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Abstract

Binet formulae for three versions of third-order Pell polynomials are derived.

1. A Binet Formula for Third-order Pell Polynomials

Mahon and Horadam [3] study the recursion for rn = rn(x):

rn = 2xrn−1 + rn−3, n ≥ 3, r0 = 0, r1 = 1, r2 = 2x.

The characteristic equation of the recursion is

X3 − 2xX2 − 1 = 0;

in [3] the authors try to attack it with Cardano’s formula (and without using com-

puters). Based on our recently acquired experience with ternary recursions, see,

e.g., [4], and using Maple, we are able to get stronger and quite satisfying results.

First, substitute X = x/Y and the equation is now

Y 3 + 2x3Y − x3 = 0.

Now, setting x3 = −1/z it is

zY 3 − 2Y + 1 = 0.

Using the substitution

z = (1− t)2(1 + t),

the equation has beautiful roots:

v1 :=
1

1− t
,

v2 :=
1 + t+

√
(1 + t)(5− 3t)

2(t2 − 1)
,

v3 :=
1 + t−

√
(1 + t)(5− 3t)

2(t2 − 1)
.
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Note that v2 + v3 = 1/(t− 1) and v2v3 = 1/(t2 − 1). Setting

rn = xn−1
(
Av−n

1 +Bv−n
2 + Cv−n

3

)
,

we can now compute the coefficients A,B,C from the initial values, with the result

A = − 1

1 + 3t
,

B =
1

2(1 + 3t)
− 3

2

√
(1 + t)(5− 3t)

(5− 3t) (1 + 3t)
,

C =
1

2(1 + 3t)
+

3

2

√
(1 + t)(5− 3t)

(5− 3t) (1 + 3t)
.

Even more appealing are the reciprocal roots:

w1 = v−1
1 = 1− t,

w2 = v−1
2 =

1 + t−
√

(1 + t)(5− 3t)

2
,

w3 = v−1
3 =

1 + t+
√

(1 + t)(5− 3t)

2
.

The promised Binet formula is

rn = xn−1
(
Awn

1 +Bwn
2 + Cwn

3

)
.

As an example,

r18 = 131072x17 + 245760x14 + 159744x11 + 42240x8 + 4032x5 + 84x2

It starts with the highest power x17, and goes down from there by powers of x−3,

as predicted.

2. The Coefficients

First, we want to show, that as in the Binet formula for Fibonacci numbers, the

square root is superficial and cancels out. To see this, we compute

(1 + 3t)rn
xn−1

= −(1− t)n

+

[
1

2
− 3

2

√
(1 + t)(5− 3t)

(5− 3t)

](
1 + t−

√
(1 + t)(5− 3t)

2

)n

+

[
1

2
+

3

2

√
(1 + t)(5− 3t)

(5− 3t)

](
1 + t+

√
(1 + t)(5− 3t)

2

)n

.
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The non-trivial part (lines 2 and 3), multiplied by 2n+1 and the abbreviation W =√
(1 + t)(5− 3t) is

Ξ :=

[
1− 3W

5− 3t

](
1 + t−W

)n
+

[
1 +

3W

5− 3t

](
1 + t+W

)n
= 2

∑
k

(
n

2k

)
W 2k(1 + t)n−2k + 2

∑
k

(
n

2k + 1

)
W 2k+1(1 + t)n−1−2k 3W

5− 3t

= 2
∑
k

(
n

2k

)
(5− 3t)k(1 + t)n−k + 6

∑
k

(
n

2k + 1

)
(5− 3t)k(1 + t)n−k,

and no more square roots are present.

Now we want to show how to compute various series expansions. We start with

z = (1− t)2(1 + t).

So, z is given in terms of t, but we want the expansion of t in terms of z. This can

be seen in the context of the Lagrange inversion or the Lagrange-Bürmann formula,

[2]. We will use contour integration to get the inverted series. We need another

substitution:

t = u− 1 =⇒ z = u(u− 2)2.

The advantage is that z → 0 ⇔ u → 0; we restrict ourselves to |u| < 2
3 . Further-

Figure 1: z as a function of u. If |u| < 2
3 the function can be inverted.

more
dz

du
= (3u− 2)(u− 2). We are going to show that

u =
∑
n≥1

1

n

(
3n− 2

n− 1

)
1

23n−1
zn.

The usual convergence test shows that this series converges for |z| < 32
27 ≈ 1.185.
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For that, we compute (the path of integration is in all instances a small circle

around the origin)

[zn]u =
1

2πi

∮
dz

zn+1
u

=
1

2πi

∮
du(3u− 2)(u− 2)

un+1(u− 2)2n+2
u

= [un−1]
3u− 2

(u− 2)2n+1
=

1

22n+1
[un−1]

2− 3u

(1− u
2 )2n+1

.

Reading off this coefficient and simplifying leads to the result. Now we will do a

similar computation to show that

− (1− t)n

1 + 3t
=
∑
`≥0

2n−3`−1

(
3`− n
`

)
z`,

which is the first term of the Binet formula. First,

− (1− t)n

1 + 3t
= − (2− u)n

3u− 2
,

and then

−[z`]
(2− u)n

3u− 2
= − 1

2πi

∮
dz

z`+1

(2− u)n

3u− 2
= − 1

2πi

∮
du(3u− 2)(u− 2)

u`+1(u− 2)2`+2

(2− u)n

3u− 2

= −(−1)n
1

2πi

∮
du

u`+1(u− 2)2`+1−n
= [u`]

1

(2− u)2`+1−n

=
1

23`+1−n

(
3`− n
`

)
.

If only this first term of the Binet formula would be used, we would have derived

that

rn(x) =
∑
`≥0

(
n− 1− 2`

`

)
(2x)n−1−3`.

However, rn(x) is not an infinite series, it is just a polynomial. This means that

the second and third term in the Binet formula kill off the infinite rest of the series.

This can be seen, for instance, by finding the expansions of wn
2 + wn

3 and
wn

2 −wn
3

w2−w3

using the Girard-Waring formula [1].

Instead of showing this cancellation directly, we prove that

rn(x) =
∑

0≤`≤(n−1)/3

(
n− 1− 2`

`

)
(2x)n−1−3`
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by simple induction. The initial conditions match, and then:

rn = 2xrn−1 + rn−3

= 2x
∑

0≤`≤(n−2)/3

(
n− 2− 2`

`

)
(2x)n−2−3` +

∑
0≤`≤(n−4)/3

(
n− 4− 2`

`

)
(2x)n−4−3`

=
∑

0≤`≤(n−2)/3

(
n− 2− 2`

`

)
(2x)n−1−3` +

∑
1≤`≤(n−1)/3

(
n− 2− 2`

`− 1

)
(2x)n−1−3`

= (2x)n−1 +
∑

1≤`≤(n−2)/3

(
n− 1− 2`

`

)
(2x)n−1−3` + [[3 | (n− 1)]]

=
∑

0≤`≤(n−1)/3

(
n− 1− 2`

`

)
(2x)n−1−3`,

as predicted.

3. The Second Version of the Third-order Pell Polynomials

We consider the second version proposed by Mahon and Horadam, but only indicate

the changes. These polynomials are given by

sn = 2xsn−1 + sn−3, n ≥ 3, r0 = 0, r1 = 2, r2 = 2x.

Since the recursion is the same, only the initial values change, and they are

A =
2t

(1 + 3t)(t− 1)
,

B =
t

(1 + 3t)(t− 1)
+

3t2 − 3t− 2

(t2 − 1)(3t+ 1)(3t− 5)
,

C =
t

(1 + 3t)(t− 1)
− 3t2 − 3t− 2

(t2 − 1)(3t+ 1)(3t− 5)
.

The Binet formula is then

sn = xn−1
(
Awn

1 +Bwn
2 + Cwn

3

)
.

There is also an explicit formula, which works for n ≥ 2:

sn(x) =
∑

0≤`≤(n−1)/3

(2x)n−1−3` n− `− 1

n− 2`− 1

(
n− 2`− 1

`

)
.

As before, this could be guessed from the first term in the Binet formula and proved

by induction.
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4. The Third Version of the Third-order Pell Polynomials

These polynomials are given by

σn = 2xσn−1 + σn−3, n ≥ 3, σ0 = 3, σ1 = 2x, σ2 = 4x2.

This time the Binet formula is very simple:

σn = xn(wn
1 + wn

2 + wn
3 ).

There is an explicit formula, valid for n ≥ 1:

σn =
∑

0≤`≤n/3

n

n− 2`

(
n− 2`

`

)
(2x)n−3`.
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