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Abstract

Natural numbers satisfying an unusual property are mentioned by the author in a
previous note, in which their infinitude is also proved. In this paper, we start with
an arbitrary natural number which is not a multiple of 10 and non-palindromic,
form numbers by concatenating its decimal digits, and investigate which of them
have the unusual property. In particular, the pattern of which of them have the
unusual property recurs.

1. Introduction

An unusual property which some natural numbers, e.g., 198, satisfy are defined by

the author in [5]. We see that

198 = 2 · 32 · 11,

891 = 34 · 11,

and

2 + (3 + 2) + 11 = (3 + 4) + 11.

That is, the sum of the numbers appearing in the prime factorizations of the two

numbers are equal. Notice that the exponents 1 do not appear. In general, the def-

inition is, that a natural number n has this property if 10 - n, n is non-palindromic,

and that the sum of the numbers appearing in the prime factorization of n is equal

to that of the number formed by reversing its decimal digits. In [5], the infinitude

of such numbers is proved, in particular

18, 1818, 181818, . . . , (1)

18, 198, 1998, 19998, . . . (2)
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all have this property. The first is the sequence of concatenations of 18; the second

is the sequence of numbers 19 . . . 98, with any number of 9’s in between. In this

paper, we start with an arbitrary non-palindromic natural number 10 - n, form, like

in the sequence (1), numbers by concatenating its decimal digits, and show that

there is a recurring pattern in which of them have this property. More precisely,

whether one of them has this property depends only on the number of times the

digits of n are concatenated to form it modulo some natural number.

This unusual property, called v-palindromicity in this paper, is defined using the

following two concepts.

• Reversing the decimal digits of a natural number n. In this paper we only

allow n to not be a multiple of 10, and denote the resulting number by r(n).

The reason is that we do not want to have leading digits of 0 after reversing.

• In the prime factorization of a natural number

n = pe11 p
e2
2 · · · pemm , (3)

summing all the numbers that appear, i.e., the prime factors and the expo-

nents, but not including an exponent when it is 1, because they are usually

not written. In this paper we denote this sum by v(n), i.e.,

v(n) =

m∑
i=1

(pi + ι(ei)), (4)

where ι(e) = 0 if e = 1 and ι(e) = e if e ≥ 2.

About reversing the decimal digits of a natural number, some investigations have

been done by others. In [3], numbers n such that n divides r(n), i.e., n | r(n), are

mentioned. In particular, all of the numbers in

2178, 21978, 219978, 2199978, . . . , (5)

i.e., the sequence of numbers 219 . . . 978, with any number of 9’s in between, satisfy

4n = r(n). The resemblance of the sequences (2) and (5) is a bit interesting. While

the relation n | r(n) is studied in [3], the relation v(n) = v(r(n)) is studied in this

paper. In [2], non-palindromic prime numbers p such that r(p) is also prime are

mentioned. They are called emirps.

About v(n), similar arithmetic functions have been studied. In [1], assuming

Equation (3), the arithmetic function

A(n) =

m∑
i=1

piei (6)
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is studied. Also, the entries A008474 and A000026 of the OEIS [4] are similar to

v(n). The entry A008474 is, assuming Equation (3),

v′(n) =

m∑
i=1

(pi + ei), (7)

which is almost the same as v(n) except that it has ei instead of ι(ei), i.e., when

summing all the numbers that appear on the right-hand-side of Equation (3), also

including an exponent when it is 1.

Palindromes are numbers n such that n = r(n). These obviously satisfy n | r(n)

and also v(n) = v(r(n)). Therefore the problem studied in [3], as well as the content

of this paper, are more about non-palindromes, rather than palindromes.

2. Definition of the Unusual Property

In this section we will recall the definition in [5] of the unusual property. In the

following,

N 6=10 = {n ∈ N : 10 - n},
Z≥0 = {z ∈ Z : z ≥ 0}.

Definition 1. For n ∈ N 6=10 with decimal representation n = dk−1 . . . d1d0, we put

r(n) = d0d1 . . . dk−1.

That is, r(n) is the number formed by writing the decimal digits of n in reverse

order. Hence we have r : N 6=10 → N 6=10. We define n to be palindromic if n = r(n).

Definition 2. We put

• v(p) = p for p a prime,

• v(pe) = p+ e for p a prime and e ≥ 2,

and insist that v : N→ Z≥0 be an additive arithmetic function. If we put

ι(e) =

{
0 (e = 1)

e (e ≥ 2),

then we may combine the above two points and just put

v(pe) = p+ ι(e).
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Let n ≥ 2 be a natural number with prime factorization

n = pe11 p
e2
2 · · · pemm . (8)

Then

v(n) =

m∑
i=1

v(peii ) =

m∑
i=1

(pi + ι(ei)).

Hence v(n) is the sum of the numbers appearing in the prime factorization of n,

not counting exponents which are 1.

We may now define the unusual property, which we call v-palindromicity.

Definition 3. A natural number n is v-palindromic if n ∈ N 6=10, n 6= r(n), and

v(n) = v(r(n)).

It is clear that if n is v-palindromic then so is r(n). As noted in the Introduction,

198 and the numbers (1) are v-palindromic numbers. In the next section we shall

state our main theorem.

3. Statement of the Main Theorem

In this section we shall define some notations to state our main theorem.

Definition 4. For c, k ≥ 1, put

ρc,k =

c︷ ︸︸ ︷
1 0 . . . 0︸ ︷︷ ︸
k − 1

1 0 . . . 0︸ ︷︷ ︸
k − 1

1 . . . 1 0 . . . 0︸ ︷︷ ︸
k − 1

1,

meaning that 1 appears c times and that between each consecutive pair of them 0

appears k − 1 times.

It is clear that if n is a k-digit number then the number formed by concatenating

its digits c times is just nρc,k. We may now state our main theorem.

Theorem 1. Let n be a natural number with k digits and with n ∈ N 6=10 and

n 6= r(n). Then there exists a natural number ω > 0 such that for every c ≥ 1,

nρc,k is v-palindromic if and only if nρc+ω,k is. In other words, whether nρc,k is

v-palindromic depends only on c modulo ω.

Remark 1. In fact the main theorem also holds if in defining v-palindromic num-

bers we used the v′ in Equation (7) instead of v. Moreover the proof will be slightly

shorter because one does not have to deal with the subtlety caused by not summing

an exponent when it is 1.

We make the following definition based on the truth of the above theorem.
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Definition 5. A natural number ω > 0 satisfying the condition of the above the-

orem is called a period of n and the smallest one is denoted ω(n). If there exists a

c ≥ 1 such that nρc,k is v-palindromic, the smallest one is called the order of n and

denoted c(n). If such a c does not exist then we write c(n) =∞.

We have the following.

Theorem 2. The set of all periods of n is {qω(n) : q ∈ N}.

We prove our main theorem in Section 7. Before that, we need some preparation.

In Section 4 we investigate some divisibility properties of the numbers ρc,k. In

Section 6 we first consider the case n = 819 of the main theorem; the proof of the

main theorem is essentially a generalization of this.

4. Divisibility Properties of ρc,k

We consider the divisibility of the numbers ρc,k by prime powers pα. Recall that

ordp(n) is the largest integer β with pβ | n. We have the following lemma.

Lemma 1. Let pα be a prime power, with p 6= 2, 5. Let k ≥ 1, let β = ordp(10k−1),

and let h be the order of 10k regarded as an element of (Z/pα+βZ)×. Then h > 1

and for c ≥ 1, pα | ρc,k if and only if h | c.

Proof. We first show that h > 1. That h = 1 means that 10k ≡ 1 (mod pα+β), or

equivalently, pα+β | 10k − 1, or equivalently, pα+ordp(10
k−1) | 10k − 1. This cannot

be, whence h > 1. We have

(10k − 1)ρc,k = (10k − 1)

c−1∑
i=0

10ki = 10kc − 1.

As β = ordp(10k − 1), pα | ρc,k if and only if 10kc − 1 ≡ 0 (mod pα+β), or equiva-

lently, 10kc ≡ 1 (mod pα+β), or equivalently, h | c. The last equivalence is due to

the structure of cyclic groups.

Remark 2. In Lemma 1, if p = 2, 5, then 10k cannot be regarded as an element of

(Z/pα+βZ)×. But obviously for every c ≥ 1, pα - ρc,k. Also, let us denote the h in

the lemma by hpα,k.

Using Mathematica [6] we can calculate the following values.
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pα 7 72 13 132 17 172

hpα,3 2 14 2 26 16 272

Table 1: Values of hpα,3 for various prime powers pα.

Regarding divisibility in general, not just for ρc,k, we recall the following facts.

Lemma 2. Let n be a natural number, let p be a prime, and let g = ordp(n). Then

(i) g = 0 if and only if p - n,

(ii) g = 1 if and only if p | n and p2 - n,

(iii) g ≤ 1 if and only if p2 - n,

(iv) g ≥ 1 if and only if p | n, and

(v) g ≥ 2 if and only if p2 | n.

We will need this lemma later.

5. The Functions ϕp,δ

For a fixed prime p, the sequence of powers of p is

1, p, p2, . . . , pα, . . . .

Applying v to them yields

0, p, p+ 2, . . . , p+ α, . . . .

Now we take differences of consecutive terms to get

p, 2, 1, . . . , 1, . . . , (9)

with all 1’s from the third term onwards. We give notation for the terms of this

sequence.

Definition 6. For a prime p and integer α ≥ 0, put

ϕp,1(α) = v(pα+1)− v(pα).

In this notation then, the sequence (9) is (ϕp,1(α))∞α=0. More generally we define

the following.
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Definition 7. For a prime p, an integer α ≥ 0, and a δ ≥ 1, put

ϕp,δ(α) = v(pα+δ)− v(pα).

In this notation, for instance, the sequence (ϕp,3(α))∞α=0 is

p+ 3, 4, 3, . . . , 3, . . . ,

with all 3’s from the third term onwards. More generally, for δ ≥ 2, the sequence

(ϕp,δ(α))∞α=0 is just

p+ δ, δ + 1, δ, . . . , δ, . . . . (10)

We may view, for a prime p and δ ≥ 1, ϕp,δ : Z≥0 → N as a function of α ∈ Z≥0.

Rephrasing the sequences (9) and (10), the values of ϕp,δ may be summarized as

ϕ2,1(α) =

{
2 (α = 0, 1)

1 (α ≥ 2),
(11)

and if p 6= 2,

ϕp,1(α) =


p (α = 0)

2 (α = 1)

1 (α ≥ 2),

(12)

and if δ ≥ 2,

ϕp,δ(α) =


p+ δ (α = 0)

δ + 1 (α = 1)

δ (α ≥ 2).

(13)

We have deliberately distinguished between the cases where the values are distinct.

We give a notation for the ranges of ϕp,δ.

Definition 8. For a prime p and δ ≥ 1 put Rp,δ = ϕp,δ(Z≥0).

Remark 3. In view of Equations (11), (12), and (13), it is clear that |R2,1| = 2

and |Rp,δ| = 3 otherwise. Also, any nonempty fiber of ϕp,δ is one of

{0}, {1}, {0, 1}, Z≥2 = {z ∈ Z : z ≥ 2}.

Following directly from Equations (11), (12), and (13), we have the following

lemma.

Lemma 3. Let p be a prime, δ ≥ 1, u ∈ Rp,δ, and µ ≥ 0. Then we have the

following.

(i) In case ϕ−1p,δ(u) = {0}, for g ≥ 0,

ϕp,δ(µ+ g) = u if and only if µ+ g = 0

if and only if

{
g = 0 (µ = 0)

impossible (µ ≥ 1).

(14)
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(ii) In case ϕ−1p,δ(u) = {1}, for g ≥ 0,

ϕp,δ(µ+ g) = u if and only if µ+ g = 1

if and only if

{
g = 1− µ (µ = 0, 1)

impossible (µ ≥ 2).

(15)

(iii) In case ϕ−1p,δ(u) = {0, 1}, for g ≥ 0,

ϕp,δ(µ+ g) = u if and only if µ+ g ∈ {0, 1}

if and only if


g ≤ 1 (µ = 0)

g = 0 (µ = 1)

impossible (µ ≥ 2).

(16)

(iv) In case ϕ−1p,δ(u) = Z≥2, for g ≥ 0,

ϕp,δ(µ+ g) = u if and only if µ+ g ≥ 2

if and only if

{
g ≥ 2− µ (µ = 0, 1)

always true (µ ≥ 2).

(17)

Here “impossible” means that no g ≥ 0 can be found to fulfill ϕp,δ(µ+ g) = u, and

“always true” means that all g ≥ 0 fulfills ϕp,δ(µ+ g) = u.

6. The Case of n = 819

We consider the case n = 819 of Theorem 1. We have the prime factorizations

819 = 32 · 7 · 13,

918 = 2 · 33 · 17.

Let the prime factorization of ρc,3 be

ρc,3 = 3g1 · 7g2 · 13g3 · 17g4 · b,

where (b, 3 · 7 · 13 · 17) = 1. The numbers g1, g2, g3, g4, b obviously depend on c, but

we have suppressed the notation for simplicity. Now

819ρc,3 = 32+g1 · 71+g2 · 131+g3 · 17g4 · b,
r(819ρc,3) = 918ρc,3 = 2 · 33+g1 · 7g2 · 13g3 · 171+g4 · b.
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Applying the additive function v to these equations,

v(819ρc,3) = v(32+g1) + v(71+g2) + v(131+g3) + v(17g4) + v(b),

v(r(819ρc,3)) = v(918ρc,3) = v(2) + v(33+g1) + v(7g2) + v(13g3) + v(171+g4) + v(b).

Hence 819ρc,3 is a v-palindromic number if and only if the above two quantities are

equal, that is, after rearranging,

(v(71+g2)− v(7g2)) + (v(131+g3)− v(13g3))

= 2 + (v(33+g1)− v(32+g1)) + (v(171+g4)− v(17g4)).

In terms of the functions ϕp,δ of Section 5, this becomes

ϕ7,1(g2) + ϕ13,1(g3) = 2 + ϕ3,1(2 + g1) + ϕ17,1(g4). (18)

Since 2 + g1 ≥ 2, by Equation (12), ϕ3,1(2 + g1) = 1, therefore Equation (18)

becomes

ϕ7,1(g2) + ϕ13,1(g3) = 3 + ϕ17,1(g4). (19)

Now consider the equation

u2 + u3 = 3 + u4. (20)

We want to solve it for u2 ∈ R7,1, u3 ∈ R13,1, and u4 ∈ R17,1. In view of Equation

(12),

R7,1 = {7, 2, 1}, R13,1 = {13, 2, 1}, R17,1 = {17, 2, 1}.

By trying all possibilities we see that the only solutions are (u2, u3, u4) = (7, 13, 17)

and (2, 2, 1). Whence Equation (19) is satisfied if and only if

(ϕ7,1(g2), ϕ13,1(g3), ϕ17,1(g4)) = (7, 13, 17) or (2, 2, 1).

We first consider when (ϕ7,1(g2), ϕ13,1(g3), ϕ17,1(g4)) = (7, 13, 17). By Lemma 3 (or

more easily just by looking at Equation (12)), Lemma 2, Lemma 1, and Table 1,

ϕ7,1(g2) = 7 if and only if g2 = 0 if and only if 7 - ρc,3
if and only if h7,3 - c if and only if 2 - c,

(21)

and

ϕ13,1(g3) = 13 if and only if g3 = 0 if and only if 13 - ρc,3
if and only if h13,3 - c if and only if 2 - c,

(22)

and

ϕ17,1(g4) = 17 if and only if g4 = 0 if and only if 17 - ρc,3
if and only if h17,3 - c if and only if 16 - c.

(23)
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Hence (ϕ7,1(g2), ϕ13,1(g3), ϕ17,1(g4)) = (7, 13, 17) simply when c is odd. We next

consider when (ϕ7,1(g2), ϕ13,1(g3), ϕ17,1(g4)) = (2, 2, 1). Similarly we have

ϕ7,1(g2) = 2 if and only if g2 = 1 if and only if

{
7 | ρc,3,
72 - ρc,3

if and only if

{
h7,3 | c,
h72,3 - c

if and only if

{
2 | c,
14 - c,

(24)

and

ϕ13,1(g3) = 2 if and only if g3 = 1 if and only if

{
13 | ρc,3,
132 - ρc,3

if and only if

{
h13,3 | c,
h132,3 - c

if and only if

{
2 | c,
26 - c,

(25)

and

ϕ17,1(g4) = 1 if and only if g4 ≥ 2 if and only if 172 | ρc,3
if and only if h172,3 | c if and only if 272 | c,

(26)

where two divisibility relations to the right of a left brace means that both must

hold. Hence (ϕ7,1(g2), ϕ13,1(g3), ϕ17,1(g4)) = (2, 2, 1) precisely when 272 | c and

(c, 7 · 13) = 1. Hence we have established the following characterization.

Theorem 3. For c ≥ 1, the number 819ρc,3 is v-palindromic if and only if c is odd

or if 272 | c and (c, 7 · 13) = 1.

From the above theorem, we immediately see that c(819) = 1 (refer to definitions

in Definition 5). We see that 819ρc,3 is v-palindromic if and only if all 3 conditions

(21), (22), and (23) hold, or if all 3 conditions (24), (25), and (26) hold. Now these

conditions have the same truth values when c increases by lcm(16, 14, 26, 272) =

24752. Hence ω = 24752 is a period of 819. With some work, it can be shown that

actually it is the smallest period, that is, ω(819) = 24752.

7. Proof of the Main Theorem

We now enter the proof of the main theorem and this is essentially writing the

discussion about 819 in the previous section in the general setting.

Let the prime factorizations of n and r(n) be

n = pe11 p
e2
2 . . . pemm ,

r(n) = pf11 p
f2
2 . . . pfmm ,
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where we have done the factorization over the set of primes which divide one of n

or r(n), setting ei = 0 or fi = 0 if necessary. Since n 6= r(n), we have ei 6= fi for

some i. Let the set of i such that ei 6= fi be

i1 < i2 < . . . < it. (27)

Let the prime factorization of ρc,k be

ρc,k = pg11 p
g2
2 . . . pgmm b, (28)

where (b, p1p2 . . . pm) = 1. The g1, g2, . . . , gm, b obviously depend on c, but we

suppress them from our notation for simplicity. Then

nρc,k = pe1+g11 pe2+g22 . . . pem+gm
m b,

r(nρc,k) = r(n)ρc,k = pf1+g11 pf2+g22 . . . pfm+gm
m b.

Taking their v, we have

v(nρc,k) =

m∑
i=1

v(pei+gii ) + v(b),

v(r(nρc,k)) =

m∑
i=1

v(pfi+gii ) + v(b).

Hence nρc,k is v-palindromic, that is, v(nρc,k) = v(r(nρc,k)), if and only if

m∑
i=1

(v(pei+gii )− v(pfi+gii )) = 0. (29)

If ei = fi, of course the term v(pei+gii )− v(pfi+gii ) = 0, so by (27), Equation (29) is

equivalent to
t∑

j=1

(v(p
eij+gij
ij

)− v(p
fij+gij
ij

)) = 0. (30)

This is a cumbersome notation, and we will just write pij as pj , eij as ej , fij as

fj , and gij as gj , because we will not refer to the other prime factors or exponents

from here on. Consequently, Equation (30) becomes

t∑
j=1

(v(p
ej+gj
j )− v(p

fj+gj
j )) = 0. (31)

We also write

δj = ej − fj ,
µj = min(ej , fj),

αj = µj + gj ,
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for 1 ≤ j ≤ t. Then it is clear that the left-hand-side of Equation (31) can be

rewritten, using the functions ϕp,δ of Section 5, as

t∑
j=1

(v(p
ej+gj
j )− v(p

fj+gj
j ))

=

t∑
j=1

sgn(δj)(v(p
αj+|δj |
j )− v(p

αj
j )) =

t∑
j=1

sgn(δj)ϕpj ,|δj |(αj),

(32)

where sgn is the sign function with sgn(δj) = 1 if δj > 0 and sgn(δj) = −1 if δj < 0.

Now consider the equation
t∑

j=1

sgn(δj)uj = 0. (33)

Supposedly we can solve it for

(u1, u2, . . . , ut) ∈ Rp1,|δ1| ×Rp2,|δ2| × · · · ×Rpt,|δt|.

Let the set of all solutions be

U = {u = (u1, . . . , ut)}.

Then we see that
t∑

j=1

sgn(δj)ϕpj ,|δj |(αj) = 0

holds if and only if for some u ∈ U ,

ϕpj ,|δj |(αj) = uj

for all 1 ≤ j ≤ t. Summarizing what we have done up to now, we have shown the

following.

Lemma 4. For c ≥ 1, the number nρc,k is v-palindromic if and only if for some

u ∈ U , ϕpj ,|δj |(αj) = uj for all 1 ≤ j ≤ t.

Now let us just consider any particular condition ϕpj ,|δj |(αj) = ϕpj ,|δj |(µj+gj) =

uj . If in the statement of Lemma 3, we substitute the p, δ, u, and µ by pj , |δj |, uj ,
and µj , respectively, we have

ϕpj ,|δj |(µj + gj) = uj if and only if



gj = 0 (if (i, 0), or (ii, 1), or (iii, 1))

gj = 1 (if (ii, 0))

gj ≤ 1 (if (iii, 0))

gj ≥ 1 (if (iv, 1))

gj ≥ 2 (if (iv, 0))

impossible (otherwise)

always true (if (iv,≥ 2)),

(34)
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where on the right, a notation like (N, µ), where N is a Roman numeral and µ = 0, 1,

denotes the case (N) in Lemma 3 and in addition the case where µj = µ; (iv,≥ 2)

denotes the case (iv) of Lemma 3 and in addition the case where µj ≥ 2. As the

last two cases (“impossible” and “always true”) never change as c varies, we exclude

them from our consideration. By Lemma 2, we can continue the equivalences in

(34) respectively (here we do not write out the cases as in (34)), recalling that

gj = ordpj (ρc,k),

ϕpj ,|δj |(µj + gj) = uj if and only if



pj - ρc,k
pj | ρc,k and p2j - ρc,k
p2j - ρc,k
pj | ρc,k
p2j | ρc,k.

(35)

In case pj 6= 2, 5, we can apply Lemma 1 to (35) to obtain, respectively,

ϕpj ,|δj |(µj + gj) = uj if and only if



hpj ,k - c
hpj ,k | c and hp2j ,k - c
hp2j ,k - c
hpj ,k | c
hp2j ,k | c.

(36)

However, in case pj = 2, 5, by Remark 2, (35) becomes

ϕpj ,|δj |(µj + gj) = uj if and only if



always true

impossible

always true

impossible

impossible.

(37)

In general, if a, b′ ≥ 1 are integers with a | b′, then for integers b ≥ 1 (not the b

introduced in Equation (28)), a | b if and only if a | (b+ b′). Hence we see that the

truth value of ϕpj ,|δj |(µj + gj) = uj does not change if we increase c by

ω = lcm{hpj ,k, hp2j ,k : pj 6= 2, 5}. (38)

In view of Lemma 4, whether nρc,k is v-palindromic or not depends only on the

truth values of the individual (ϕpj ,|δj |(µj + gj) = uj)’s. Hence this ω serves as a

possible ω as required by the main theorem.
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8. Further problems

In the proof of the main theorem, we constructively found a possible ω in Equation

(38); let us denote it by ωf (n). However, whether or not ωf (n) is the smallest period,

i.e., ω(n), is still unclear, although we know by Theorem 2 that ω(n) | ωf (n). The

following is a table of ωf (n), ω(n), and c(n), for n ≤ 56 with n < r(n), computed

using Mathematica [6]. We can assume without loss of generality that n < r(n)

because the patterns for n and r(n) are exactly the same, i.e.,

ωf (n) = ωf (r(n)),

ω(n) = ω(r(n)),

c(n) = c(r(n)).

n 12 13 14 15 16 17 18 19 23

ωf (n) 21 6045 4305 136 1830 337960 9 15561 253

ω(n) 1 6045 1 1 1 337960 1 15561 1

c(n) ∞ 15 ∞ ∞ ∞ 280 1 819 ∞

n 24 25 26 27 28 29 34 35 36

ωf (n) 21 39 6045 9 4305 102718 122808 14469 21

ω(n) 1 1 6045 1 1 1 1 1 1

c(n) ∞ ∞ 15 ∞ ∞ ∞ ∞ ∞ ∞

n 37 38 39 45 46 47 48 49 56

ωf (n) 32412 581913 6045 9 253 119991 21 22701 273

ω(n) 32412 1 6045 1 1 1 21 22701 273

c(n) 12 ∞ 15 ∞ ∞ ∞ 3 3243 3

Table 2: Values of ωf (n), ω(n), and c(n), for n ≤ 56 with n < r(n).
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From this table, it seems that we always have ω(n) = 1 or ω(n) = ωf (n). There-

fore we make the following conjecture.

Conjecture 1. Let n be a natural number with n ∈ N 6=10 and n 6= r(n). Then

ω(n) = 1 or ω(n) = ωf (n).

For the third rows, i.e., the rows of values of c(n),∞means that by concatenating

the decimal digits of n any number of times, no v-palindromic number will be

reached; otherwise c(n) is the least number of times we have to concatenate the

decimal digits of n to reach a v-palindromic number. Therefore we can consider

such a problem.

Problem 1. Is there a simple way to determine whether c(n) =∞ or not?

Finally, it seems that for most n, c(n) = ∞. In fact, it can be shown that all

the numbers in (5) have c(n) = ∞, so in particular there are infinitely many such

numbers. Hence it is natural to conjecture the following.

Conjecture 2. Let S = {n ∈ N : 10 - n, n < r(n)} and let T = {n ∈ S : c(n) =

∞}. Then the asymptotic density of T in S is 1.

9. Some Sequences

After releasing the manuscript, the author had some correspondences with Michel

Marcus. Inspired by the author’s manuscript, Michel Marcus created the entries

A338038, A338039, A338166, and A338371 of the OEIS [4]. The entry A338038 is

the function v(n) and the entry A338039 is the sequence of v-palindromic numbers.

The entry A338371 is the sequence of integers n > 0 such that 10 - n, n 6= r(n),

and c(n) <∞.

Acknowledgements. The author is grateful for the careful reading by Professor

Kohji Matsumoto and Professor Hiroshi Suzuki. The author also wants to thank

Michel Marcus for valuable correspondences. The author also appreciates comments

from the referee that improved this manuscript.

References

[1] K. Alladi and P. Erdös, On an additive arithmetic function, Pacific J. Math. 71(2) (1977),
275-294.

[2] M. Gardner, The Magic Numbers of Dr. Matrix, Prometheus Books, New York, 1985.



INTEGERS: 21 (2021) 16

[3] L. F. Klosinski and D. C. Smolarski, On the reversing of digits, Math. Mag. 42(4) (1969),
208-210.

[4] The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

[5] D. Tsai, Natural numbers satisfying an unusual property, Sūgaku Seminar 57(11) (2018),
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