps) and µ is the Möbius function.

Let τ(n) =
∑
d|n 1. In their paper, Gadiyar, Murty, and Padma [2, Theorem 5]

obtained the following theorem.

Theorem (Gadiyar, Murty, and Padma). Suppose that f and g are two arithmetic

functions with absolutely convergent Ramanujan-Fourier series:

f(n) =

∞∑
r=1

f̂(r)cr(n), g(n) =

∞∑
s=1

ĝ(s)cs(n),

respectively. If
∞∑

r,s=1

|f̂(r)ĝ(s)|
√
rsτ(r)τ(s) <∞,

then, as N tends to infinity,

∑
n5N

f(n)g(n+ h) ∼ N
∞∑
r=1

f̂(r)ĝ(r)cr(h).

As a corollary of this theorem, Gadiyar, Murty, and Padma [2] obtained (1) and

(2). We will extend their results to the case of arithmetic functions of two variables

and obtain some results later.

3. Lemmas

In this section we prepare some lemmas. Gadiyar, Murty, and Padma [2, Lemma

2] proved ∑
n5N

cr(n)cs(n+ h) = δr,sNcr(h) +O(rs log(rs)),

where h ∈ Z and δr,s = 1 or 0 according to whether r = s or not. The following

lemma is a straightforward extension of this formula.
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Lemma 1. If h1, h2 ∈ Z, then∑
n15N1

n25N2

cr1(n1)cr2(n2)cs1(n1 + h1)cs2(n2 + h2)

= (δr1,s1N1cr1(h1) +O(r1s1 log(r1s1)))(δr2,s2N2cr2(h2) +O(r2s2 log(r2s2))).

Gadiyar, Murty, and Padma [2, Lemma 3] proved

|
∑
n5N

cr(n)cs(n+ h)| 5
√
N(N + |h|)rsτ(r)τ(s),

where h ∈ Z. The following lemma is a straightforward extension of this inequality.

Lemma 2. If h1, h2 ∈ Z, then

|
∑

n15N1

n25N2

cr1(n1)cr2(n2)cs1(n1 + h1)cs2(n2 + h2)|

5
√
N1(N1 + |h1|)N2(N2 + |h2|)r1r2s1s2τ(r1)τ(r2)τ(s1)τ(s2).

We also need the following two lemmas.

Lemma 3. If α = 0 and s− 2α > 1, then

∞∑
r1,r2=1

(r1r2)α

(lcm(r1, r2))s
<∞,

where lcm(r1, r2) is the least common multiple of r1 and r2.

Proof. Setting d = gcd(r1, r2), r1 = dr′1, and r2 = dr′2, we have

∞∑
r1,r2=1

(r1r2)α

(lcm(r1, r2))s
=

∞∑
d=1

∞∑
r′1,r

′
2=1

gcd(r′1,r
′
2)=1

(r′1r
′
2d

2)α

(r′1r
′
2d)s

=

∞∑
d=1

1

ds−2α

∞∑
r′1,r

′
2=1

gcd(r′1,r
′
2)=1

1

(r′1)s−α(r′2)s−α

5
∞∑
d=1

1

ds−2α

∞∑
r′1=1

1

(r′1)s−α

∞∑
r′2=1

1

(r′2)s−α
<∞.
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Lemma 4. If s > 1, then for any n1, n2 ∈ N
∞∑

r1,r2=1

1

(lcm(r1, r2))s
|cr1(n1)cr2(n2)| <∞.

Proof. From the well known formula cr(n) =
∑
d| gcd(r,n) dµ(r/d) we have

|cr(n)| = |
∑

d| gcd(r,n)

dµ(r/d)| 5
∑
d|n

d = σ1(n).

Therefore we obtain by Lemma 3

∞∑
r1,r2=1

1

(lcm(r1, r2))s
|cr1(n1)cr2(n2)| 5

∞∑
r1,r2=1

1

(lcm(r1, r2))s
σ1(n1)σ1(n2)

= σ1(n1)σ1(n2)

∞∑
r1,r2=1

1

(lcm(r1, r2))s
<∞.

4. Theorem

In this section, we prove the following theorem which is an extension of Gadiyar-

Murty-Padma’s theorem introduced in Section 2 to the case of two variables.

Theorem 1. Let f, g be arithmetic functions of two variables. Suppose that

f(n1, n2) =

∞∑
r1,r2=1

f̂(r1, r2)cr1(n1)cr2(n2),

g(n1, n2) =

∞∑
s1,s2=1

ĝ(s1, s2)cs1(n1)cs2(n2),

are absolutely convergent and

∞∑
r1,r2,s1,s2=1

|f̂(r1, r2)ĝ(s1, s2)|
√
r1s1r2s2τ(r1)τ(r2)τ(s1)τ(s2) <∞.

Then we have for nonnegative integers h1, h2

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

f(n1, n2)g(n1 + h1, n2 + h2)

=

∞∑
r1,r2=1

f̂(r1, r2)ĝ(r1, r2)cr1(h1)cr2(h2).
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Proof. The proof proceeds along the same lines as the proof of Gadiyar-Murty-

Padma’s theorem. We first see that∑
n15N1

n25N2

f(n1, n2)g(n1 + h1, n2 + h2)

=

∞∑
r1,r2,s1,s2=1

f̂(r1, r2)ĝ(s1, s2)
∑

n15N1

n25N2

cr1(n1)cr2(n2)cs1(n1 + h1)cs2(n2 + h2).

We split the outer sum over r1, r2, s1, s2 into four parts∑
r1s15U1

r2s25U2

,
∑

r1s15U1

r2s2>U2

,
∑

r1s1>U1

r2s25U2

,
∑

r1s1>U1
r2s2>U2

, (6)

where U1 =
√
N1 and U2 =

√
N2. As for the first part, we have by Lemma 1∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)
∑

n15N1

n25N2

cr1(n1)cr2(n2)cs1(n1 + h1)cs2(n2 + h2)

=
∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)(δr1,s1N1cr1(h1) +O(r1s1 log(r1s1)))

× (δr2,s2N2cr2(h2) +O(r2s2 log(r2s2)))

=
∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)δr1,s1δr2,s2N1N2cr1(h1)cr2(h2)

+
∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)O(r1s1 log(r1s1))δr2,s2N2cr2(h2)

+
∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)δr1,s1N1cr1(h1)O(r2s2 log(r2s2))

+
∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)O(r1s1r2s2 log(r1s1) log(r2s2))

=:I1 + I2 + I3 + I4.

As for I1 we have

I1 =
∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)δr1,s1δr2,s2N1N2cr1(h1)cr2(h2)
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=N1N2

∑
r215U1

r225U2

f̂(r1, r2)ĝ(r1, r2)cr1(h1)cr2(h2).

Therefore we obtain

lim
N1,N2→∞

1

N1N2
I1 =

∞∑
r1,r2=1

f̂(r1, r2)ĝ(r1, r2)1cr1(h1)cr2(h2).

As for I2 we have

|I2| =|
∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)O(r1s1 log(r1s1))δr2,s2N2cr2(h2)|

�
∑

r1s15U1

r225U2

|f̂(r1, r2)ĝ(s1, r2)|U1(logU1)N2|cr2(h2)|

�(U1 logU1)N2

∞∑
r1,r2,s1=1

|f̂(r1, r2)ĝ(s1, r2)|σ1(h2)

�(
√
N1 log

√
N1)N2σ1(h2)

∞∑
r1,r2,s1=1

|f̂(r1, r2)ĝ(s1, r2)|

=o(N1N2),

where we have used |cr(h)| 5 σ1(h) and the assumption of Theorem 1.

Similarly we have |I3| = o(N1N2). As for I4 we have

|I4| =|
∑

r1s15U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)O(r1s1r2s2 log(r1s1) log(r2s2))|

�(U1 logU1)(U2 logU2)
∞∑

r1,r2,s1,s2=1

|f̂(r1, r2)ĝ(s1, s2)|

=o(N1N2).

Next we deal with
∑
r1s15U1

r2s2>U2

in (6). By Lemma 2 we have

|
∑

r1s15U1

r2s2>U2

f̂(r1, r2)ĝ(s1, s2)
∑

n15N1

n25N2

cr1(n1)cr2(n2)cs1(n1 + h1)cs2(n2 + h2)|

�
∑

r1s15U1

r2s2>U2

|f̂(r1, r2)ĝ(s1, s2)|
√
N1(N1 + |h1|)N2(N2 + |h2|)r1r2s1s2
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× τ(r1)τ(r2)τ(s1)τ(s2)

�N1N2

∑
r1s15U1

r2s2>U2

|f̂(r1, r2)ĝ(s1, s2)|
√
r1r2s1s2τ(r1)τ(r2)τ(s1)τ(s2),

which is o(N1N2) by the assumption of Theorem 1.

Similarly we have∑
r1s1>U1

r2s25U2

f̂(r1, r2)ĝ(s1, s2)
∑

n15N1

n25N2

cr1(n1)cr2(n2)cs1(n1 + h1)cs2(n2 + h2) = o(N1N2),

and∑
r1s1>U1
r2s2>U2

f̂(r1, r2)ĝ(s1, s2)
∑

n15N1

n25N2

cr1(n1)cr2(n2)cs1(n1 + h1)cs2(n2 + h2) = o(N1N2).

This completes the proof of Theorem 1.

5. Examples

In this section, we give some examples. The following example is an extension of

(2).

Example 1. If s, t > 0, then

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

σs(gcd(n1, n2))

gcd(n1, n2)s
σt(gcd(n1 + h1, n2 + h2))

gcd(n1 + h1, n2 + h2)t

=
ζ(s+ 2)ζ(t+ 2)

ζ(s+ t+ 4)
σ−s−t−4(gcd(h1, h2)).

Proof. We first note that by [7, Example 3.8]

σs(gcd(n1, n2))

gcd(n1, n2)s
= ζ(s+ 2)

∞∑
r1,r2=1

1

(lcm(r1, r2))s+2
cr1(h1)cr2(h2) (7)

holds for s > 0. Moreover, since s > 0, the right-hand side of (7) is absolutely

convergent by Lemma 4. Since τ(n) = o(nε) holds for any ε > 0 by [1], we have

∞∑
r1,r2,s1,s2=1

1

(lcm(r1, r2))s+2

1

(lcm(s1, s2))t+2

√
r1s1r2s2τ(r1)τ(r2)τ(s1)τ(s2)

5
∞∑

r1,r2,s1,s2=1

(r1r2s1s2)
1
2+ε

(lcm(r1, r2))s+2(lcm(s1, s2))t+2
,
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which is finite by Lemma 3. Therefore we have by Theorem 1

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

σs(gcd(n1, n2))

gcd(n1, n2)s
σt(gcd(n1 + h1, n2 + h2))

gcd(n1 + h1, n2 + h2)t

= ζ(s+ 2)ζ(t+ 2)

∞∑
r1,r2=1

1

(lcm(r1, r2))s+t+4
cr1(h1)cr2(h2).

By (7) we see that the above is equal to

ζ(s+ 2)ζ(t+ 2)
1

ζ(s+ t+ 4)

σs+t+4(gcd(h1, h2))

gcd(h1, h2)s+t+4

=
ζ(s+ 2)ζ(t+ 2)

ζ(s+ t+ 4)
σ−s−t−4(gcd(h1, h2)),

which completes the proof of Example 1.

The following example is an extension of (1).

Example 2. If s, t > 0, then

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

ϕs(gcd(n1, n2))

gcd(n1, n2)s
ϕt(gcd(n1 + h1, n2 + h2))

gcd(n1 + h1, n2 + h2)t

=
∏
p∈P

p-h1 or p-h2

(1− 1

ps+2
− 1

pt+2
)

∏
p∈P

p|h1, p|h2

(1− 1

ps+2
− 1

pt+2
+

1

ps+t+2
).

Proof. We first note that by [7, Example 3.11]

ϕs(gcd(n1, n2))

gcd(n1, n2)s
=

1

ζ(s+ 2)

∞∑
r1,r2=1

µ(lcm(r1, r2))

ϕs+2(lcm(r1, r2))
cr1(h1)cr2(h2) (8)

holds for s > 0. Since 1/ϕs+2(n) � nδ/ns+2 holds for any δ > 0 by [5, Theorem

1, pp. 81], the right-hand side of (8) is absolutely convergent by Lemma 4. Since

τ(n) = o(nε) holds for any ε > 0 we have

∞∑
r1,r2,s1,s2=1

∣∣∣ µ(lcm(r1, r2))µ(lcm(s1, s2))

ϕs+2(lcm(r1, r2))ϕt+2(lcm(s1, s2))

∣∣∣√r1s1r2s2τ(r1)τ(r2)τ(s1)τ(s2)

�
∞∑

r1,r2,s1,s2=1

(r1r2s1s2)
1
2+δ+ε

(lcm(r1, r2))s+2(lcm(s1, s2))t+2
,
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which is finite by Lemma 3. Therefore we have by Theorem 1

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

ϕs(gcd(n1, n2))

gcd(n1, n2)s
ϕt(gcd(n1 + h1, n2 + h2))

gcd(n1 + h1, n2 + h2)t

=
1

ζ(s+ 2)ζ(t+ 2)

∞∑
r1,r2=1

µ(lcm(r1, r2))2

ϕs+2(lcm(r1, r2))ϕt+2(lcm(r1, r2))
cr1(h1)cr2(h2). (9)

Here we recall the definition of a multiplicative function of two variables. We say

that f : N2 → C is a multiplicative function of two variables if f satisfies

f(m1n1,m2n2) = f(m1,m2) f(n1, n2)

for any m1,m2, n1, n2 ∈ N satisfying gcd(m1m2, n1n2) = 1.

Since

(r1, r2) 7→ µ(lcm(r1, r2))2

ϕs+2(lcm(r1, r2))ϕt+2(lcm(r1, r2))
cr1(h1)cr2(h2)

is a multiplicative function of two variables for fixed h1 and h2, we have

∞∑
r1,r2=1

µ(lcm(r1, r2))2

ϕs+2(lcm(r1, r2))ϕt+2(lcm(r1, r2))
cr1(h1)cr2(h2)

=
∏
p∈P

( ∑
e1,e2=0

µ(lcm(pe1 , pe2))2

ϕs+2(lcm(pe1 , pe2))ϕt+2(lcm(pe1 , pe2))
cpe1 (h1)cpe2 (h2)

)
=
∏
p∈P

(
1 +

cp(h1) + cp(h2)

ϕs+2(p)ϕt+2(p)
+

cp(h1)cp(h2)

ϕs+2(p)ϕt+2(p)

)
. (10)

Since ϕα(p) = pα − 1 and

cp(h) =

{
p− 1, if p | h;

−1, otherwise,

we see that (10) is equal to

∏
p|h1,p|h2

(
1 +

2(p− 1)

(ps+2 − 1)(pt+2 − 1)
+

(p− 1)2

(ps+2 − 1)(pt+2 − 1)

)
×

∏
p|h1,p-h2

(
1 +

p− 2

(ps+2 − 1)(pt+2 − 1)
− p− 1

(ps+2 − 1)(pt+2 − 1)

)
×

∏
p-h1,p|h2

(
1 +

p− 2

(ps+2 − 1)(pt+2 − 1)
− p− 1

(ps+2 − 1)(pt+2 − 1)

)
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×
∏

p-h1,p-h2

(
1 +

−2

(ps+2 − 1)(pt+2 − 1)
+

1

(ps+2 − 1)(pt+2 − 1)

)
=

∏
p∈P

p-h1 or p-h2

(
1− 1

ps+2
− 1

pt+2

)
/
(

(1− 1

ps+2
)(1− 1

ps+2
)
)

×
∏
p∈P

p|h1, p|h2

(
1− 1

ps+2
− 1

pt+2
+

1

ps+t+2

)
/
(

(1− 1

ps+2
)(1− 1

ps+2
)
)
.

Therefore we see that (9) is equal to

1

ζ(s+ 2)ζ(t+ 2)

∏
p∈P

p-h1 or p-h2

(
1− 1

ps+2
− 1

pt+2

)
/
(

(1− 1

ps+2
)(1− 1

ps+2
)
)

×
∏
p∈P

p|h1, p|h2

(
1− 1

ps+2
− 1

pt+2
+

1

ps+t+2

)
/
(

(1− 1

ps+2
)(1− 1

ps+2
)
)

=
∏
p∈P

p-h1 or p-h2

(1− 1

ps+2
− 1

pt+2
)

∏
p∈P

p|h1, p|h2

(1− 1

ps+2
− 1

pt+2
+

1

ps+t+2
).

This completes the proof of Example 2.

It is well known that the natural density that two positive integers are coprime

is 1/ζ(2) = 6/π2 =
∏
p∈P(1− 1/p2), namely,

lim
N→∞

1

N2
#{(n1, n2) ∈ (N ∩ [1, N ])2 : gcd(n1, n2) = 1} =

∏
p∈P

(1− 1/p2).

The following example is an extension of this result.

Example 3. If h1, h2 ∈ N, then

lim
N1,N2→∞

1

N1N2
#{(n1, n2) ∈ N2 : 1 5 n1 5 N1, 1 5 n2 5 N2,

gcd(n1, n2) = gcd(n1 + h1, n2 + h2) = 1}

=
∏
p∈P

p-h1 or p-h2

(1− 2/p2)
∏
p∈P

p|h1, p|h2

(1− 1/p2).

Proof. We first note that

lim
s↓0

ϕs(n)

ns
= lim

s↓0

∏
p|n

(1− 1/ps) = δ(n)
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holds where δ(n) = 1 or 0 according to whether n = 1 or not.

We let s, t ↓ 0 in Example 2. Since

lim
s,t↓0

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

ϕs(gcd(n1, n2))

gcd(n1, n2)s
ϕt(gcd(n1 + h1, n2 + h2))

gcd(n1 + h1, n2 + h2)t

= lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

δ(gcd(n1, n2))δ(gcd(n1 + h1, n2 + h2))

= lim
N1,N2→∞

1

N1N2
#{(n1, n2) ∈ N2 : 1 5 n1 5 N1, 1 5 n2 5 N2,

gcd(n1, n2) = gcd(n1 + h1, n2 + h2) = 1},

and

lim
s,t↓0

∏
p∈P

p-h1 or p-h2

(1− 1

ps+2
− 1

pt+2
)

∏
p∈P

p|h1, p|h2

(1− 1

ps+2
− 1

pt+2
+

1

ps+t+2
)

=
∏
p∈P

p-h1 or p-h2

(1− 2/p2)
∏
p∈P

p|h1, p|h2

(1− 1/p2),

we see that Example 3 holds.

Ushiroya [6, Example 4] proved

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

µ2(gcd(n1, n2)) =
∏
p∈P

(1− 1

p4
). (11)

The following example is an extension of this result.

Example 4. Let q be a prime number or q = 1. Then

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

µ2(gcd(n1, n2))µ2(gcd(n1 + q, n2 + q))

=
∏
p∈P

(1− 2

p4
).

Proof. We treat the case when q is a prime number. Let f(n1, n2) = µ2(gcd(n1, n2)).

Then we have by (11)

M(f) = lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

µ2(gcd(n1, n2)) =
∏
p∈P

(1− 1

p4
).
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By Ushiroya [7, Theorem 2.10] we have the following Ramanujan expansion of f

f(n1, n2) =

∞∑
r1,r2=1

M(f)A(lcm(r1, r2))cr1(n1)cr2(n2),

where A(n) is the multiplicative function determined by

A(pe) =


1, if e = 0;

−1/(p4 − 1), if e = 1, 2;

0, if e = 3.

It is easy to see that f satisfies the assumption of Theorem 1. Hence we have

lim
N1,N2→∞

1

N1N2

∑
n15N1

n25N2

µ2(gcd(n1, n2))µ2(gcd(n1 + q, n2 + q))

=

∞∑
r1,r2=1

(
M(f)A(lcm(r1, r2))

)2
cr1(q)cr2(q)

= (M(f))2
∏
p∈P

(
1 +

∑
05e1,e252

e1+e2=1

A(lcm(pe1 , pe2))2cpe1 (q)cpe2 (q)
)

= (M(f))2
∏
p∈P

(
1 +

∑
05e1,e252

e1+e2=1

(
−1

p4 − 1
)2cpe1 (q)cpe2 (q)

)

= (M(f))2
(

1 +
∑

05e1,e252

e1+e2=1

(
1

q4 − 1
)2cqe1 (q)cqe2 (q)

)

×
∏
p∈P
p 6=q

(
1 +

∑
05e1,e252

e1+e2=1

(
1

p4 − 1
)2cpe1 (q)cpe2 (q)

)
. (12)

Since

c1(q) = 1, cp(q) =

{
q − 1, if p = q;

−1 if p 6= q,
cp2(q) =

{
−q, if p = q;

0, if p 6= q,

we have

1 +
∑

05e1,e252

e1+e2=1

(
1

q4 − 1
)2cqe1 (q)cqe2 (q)

=1 + (
1

q4 − 1
)2(cq(q)c1(q) + c1(q)cq(q) + cq(q)cq(q) + cq2(q)c1(q) + c1(q)cq2(q)
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+ cq2(q)cq(q) + cq(q)cq2(q) + cq2(q)cq2(q))

=1− (
1

q4 − 1
)2,

and

1 +
∑

05e1,e252

e1+e2=1

(
1

p4 − 1
)2cpe1 (q)cpe2 (q)

=1 + (
1

p4 − 1
)2(cp(q)c1(q) + c1(q)cp(q) + cp(q)cp(q) + cp2(q)c1(q) + c1(q)cp2(q)

+ cp2(q)cp(q) + cp(q)cp2(q) + cp2(q)cp2(q))

=1− (
1

p4 − 1
)2,

for p 6= q. Therefor we see that (12) is equal to

(M(f))2
(

1− (
1

q4 − 1
)2
) ∏
p∈P
p 6=q

(
1− (

1

p4 − 1
)2
)

=
(∏
p∈P

(1− 1

p4
)
)2 ∏

p∈P

(
1− (

1

p4 − 1
)2
)

=
∏
p∈P

(1− 2

p4
).

The proof for the case in which q = 1 is similar. This completes the proof of

Example 4.
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