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Abstract
Let f, g : N2 — C be two arithmetic functions of two variables. We study the shifted
convolution sum defined by >°, <y, ., <n, f(n1,12)9(n1 + hi,n2 + ha), where hy
and hy are nonnegative integers. We use the method of Ramanujan expansions
used by Gadiyar, Murty, and Padma, who treated the case of arithmetic functions
of one variable. We extend their results to the case of arithmetic functions of two
variables.

1. Introduction

For an arithmetic function f : N — C, the mean value M(f) is defined to be the
limit

if this limit exists. There are many results concerning M(f). For example, from
the well-known formula Y - ¢(n) = (3/7%)N? + O(N log N) where ¢ is Euler’s
totient function, we have by partial summation

. 1 on) 6
oy T
n<N
Similarly, from the well-known formula Y <y o(n) = (72/12)N? + O(Nlog N)

where o(n) =3_,,, d, we have by partial summation

lim iZM:l.

N— 00
n<N
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On the other hand, Gadiyar, Murty, and Padma [2] studied the shifted convolu-
tion sum defined by
> f(n)g(n+h),

n<N

where f and g are two arithmetic functions, and h is a nonnegative integer. They
obtained

+h) —2p+1
i an =T I )

pEP plh p(p* =2
and, if o, 8 > 1/2

Z Ua )og(n+h) _ _ Cla+1)¢(B+1)
N (n+ h)8 Cla+B8+2)

lim
N—o00

o—a-p-1(h); (2)
n<N

where P is the set of prime numbers, o4(n) = >, d*, and ((s) is the Riemann
zeta function.

In this paper, we study the shifted convolution sum of arithmetic functions of
two variables defined by

li h h
N1,]¥2nﬁoo N1N2 Z fnl,nQ) (n1+ 1’n2+ 2)
n1 SNy
TL2§N2

where f, g are two arithmetic functions of two variables, and h1, ho are fixed nonneg-
ative integers. We extend the method of Ramanujan expansions used by Gadiyar,
Murty, and Padma [2] in the case of arithmetic functions of one variable, to the
case of arithmetic functions of two variables. We give some examples including
extensions of (1) and (2).

2. Ramanujan Sums and the Method of Gadiyar, Murty and Padma
Let ¢,(n) be the Ramanujan sums defined in [4] by

2mwikn

al) = X e,

gcd ):1

where ged(k,r) is the greatest common divisor of k¥ and r. Let f : N — C be
an arithmetic function. Ramanujan [4] investigated its Ramanujan-Fourier series
which is an infinite series of the form

n) =Y f(r)e.(n), (3)
r=1
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~

where f(r) are called the Ramanujan-Fourier coefficients of f, and he obtained, for
example, the following results.

0 - ey el (1
r=1

nS

ps(n) 1~ p(r)
ns ((s+1) —1 Pst1(r

)cr(n), (5)

where ¢;(n) =n*[],, (1 —1/p*) and p is the M6bius function.
Let 7(n) =5 djn 1- In their paper, Gadiyar, Murty, and Padma [2, Theorem 5]
obtained the following theorem.

Theorem (Gadiyar, Murty, and Padma). Suppose that f and g are two arithmetic
functions with absolutely convergent Ramanujan-Fourier series:

respectively. If

then, as N tends to infinity,

> f)gn+h) ~ N> F(r)ar)eq(h).
r=1

n<N

As a corollary of this theorem, Gadiyar, Murty, and Padma [2] obtained (1) and
(2). We will extend their results to the case of arithmetic functions of two variables
and obtain some results later.

3. Lemmas

In this section we prepare some lemmas. Gadiyar, Murty, and Padma [2, Lemma
2] proved

Z cr(n)es(n 4+ h) =0, sNep(h) + O(rslog(rs)),

ns<N
where h € Z and 6, s = 1 or 0 according to whether » = s or not. The following
lemma is a straightforward extension of this formula.
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Lemma 1. If hy,hy € Z, then

D en (m)er, (n2)es, (n1 + ha)ea, (n2 + ha)
ni §N1
n2SNo

= (0ry 5, N1¢r, (h1) + O(r15110g(7151))) (01 55 Nacr, (ha) + O(r2s2 log(r2s2))).

Gadiyar, Murty, and Padma [2, Lemma 3] proved
\ Z er(n)es(n+ h)| < A/ N(N + |h|)rst(r)7(s),
n<N
where h € Z. The following lemma is a straightforward extension of this inequality.

Lemma 2. If hy,hy € Z, then

| > e (n1)er, (n2)es, (n1 + ha)ea, (n2 + ha)
7L1§N1
nzSNo

§ \/Nl(Nl + |h1|)N2(N2 + ‘hg‘)T17‘281827(T1)T(Tg)T(Sl)T(Sg).

We also need the following two lemmas.

Lemma 3. If o 2 0 and s — 2a > 1, then

> Genprp <
e (lem(rq,79))*

where lem(ry, 7o) is the least common multiple of 11 and rs.

Proof. Setting d = ged(ry,72), 71 = dr}, and ro = dr}, we have

> (rira)® _ - - (7”17"2‘12)
Z (lem( 7‘1,7’2)) _Z Z (rirhd)s

&S] [eS)
- gm X 1
- s—2a I'\s—a(p! \s—a

e K I G G

ged(ry,rh)=1
[eS) &S] 9]
1 1 1

< < 00
= ; d8720‘ ri:l (,r,/l)sfa Téz_l (Té)sfoz
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Lemma 4. If s > 1, then for any ni,ns € N

o

1
2. ey lon (Wera ()l < oo
r1,m2=1 ’

Proof. From the well known formula c.(n) = 3_ ) 4ca(rn) d(r/d) we have

ler(ml =1 D du(r/d)] <Zd—al

d| ged(r,n)

Therefore we obtain by Lemma 3

(o9} oo

Z ;kﬁ(nl CTQ ’I’L2 § Z

1(”1)01(712)
7‘1,7‘2_1 <lcm(r1,r2)) T1,T2= 1

(lem rl,rg))

o0
=01 ’I’Ll o1 n2 E < 00.
(lem( 7’1,7“2))
T1,T2= 1

4. Theorem

In this section, we prove the following theorem which is an extension of Gadiyar-
Murty-Padma’s theorem introduced in Section 2 to the case of two variables.

Theorem 1. Let f,g be arithmetic functions of two variables. Suppose that

f(ni,n2) = Z Fri,m)er, (n1)ery (n2),

r1,r2=1

oo

glni,ne) = D Gls1,82)cs, (n)es, (n2),

51,82:1

are absolutely convergent and

o0

Z \f(rl, r2)g(s1, $2)|\/T15172827(1r1)T(r2)7(81)7(82) < 00.

r1,72,81,52=1

Then we have for nonnegative integers hy, ho

lim

Ni,Ny—o00 N1N2 Z fn17n2) (’I’Ll—|—h1’n2+h2)

n1SN;
n2<N2

Z (r1,72)g(r1, 72) e, (ha)er, (ha).
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Proof. The proof proceeds along the same lines as the proof of Gadiyar-Murty-
Padma’s theorem. We first see that

Z f(n1,n2)g

n; SNy
n2<No

o0

- 3

r1,72,81,52=1

(n1 + hi,n2 + ho)

Flrira)(st,s2) > eni(mi)er, (n2)cs, (n1 + hn)eg, (ng + ha),

n1§N1
naSN»

We split the outer sum over rq, rs, $1, S2 into four parts

POENEED DR DI D (6)

T151§U1 T181§U1 r1s1>U; r151>U;
T2$2§U2 roso>Us T282§U2 r252>Us
where Uy = /N7 and Uy = +/N5. As for the first part, we have by Lemma 1
ST Frir)g(si,s2) Y er (n1)en, (n2)es, (n1 + hi)ea, (na + ho)
7’151§U1 ’I’L1§N1
7’2€2<U2 TL2§N2
= Y f(r1,m2)d(s1,52) (0, 0, Nicr, (h1) + O(r151 log(r151)))
r1s1SUy
T252§U2
X (0ry,55 N2Cr, (h2) + O(ras2 log(rasa)))
Z .f T17T2 Sla82)6T1,915T2,32N1N287“1(h’l)cm(hQ)
r1s1SUy
T2€2<U2
+ 0y Fr1,72)G(s1, 52)O(r15110g(1151))0r, 5, Nacr, (ho)
ris1SUy
7‘232<U2
+ Z Flr1,m2)g 9(s1,52)0r, s; N1Cry (R1)O(1252 log(r252))
r1s1SUy
’1"252<U2
+ Z f (r1,72)9(81, 82)O (11517282 log(r181) log(ras2))
ris1SUy
r2s2SUs

=+ 1+ Is+ I4.

As for I; we have

Z f 7‘1,7"2

r1s1SU1
T282§U2

Sla 32)57“1,31 57“2,32 N1N2Cr1 (hl)CT‘Q (hQ)
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=N N, Z f (r1,72)g(r1,72)Cry (h1)Cry (h2).

<U1
7‘2_U2
Therefore we obtain
Nhl]brzn_)w N1N2I = Z ) f(ri,m2)g(r1,m2) 160, (h1)er, (ha).
T1,72=

As for I we have

2] =| Z Fr1,72)G(s1,52)O(r15110g(1151))0r,y 5, Nacy, (h2)|
r1s12U)
r252SUs

< > 11, r2)g(s1,72)|Ur (log Us) Naley, (ha))
7’181<U1
T2_U2

<(UilogUn )Ny Y [F(ri,m2)(s1,72) o1 (ho)

r1,r2,51=1

oo

<(V/Nilog V/Ni)Nooi(ha) Y~ |F(rim2)(s1,72)

r1,r2,81=1

:O(N1N2)7

where we have used |c¢,.(h)| £ o1(h) and the assumption of Theorem 1.
Similarly we have |I3] = o(N1Nz2). As for Iy we have

[14] =] Z Fr1,72)G(s1, 52)O (11517952 1og(r151) log(ras2))|
r1512U1
ras2SUs
i ~
<(UrlogU)(UzlogUs) Y |f(r1,r2)g(s1,52)]

r1,72,81,52=1

:O(NlNg).

Next we deal with ), ; <y, in (6). By Lemma 2 we have
r252>Us

LY Frr)d(siisa) Y en (ma)er, (na)es, (n1 + ha)es, (n2 + ho)l

’r’lslfUl n1§N1
o852 >Us naSNs
< Z 7"177“2 g(s1,s2) |\/N1 (N1 + |h1|)N2(Na + |ha|)riresisa

r1s1SU
rose >Us
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X 7(r1)7(r2)7(s1)7(82)

<K N1 N, Z |f(r1,72)g(s1, s2)|/T1r2s152T (1) T(1r2)T(51)7(52),

7"181§U1
r2s2>Usz

which is o(IN1N3) by the assumption of Theorem 1.
Similarly we have

> Frira)i(siisa) Y er(n1)en, (n2)es, (n1 + hi)ea, (2 + ha) = o( N1 Np),

ri1s1>Uq nléNl

resaSUs =
and

> Frir)g(s1,s2) Y er (ma)ery (na)es, (n1 + ha)es, (n2 + ha) = o( N1 Ny).
ri1s1>Uq ni §N1
rosa>Us na<Na
This completes the proof of Theorem 1. O
5. Examples

In this section, we give some examples. The following example is an extension of
(2).

Example 1. Ifs,t > 0, then

lim 1 Z os(ged(ny, na)) or(ged(ng + hi,ne + ha))

Ni,Na—o00 N1 Ng et ged(ng,ne)®  ged(ny + hi,no + ho)t
naSNa

C(s +2)¢(t +2)

= Wdfs,tle(gcd(hl, hg))

Proof. We first note that by [7, Example 3.8]

9s(ged(n1,n2)) _ C(s+2) > ;ﬁzcm(hl)crz(hﬂ (7)

ged(ny, ng)® oy (lem(r, 7o)

holds for s > 0. Moreover, since s > 0, the right-hand side of (7) is absolutely
convergent by Lemma 4. Since 7(n) = o(n®) holds for any € > 0 by [1], we have

o

1 1
Z (Iem(r1, r2))**2 (lem(sy, 52))1+2 \/T15172827(r1)7T(r2)7T(51)7(52)

T1,72,81,52=1

oo
< Z (riresis2)

(lem(ry, re))st2(Iem(sy, s2))t+2’

1
ate

T1,72,81,82=1
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which is finite by Lemma 3. Therefore we have by Theorem 1

‘m 1 Z os(ged(ni,ng)) o¢(ged(ng + hy,na + ha))
N1,Na—oo N1 Ny = ged(ng,ne)®  ged(ng + hi,no + ho)t
ny=>

n2SNo
> 1
=((s+2)C(t+2) n%::l (lem(ry, ro))5++4 cry (h1)er, (ha).

By (7) we see that the above is equal to

1 Ospiralged(hy, ha))
<(8+2)<(t+2)((5+t+4) ged(hy, hy)s+i+a
C(s+2)¢(t+2)

= WU—s—t—4(ng(hh h2))’

which completes the proof of Example 1. O
The following example is an extension of (1).
Example 2. Ifs,t >0, then

ps(ged(ny, n2)) @i(ged(ny + hi,na + ha))

lim
N1,Na—o0 N1 Ny = ged(ni,n2)®  ged(ng + hy,ng + ha)t
n1=IV1
7L2§N2
1 1 1 1 1
- H -5~ ) H A=~ ot o)
P p p P p p p
pthi or ptha plhi, plh2

Proof. We first note that by [7, Example 3.11]

—  p(lem(ry, o))

@st2(lem(ry, ra))

ps(ged(na,ng)) 1
ged(ng,ng)s C(s+2)

Crq (h’l)CTz (h2) (8)

Tl,’l‘z:l

holds for s > 0. Since 1/p,42(n) < n?/n*T2 holds for any § > 0 by [5, Theorem
1, pp. 81], the right-hand side of (8) is absolutely convergent by Lemma 4. Since
7(n) = o(n®) holds for any & > 0 we have

oo

Z ‘ pllem(ry, ra) plem(s, s)) ) VrisireseT(r)T(r2)7(s1)7(s2)

)
Psr2(lem(ri, m2)) @2 (lem(sy, s2
)2

r1,72,81,52=1

- (r1725152 sHote

< Z (lem(ry, r9))st2(Iem(sy, s2))t+2’

T1,72,81,52=1
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which is finite by Lemma 3. Therefore we have by Theorem 1

@s(ged(ni, n2)) pr(ged(ni + hi,no + ha))
> ng(TLl, ’I’LQ)S gcd(nl + hi,n9 + hg)t
1SNy
n2§N2

v f: p(lem(ry, 72))?

(s +2)C(t+2) | 4= psyallem(ri, r2))pra(lem(re, ra))

lim
Nij,Ny— o0 N1N2
n

¢y (ha)er, (h2). (9)

Here we recall the definition of a multiplicative function of two variables. We say
that f: N2 — C is a multiplicative function of two variables if f satisfies

f(mlnl,ang) = f(mbmz) f(n1,n2)

for any mi,ms,n1,n9 € N satisfying ged(mimg, ning) = 1.
Since

p(lem(ry, r2))?

T1,T9)
(rara) = em(rr, ra))pr e (lem(rm, 72))

Cry (hl)c?”2 (hQ)

is a multiplicative function of two variables for fixed hy and ho, we have

oo

3 p(lem(ry, rp))?

psta2(lem(ry, r2))piro(lem(ry, 72))

Cry (hl)cTz (h2)

7‘1,7’2:1

- H( 3 p(lem(p®, p©2))

PP Ve, s Per2lem(p®, p22))or o (lem(per, p©2))

2

eper (h1)eyea (h2))

_ cp(h1) + cp(h2) cp(hi)ep(he)
; plel H Pst+2(P)pr+2(p) * <Ps+2(l>)<,0t+2(p))'

Since ¢, (p) = p® — 1 and

p—- 17 lfp h;
cp(h) = { |

-1, otherwise,

we see that (10) is equal to

2(p—1) (p—1)?
H (1 + (ps+2 _ 1)(pt+2 _ 1) + (ps+2 _ 1)(pt+2 _ 1))

plh1,plha
p—2 p—1
X (1 + — )
ol hgmz (P2 =1 -1) (P -1)pEp**-1)
p—2 p—1
X (1 + — )
thm P2 =" -1) (@ -DE*2-1)
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11
-2 1
X H (1 + 73 + )
: —Dptt2 =1 s+2 1) (pt+2 — 1
L e T e e
1 1 1 1
= pg) (1_1@—@)/((1_@)(1—@))
pthy or pthy
1 1 1 1 1
< 1 (1 ~r pr ps+t+2)/((1 — )1 W))'
peEP
plhi, plhs
Therefore we see that (9) is equal to
1 1 1 1 1
o I (g (00 )
Grmcrry W 0 pm )/ (0 )t )
pthy or pthy
1 1 1 1 1
X H (1 Copst2 pit2 + ps+t+2>/<(1 o ps+2)(1 o W))
peEP
plhi, plhe
1 1 1 1 1
= H (-5 - =) H O-—=5 - e )
P p p P p p p
pthi or ptha plhi, plhe
This completes the proof of Example 2. O

It is well known that the natural density that two positive integers are coprime
is 1/(2) = 6/ = TT,ep(1 — 1/p%), namely,

Jim_ %#{(nl, na) € (N [L, N])? : ged(n, mo) = 1} = [[ (1 = 1/p2).

pEP
The following example is an extension of this result.

Example 3. If hy,ho € N, then

1 2
1<m <NL1<ny <N,
v N, ) ENTELS S N LS e S N,

ng(Tll,Tlg) = gcd(m + hy,no + hg) = 1}
= JI a-2 JI a-1/p.

peP peEP
pth1 or ptha plh1, plha

Proof. We first note that

. ps(n)
| =1 1—1/p%) =94
lim =3 i p‘n( /p®) = d(n)
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holds where §(n) = 1 or 0 according to whether n =1 or not.
We let s,t | 0 in Example 2. Since

@s(ged(ni, n2)) ge(ged(ng + hy,ng + ha))

li li
s,ltrilo Nl,Jifrgn—wo N1 No — gcd(nl, TLQ)S ng(TLl + hi,n9 + hg)t
n1=IV1
n2<No
1
= 1 6(ged o(ged h h
i N, 2 Olaed(m,na))a(ged(ms £ ha,na o)
n1SN;
n2<Ns

= lim
Ni,Ny— o0 N1N2

#{(n1,m2) EN?: 1 <n; SNy, 1 S ng S Ny,

ged(ng, ne) = ged(ng + hi,na + ho) = 1},

and
1 1 1 1 1

im [ 0-—5--5 [ - - + )

s 542 t+2 512 t+2 St+i+2

10 P p p pEP p p p

pth1 or pthe plh1, plha
= ] a-2»n ] a-1/%,
peEP peEP
pthy or pthy plh1, plha

we see that Example 3 holds. O

Ushiroya [6, Example 4] proved

1 1
li 2(oed = 1— . 11
Bt $ o<l d
ni=INNi
n2<No

The following example is an extension of this result.

Example 4. Let q be a prime number or ¢ = 1. Then

: 1 2 2
N I
ni=IN1
n2SNs

2
- H(1—E).

peP

Proof. We treat the case when ¢ is a prime number. Let f(nq,n2) = p?(ged(n1,n2)).
Then we have by (11)

1

S w(eed(nm,me)) = [0 - 4.

n1§N1 peEP p
ne <Ny

M(f) - Nl,kflznaoo N1N2
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By Ushiroya [7, Theorem 2.10] we have the following Ramanujan expansion of f

nlan2 Z M lcm(rlv7n2))c7”1 (nl)CT‘2 (n2)7

r1,r2=1

where A(n) is the multiplicative function determined by

1, if e=0;
A(p®) =4 -1/(p" = 1), ife=12
0, ife=3.

It is easy to see that f satisfies the assumption of Theorem 1. Hence we have

1

2 2
N > pP(ged(ny, na))p® (ged(n1 + ¢,n2 + q))

n1§N1
n2<Na

oo

= 3 (M(H)AQem(ri.r2))) er, (a)ers (a)
r1,ro=1

2 H (1 + Z A(lcm(pel,pEZ))chel (q)cpez (q))

PEP 0Zer,exS2
61+62>1

I+ X«

pEP 0<€1,€2<2
el+pz>1

Vep (@)= (@)

= (e 3 <2<q41_ e (@ (0))
o teast

< |1 (1 + > )2 epen (Q)Cp52(Q))- (12)

pEP 0<€1,62<2
PF#q e1tea>1

Since

qg—1, ifp=g —q, ifp=gq
ci(g) =1, CP(Q):{ cpz(q)Z{

-1 if p # ¢, 0, ifp#gq,
we have
1+ Z )2cqer (@)eqe2 (q)
O<el,62<2
e1tex=>1
1 () 2(eg(@)en(0) + 1 (@)eq(a) + ca(@)eq(a) + e (@)er (@) + 1 (@)ega (g)

-1
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+ cq2(q)cq(q) + cq(@)eqz (q) + cq2(9)cq2(q))

1
=1— 2
(="
and
I
1+ 3 Crplan @)
0281,6222
e1+ezx>1

=1+ (ﬁ)z(cp(q)cl(q) +c1(q)ep(q) + cp(@)ep(a) + epz(q)er(q) + cr(g)epz(q)

+ cp2(q)ep(q) + ep(@)ep2(q) + cp2(q)ep2(q))

-1 (
for p # q. Therefor we see that (12) is equal to

MR (1= () T - Grp?)

peEP
P#q
= (};(1 - 14)):1;(1 - (p41, 1)2> - pg)(l N 1%)'

The proof for the case in which ¢ = 1 is similar. This completes the proof of
Example 4. O
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