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Abstract

In this paper we obtain parametric as well as numerical solutions of the sextic
diophantine chain φ(x1, y1, z1) = φ(x2, y2, z2) = φ(x3, y3, z3) = k where φ(x, y, z)
is a sextic form defined by φ(x, y, z) = x6 + y6 + z6− 2x3y3− 2x3z3− 2y3z3 and k
is an integer. Each numerical solution of such a sextic chain yields, in general, nine
rational points on the Mordell curve y2 = x3 + k/4. While all of these nine points
are not independent in the group of rational points of the Mordell curve, we have
constructed a parametrized family of Mordell curves of generic rank ≥ 6 using the
aforementioned parametric solution of the sextic diophantine chain. Similarly, the
numerical solutions of the sextic chain yield additional examples of Mordell curves
whose rank is ≥ 6.

1. Introduction

Let φ(x, y, z) be a sextic form, with integer coefficients, in the three variables x, y

and z. While a limited number of diophantine equations of the type φ(x1, y1, z1) =

φ(x2, y2, z2) have been solved (see [?], [?], [?]), until now no sextic diophantine

chains of the type

φ(x1, y1, z1) = φ(x2, y2, z2) = φ(x3, y3, z3), (1)

have been published.

In this paper we obtain parametric as well as numerical solutions of the diophan-

tine chain (??) where the form φ(x, y, z) is defined by

φ(x, y, z) = x6 + y6 + z6 − 2x3y3 − 2x3z3 − 2y3z3. (2)

It is interesting to observe that if we write k = φ(x1, y1, z1)/4 where x1, y1, z1



INTEGERS: 21 (2021) 2

are rational numbers, three rational points on the Mordell curve

y2 = x3 + k, (3)

are given by

(x1y1, (x31 + y31 − z31)/2), (y1z1, (y31 + z31 − x31)/2), (x1z1, (x31 + z31 − y31)/2).

In view of the above, it is clear that any solution of the diophantine chain (??)

immediately yields 9 rational points (not necessarily distinct) on the Mordell curve

(??) where k = φ(x1, y1, z1)/4. Thus, apart from their intrinsic interest, solutions

of the sextic diophantine chain (??) are also expected to yield Mordell curves of

high rank.

In this context it is pertinent to note that Kihara [?] has obtained a family of

Mordell curves over the field Q(t) of generic rank ≥ 6 and till now, this is the

best known result of this type regarding families of Mordell curves defined over the

field Q(t). The parametric solution of the sextic diophantine chain (??) obtained

in this paper also yields a family of Mordell curves, defined over the field Q(m, n),

of generic rank ≥ 6.

2. Sextic Diophantine Chains

In Section ?? we describe a general method of constructing certain sextic diophan-

tine chains. We will apply this method in Sections ?? and ?? to obtain solutions of

the sextic diophantine chain (??) where φ(x, y, z) is defined by (??). We also show

how more solutions of the sextic chain (??) may be obtained.

2.1. A General Method of Constructing Sextic Diophantine Chains

Let an arbitrary sextic form φ(x, y, z) in the three variables x, y, z be expressible

as

φ(x, y, z) = k1Q
3(x, y, z) + k2C

2(x, y, z), (4)

where k1, k2 are constants while Q(x, y, z) is a quadratic form and C(x, y, z) is a

cubic form in the three variables x, y, z such that

Q(x, y, z) = Q(y, x, z) and C(x, y, z) = C(y, x, z). (5)

It is clear from (??) that to construct a sextic diophantine chain (??), it suffices

to construct the simultaneous diophantine chains,

Q(x1, y1, z1) = Q(x2, y2, z2) = Q(x3, y3, z3), (6)

C(x1, y1, z1) = C(x2, y2, z2) = C(x3, y3, z3). (7)
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We will first obtain a parametric solution of the simultaneous diophantine equa-

tions,
Q(x1, y1, z1) = Q(x2, y2, z2),

C(x1, y1, z1) = C(x2, y2, z2),
(8)

together with the auxiliary equation,

x1 + y1 + hz1 = x2 + y2 + hz2, (9)

where h is a rational parameter, and then use this solution to obtain a solution

of the simultaneous diophantine chains (??) and (??) together with the auxiliary

diophantine chain,

x1 + y1 + hz1 = x2 + y2 + hz2 = x3 + y3 + hz3. (10)

A parametric solution of the simultaneous Equations (??) and (??) may be ob-

tained either by the general method described in [?] or by any other appropriate

method.

Now, let (xi, yi, zi) = (αi, βi, γi), i = 1, 2, be a solution of the simultaneous

Equations (??) and (??) where αi, βi, γi, i = 1, 2 are given in terms of certain inde-

pendent parameters. We will solve the simultaneous Equations (??), (??) and (??)

by obtaining three distinct solutions of the following three simultaneous equations,

x+ y + hz = k1, (11)

Q(x, y, z) = k2, (12)

C(x, y, z) = k3, (13)

where

k1 = α1 + β1 + hγ1 = α2 + β2 + hγ2,

k2 = Q(α1, β1, γ1) = Q(α2, β2, γ2),

k3 = C(α1, β1, γ1) = C(α2, β2, γ2).

In fact, we already know two solutions of Equations (??), (??) and (??), namely

(x, y, z) = (α1, β1, γ1) and (x, y, z) = (α2, β2, γ2).

To obtain a third solution of Equations (??), (??) and (??), we eliminate x, y

from these three equations when, in view of the relations (??), we get the following

cubic equation in z:

(z − γ1)(z − γ2)(z − γ3) = 0, (14)

where γ3 is a rational function of the parameters occurring in the parametric solution

of the simultaneous Equations (??) and (??). The first two roots of Equation (??),

namely z = γ1 and z = γ2, yield the two known solutions of the simultaneous

Equations (??), (??) and (??).
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We will use the third solution z = γ3 to obtain the diophantine chains (??),

(??) and (??). On substituting z = γ3 in Equations (??) and (??), and eliminating

y from these two equations, we get a quadratic equation in x which will have two

rational roots if its discriminant is a perfect square. If we can choose the parameters

such that the discriminant is a perfect square, we will get two rational solutions of

Equations (??) and (??), and we thus get a solution of the simultaneous diophantine

chains (??) and (??), and hence also of the sextic diophantine chain (??).

2.2. A Parametric Solution of the Sextic Chain (??)

When φ(x, y, z) is the sextic form defined by (??), we have the identity,

φ(x, y, z) = (x3 + y3 − z3)2 − 4(xy)3, (15)

from which it follows that a solution of the simultaneous diophantine chains,

x31 + y31 − z31 = x32 + y32 − z32 = x33 + y33 − z33 , (16)

x1y1 = x2y2 = x3y3, (17)

will yield a solution of the sextic diophantine chain (??)

Following the method described in Section ??, we will first obtain a solution of

the simultaneous diophantine equations,

x31 + y31 − z31 = x32 + y32 − z32 , (18)

x1y1 = x2y2, (19)

x1 + y1 + hz1 = x2 + y2 + hz2, (20)

where h is a rational parameter.

The complete solution of Equation (??) is given by

x1 = pu, y1 = qv, x2 = pv, y2 = qu, (21)

where p, q, u, v are arbitrary parameters.

With these values of xi, yi, i = 1, 2, Equation (??) may be written as,

z31 − z32 − (u− v)(u2 + uv + v2)(p− q)(p2 + pq + q2) = 0, (22)

and on writing,

z1 = (n−m)(pu− qv)−m(pv + q(u+ v)),

z2 = m(pu− qv) + n(pv + q(u+ v)),
(23)

where m, n are arbitrary parameters, Equation (??) reduces to

(u2 + uv + v2)(p2 + pq + q2){(2m3p+m3q − 3m2np+ 3mn2p− n3p
+ n3q + p− q)u+ (m3p−m3q + 3m2nq − 3mn2q + n3p+ 2n3q − p+ q)v} = 0.
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Accordingly, we get,

u = m3p−m3q + 3m2nq − 3mn2q + n3p+ 2n3q − p+ q,

v = −(2m3p+m3q − 3m2np+ 3mn2p− n3p+ n3q + p− q),

and on substituting these values of u and v in (??) and (??), we get a solution of the
simultaneous Equations (??) and (??) which may be written in terms of arbitrary
parameters m, n, p and q as (xi, yi, zi) = (αi, βi, γi), i = 1, 2, where

α1 = (m3 + n3 − 1)p2 + (−m3 + 3m2n− 3mn2 + 2n3 + 1)pq,

β1 = (−2m3 + 3m2n− 3mn2 + n3 − 1)pq + (−m3 − n3 + 1)q2,

γ1 = (m4 − 2m3n+ 3m2n2 − 2mn3 + n4 + 2m− n)p2

+ (m4 − 2m3n+ 3m2n2 − 2mn3 + n4 −m+ 2n)pq

+ (m4 − 2m3n+ 3m2n2 − 2mn3 + n4 −m− n)q2,

α2 = (−2m3 + 3m2n− 3mn2 + n3 − 1)p2 + (−m3 − n3 + 1)pq,

β2 = (m3 + n3 − 1)pq + (−m3 + 3m2n− 3mn2 + 2n3 + 1)q2,

γ2 = (m4 − 2m3n+ 3m2n2 − 2mn3 + n4 −m− n)p2

+ (m4 − 2m3n+ 3m2n2 − 2mn3 + n4 + 2m− n)pq

+ (m4 − 2m3n+ 3m2n2 − 2mn3 + n4 −m+ 2n)q2.

(24)

We note that the solution (??) also satisfies Equation (??) when h = −(m2 −
mn+ n2).

We will now obtain a solution of the simultaneous diophantine chains (??), (??)
and the auxiliary diophantine chain (??) by obtaining three distinct solutions of
the simultaneous diophantine Equations (??), (??), (??) where h = −(m2 −mn+
n2), Q(x, y, z) = xy, C(x, y, z) = x3+y3−z3, k1 = α1+β1+hγ1, k2 = α1β1, k3 =
α3
1 + β3

1 − γ31 , with α1, β1, γ1 being defined by (??), so that Equations (??), (??),
(??) have already two known solutions (x, y, z) = (α1, β1, γ1) and (x, y, z) =
(α2, β2, γ2).

To obtain a third solution of the simultaneous diophantine Equations (??), (??),
(??), we eliminate x and y from these three equations to get the cubic Equation (??)
where γ1, γ2 are defined by (??) and

γ3 = {(m10 − 5m9n+ 15m8n2 − 30m7n3 + 45m6n4 − 51m5n5 + 45m4n6

− 30m3n7 + 15m2n8 − 5mn9 + n10 + 2m7 − 10m6n+ 24m5n2 − 38m4n3

+ 40m3n4 − 30m2n5 + 14mn6 − 4n7 + 5m4 − 10m3n+ 15m2n2 − 10mn3

+ 5n4 +m− 2n)p2 + (m10 − 5m9n+ 15m8n2 − 30m7n3 + 45m6n4 − 51m5n5

+ 45m4n6 − 30m3n7 + 15m2n8 − 5mn9 + n10 + 5m7 − 19m6n+ 42m5n2

− 59m4n3 + 58m3n4 − 39m2n5 + 17mn6 − 4n7 + 2m4 − 4m3n+ 6m2n2

− 4mn3 + 2n4 +m+ n)pq + (m2 −mn+ n2 − 1)(m4 − 2m3n+ 3m2n2 − 2mn3

+ n4 +m2 −mn+ n2 + 1)(m4 − 2m3n+ 3m2n2 − 2mn3 + n4 + 2m− n)q2}

× {(m2 −mn+ n2 − 1)((m2 −mn+ n2)2 +m2 −mn+ n2 + 1)}−1.
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While the first two roots, z = γ1 and z = γ2, of Equation (??) yield the two
known solutions of Equations (??), (??), (??), the third root z = γ3 will yield a
new solution. We will take z = γ3 in Equations (??) and (??), and solve them to
get the values of x and y. It follows from (??) that x + y = k1 − hγ3, and hence
(x − y)2 = (x + y)2 − 4xy = (k1 − hγ3)2 − 4k2. Thus, both x, y will be rational if
(k1 − hγ3)2 − 4k2 is a perfect square. This gives us a quartic function in p and q to
be made a perfect square. As this function is too cumbersome to write in full, we
restrict ourselves to writing it as follows:

{(m−2n)(m2−mn+n2)4 +5(m2−mn+n2)3 +2(m−2n)(m2−mn+n2)+1}2p4

+ · · ·+ (m2 −mn+ n2 − 1)2(2m3 − 3m2n+ 3mn2 − n3 + 1)2

× {(m2 −mn+ n2)2 +m2 −mn+ n2 + 1}2q4. (25)

Since the coefficients of p4 and q4 in the quartic function (??) are perfect squares,
we can readily find infinitely many values of p and q that make the function (??)
a perfect square by repeatedly applying a method described by Fermat (as quoted
by Dickson [?, p. 639]), and each such solution will lead to a solution of the
simultaneous diophantine chains (??), (??) and (??), and hence also of the sextic
chain (??), in terms of the rational parameters m and n.

As an example, the quartic function (??) becomes a perfect square if we choose
p and q as follows:

p = −(m− n)((m+ n)t+ 2)(t3 − 1),

q = ((2m− n)t+ 1)((m− n)t3 + t2 +m),

where t = m2 −mn+ n2. This yields a solution of the sextic chain (??) which may
be written, in terms of arbitrary parameters m, n, as follows:

x1 = (m− n)((m+ n)t+ 2)(t3 − 1)(3(m− n)t6 + (2m− n)(m− 2n)t4

− 3(m3 +mn2 − n3)t2 − 3tm2 +m− 2n),

y1 = ((m− 2n)t− 1)((2m− n)t+ 1)2(2t2 +m− 2n)((m− n)t3 + t2 +m),

z1 = 3(m− n)2t11 + 9m(m− n)2t9 + (19m4 − 68m3n

+ 81m2n2 − 35mn3 + 4n4)t7 + (4m5 − 67m4n+ 163m3n2

− 176m2n3 + 104mn4 − 26n5)t5 − (23m4 − 22m3n− 18m2n2

+ 32mn3 − 13n4)t4 − (19m3 − 36m2n+ 39mn2 − 14n3)t3

+ t(2m4 − 7m3n− 6m2n2 + 8mn3 − 4n4)

+ (m− 2n)(5m2 − 5mn+ 2n2);
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x2 = −(m− n)((m+ n)t+ 2)((m− 2n)t− 1)((2m− n)t+ 1)

× (2t2 +m− 2n)(t3 − 1),

y2 = −((2m− n)t+ 1)((m− n)t3 + t2 +m)(3(m− n)t6

+ (2m− n)(m− 2n)t4 − 3(m3 +mn2 − n3)t2 − 3m2t+m− 2n),

z2 = 3(m− n)2t11 − (14m4 − 37m3n+ 36m2n2 − 22mn3 + 8n4)t7

− (23m5 − 98m4n+ 140m3n2 − 103m2n3 + 37mn4 − 4n5)t5

+ (m4 + 58m3n− 90m2n2 + 46mn3 − 5n4)t4 + (23m3 − 12m2n

− 9mn2 + 8n3)t3 + (11m4 − 28m3n+ 39m2n2 − 19mn3 + 2n4)t

− (m− 2n)(m2 + 2mn− 2n2);

x3 = ((m− 2n)t− 1)((m− n)t3 + t2 +m)(3(m− n)t6

+ (2m− n)(m− 2n)t4 − (3(m3 +mn2 − n3))t2 − 3m2t+m− 2n),

y3 = (m− n)((m+ n)t+ 2)((2m− n)t+ 1)2(2t2 +m− 2n)(t3 − 1),

z3 = 3(m− n)2t11 + 9(m− n)3t9 + (13m4 − 35m3n+ 36m2n2

− 14mn3 + n4)t7 + (19m5 − 55m4n+ 79m3n2 − 44m2n3

−mn4 + 7n5)t5 + (4m4 − 17m3n+ 54m2n2 − 41mn3 + 10n4)t4

− 2(11m3 − 21m2n+ 5n3)t3 − t(22m4 − 68m3n+ 78m2n2

− 47mn3 + 10n4)− (m− 2n)(4m2 − 7mn+ 4n2);

(26)

where, as before, t = m2 −mn+ n2.

As a numerical example, when m = 1, n = 2, after removing common factors,
we get the following solution of the sextic chain (??):

x1 = 100958, y1 = 425, z1 = 113259,

x2 = −7150, y2 = −6001, z2 = 75081,

x3 = −60010, y3 = −715, z3 = 59223.

(27)

2.3. More Solutions of the Sextic Chain (??)

It is interesting to note that when φ(x, y, z) is defined by (??), in addition to the
identity (??), we also have the identity,

φ(x, y, z) = 4Q3(x, y, z)− 3C2(x, y, z),

where

Q(x, y, z) = x2 + y2 + z2 + xy + yz + zx,

C(x, y, z) = x3 + y3 + z3 + 2x2y + 2xy2 + 2x2z + 2xz2 + 2y2z + 2yz2 + 2xyz.

We can now apply the method described in Section ?? to obtain solutions of the
diophantine chain (??).
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A parametric solution of the simultaneous diophantine Equations (??) may be
obtained by a straightforward application of the method described in [?]. We ac-
cordingly omit the tedious details and simply state below the solution thus obtained.

If we define three functions fi(u, v, w), i = 1, 2, 3, as

f1(u, v, w) = (3u2 − 2uv − 2uw − v2 + 2vw − w2)(u3 + uv2

− 2uvw + uw2 − 2v3 + 2v2w + 2vw2 − 2w3),

f2(u, v, w) = −2(v − w)(u+ v − w)(u− v − w)(u− v + w)

× (uv + uw − v2 − vw − w2),

f3(u, v, w) = u6 − 2u5v − 2u5w + 2u4v2 + 2u4w2 − 2u3v3

+ 2u3v2w + 2u3vw2 − 2u3w3 + 2u2v4 + 2u2v3w

− 8u2v2w2 + 2u2vw3 + 2u2w4 − 2uv5 + 2uv3w2

+ 2uv2w3 − 2uw5 + v6 − 2v5w + 2v4w2 − 2v3w3

+ 2v2w4 − 2vw5 + w6,

the aforesaid solution of the simultaneous Equations (??) may be written, in terms
of arbitrary parameters p, q, r and m, as (xi, yi, zi) = (αi, βi, γi), i = 1, 2, where

α1 = f1(p, q, r)m2 + f2(p, q, r)m+ pf3(p, q, r),

β1 = f1(q, r, p)m2 + f2(q, r, p)m+ qf3(p, q, r),

γ1 = f1(r, p, q)m2 + f2(r, p, q)m+ rf3(p, q, r),

α2 = f1(p, q, r)m2 − f2(p, q, r)m+ pf3(p, q, r),

β2 = f1(q, r, p)m2 − f2(q, r, p)m+ qf3(p, q, r),

γ2 = f1(r, p, q)m2 − f2(r, p, q)m+ rf3(p, q, r).

(28)

Further, the values of αi, βi, γi, i = 1, 2, given by (??) satisfy Equation (??)
where

h = (p2 + q2 − r2)/(p2 + pq − pr + q2 − qr). (29)

Now with the values of αi, βi, γi, i = 1, 2 and h given by (??) and (??), we
will solve Equations (??), (??) and (??). On eliminating x and y from these three
equations, we get Equation (??) where

γ3 = (p2 + pq − pr + q2 − qr){(3p7 − 2p6q − 2p6r + 4p5q2 − 4p5qr

− 5p4q3 + 2p4q2r + 6p4qr2 − 3p4r3 − 5p3q4 + 8p3q3r − 6p3q2r2

+ 8p3qr3 − 5p3r4 + 4p2q5 + 2p2q4r − 6p2q3r2 − 10p2q2r3

+ 10p2qr4 − 2pq6 − 4pq5r + 6pq4r2 + 8pq3r3 + 10pq2r4 − 36pqr5

+ 18pr6 + 3q7 − 2q6r − 3q4r3 − 5q3r4 + 18qr6 − 11r7)m2

+ (p3 + q3 − r3)f3(p, q, r)}{p4 + p3q − p3r + 3p2q2

− 3p2qr + pq3 − 3pq2r + 3pqr2 − pr3 + q4 − q3r − qr3 + r4}−1.
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With z = γ3, we have to solve Equations (??) and (??). This leads to a quadratic
equation in x whose discriminant is to be made a perfect square. As this discrim-
inant is too cumbersome to write, we will take specific numerical values of the
parameters that yield the desired sextic diophantine chains (??). We take for sim-
plicity q = 0, and now the condition that the discriminant be a perfect square
reduces to finding rational solutions of the following equation:

Y 2 = r(36p11 + 96p10r + 220p9r2 + 357p8r3 + 522p7r4 + 541p6r5

+ 462p5r6 + 228p4r7 + 22p3r8 − 99p2r9 − 54pr10 − 27r11)m4

+ 2(8p10 + 28p9r + 12p8r2 + 12p7r3 − 9p6r4 + 12p5r5 − 8p4r6

+ 14p3r7 − 12p2r8 − 9r10)(p2 + pr + r2)2m2

+ r(4p3 − 3r3)(p2 − pr + r2)2(p2 + pr + r2)4. (30)

When p = 3, r = 4, Equation (??) reduces to the quartic equation,

Y 2 = 4916053296m4 − 16574603472m2 − 106422358224, (31)

which represents a quartic model of an elliptic curve. On making the birational
transformation defined by the relations,

m = 37(521u− 11v + 318899904)/{3(42871u− 11v − 2751064896)},
Y = 958300(1331u3 − 289453824u2 − 68536946349036u+ 86313500544v

+ 3183632918644552704)/(42871u− 11v − 2751064896)2
(32)

and

u = (136052568m2 + 1925Y − 24886644m− 96169512)/{2(3m− 37)2},
v = 175(9012764376m3 + 128613Y m− 1231896204m2 − 19277Y

− 15193386516m− 15819539736)/{2(3m− 37)3},
(33)

Equation (??) reduces to the Weierstrass form of the elliptic curve given by

v2 = u3 + u2 + 51492677220u− 3062315437673472. (34)

The rank of the elliptic curve (??), as determined by the software SAGE, is 3,
with the three generators of the Mordell-Weil group being

(101376, 56565600), (3761676, −7308840000),

and (498157004/529, 11417003301600/12167).

We can now find infinitely many rational points on the elliptic curve (??) using the
group law, and then find infinitely many rational points on the quartic curve (??)
using the relations (??). These rational points on the curve (??) yield infinitely
many numerical examples of the sextic chain (??).
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In order to find rational points of small height on the curve (??), we used Stoll’s
program ‘ratpoints’ [?] and readily obtained the following four values of m for which
the right-hand side of Equation (??) becomes a perfect square:

37/3, 481/87, 14911/4695, 135679/50151.

The first two values of m do not lead to nontrivial sextic chains but the next two
values yield the following two solutions of the sextic chain (??):

(x1, y1, z1) = (14900543, −2461462, 15194895),

(x2, y2, z2) = (12571823, 2923703, 13884990),

(x3, y3, z3) = (4528874, 11547071, 13636239),

(35)

and
(x1, y1, z1) = (17217348683, −3153451318, 17759190363),

(x2, y2, z2) = (14274889211, 3650986211, 16104056910),

(x3, y3, z3) = (11570059211, 7442013386, 15638543835).

(36)

3. Mordell Curves Related to Sextic Diophantine Chains

With every solution of the sextic diophantine chain (??), we may associate a Mordell
curve (??) where we take

4k = φ(x1, y1, z1) = φ(x2, y2, z2) = φ(x3, y3, z3), (37)

and, as noted in the Introduction, there will, in general, be 9 rational points on the
curve (??) whose coordinates are immediately obtained from the sextic diophantine
chain.

We now consider the family of Mordell curves related to the parametric solution
(??) of the sextic diophantine chain (??). Using the relations (??) and (??), we
can compute the value of k in terms of the arbitrary parameters m and n. We thus
get a Mordell curve defined over the field Q(m, n) on which we can readily find 9
rational points. The value of k is too cumbersome to write and we do not give it
explicitly.

We note that in view of the relations (??), only 7 of the 9 known rational points on
our Mordell curve are actually distinct. We will now apply a theorem of Silverman
[?, Theorem 11.4, p. 271] to show that 6 of these 7 points are linearly independent
in the group of rational points of the Mordell curve. For this, we must find specific
numerical values of m and n such that 6 of the 7 points are linearly independent
on the related Mordell curve over Q.

When m = 1, n = 2, the numerical solution (??) of the sextic chain (??) is
related to the Mordell curve,

y2 = x3 + 44906825622115054978352852841, (38)
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on which we get 7 rational points whose coordinates are given below:

(42907150,−211912492824721), (48135075, 211912569590346),

(11434402122, 1240928701242633), (−450561081, 211696384806720),

(−536829150, 211546966949721), (−42344445, 211912127298846),

(−3553972230,−4195525176279).

The regulator of the first six of these points, as computed by SAGE, is 10390179.16.
As this is nonzero, it follows from a well-known theorem [?, Theorem 8.1, p. 242]
that these 6 points are linearly independent. It follows that the generic rank of the
family of Mordell curves related to the sextic chain given by the parametric solution
(??) is at least 6.

We could not find any numerical values of m and n such that all the 7 known
points are linearly independent in the group of rational points of the Mordell curve.

Next we consider the Mordell curves related to the two numerical solutions (??)
and (??) of the sextic chain (??).

The Mordell curve related to the solution (??) is

y2 = x3 + 60881141602872940726223731917150516833400, (39)

on which we get 9 distinct rational points P1, P2, . . . , P9 whose coordinates are as
follows:

P1 = (−36677120373866, 107436818637424863748),

P2 = (226412186327985, 3415747486107335266755),

P3 = (−37401656636490, 92523324542363200620),

P4 = (36756276620569, 332475185129096665153),

P5 = (174559636636770, 2319461032255991683920),

P6 = (40595586917970, 357467113076423815080),

P7 = (52295229628054, 451550293014200834692),

P8 = (61756808264886, 544440667643008046316),

P9 = (157458619905969, 1991177257485343473603).

The regulator of the 6 points P1, P2, P3, P4, P5 and P8 is 11390832.16. Since this
is nonzero, these 6 points are independent, and the rank of the Mordell curve (??)
is at least 6.

Similarly, the solution (??) of the sextic chain (??) yields 9 distinct rational
points on the Mordell curve,

y2 = x3 + 29299405225297348195795731316558134360443957710523833533305868

91185336. (40)

Again we found that only 6 of the 9 points are independent, and so the rank of
the Mordell curve (??) is at least 6.

We could not determine the precise rank of any of the three Mordell curves (??),
(??) or (??) as the value of k for each of these three curves is very large.



INTEGERS: 21 (2021) 12

4. An Open Problem

It would be of interest to solve the sextic diophantine chain,

φ(x1, y1, z1) = φ(x2, y2, z2) = · · · = φ(xn, yn, zn), (41)

when φ(x, y, z) is defined by (??) and n > 3. While the existence of such diophan-
tine chains when n = 4 and n = 5 is not inconceivable, it certainly seems that there
must be an upper bound for n for the solvability of the diophantine chain (??). It
would be of interest to determine the largest integer n for which the diophantine
chain (??) is solvable.

Any solution of the diophantine chain (??) will immediately yield 3n rational
points on the Mordell curve (??) where k = φ(x1, y1, z1)/4, and may therefore yield
Mordell curves of rank higher than the examples already known in the literature.

Acknowledgement. The first author thanks the Harish-Chandra Research Insti-
tute, Prayagraj for providing him with all necessary facilities that have helped him
to pursue his research work in mathematics.

References

[1] A. Bremner, A geometric approach to equal sums of sixth powers, Proc. Lond. Math. Soc. 43
(1981), 544–581.

[2] A. Choudhry, Symmetric diophantine systems, Acta Arith. 59 (1991), 291–307.

[3] A. Choudhry, On equal sums of sixth powers, Rocky Mountain J. Math. 30 (2000), 843–848.

[4] A. Choudhry, Some diophantine equations involving sixth powers, Math. Student 74 (2005),
231–236.

[5] L. E. Dickson, History of the Theory of Numbers, Vol. 2, AMS Chelsea Publishing, 2002,
reprint.

[6] S. Kihara, On the rank of the elliptic curve y2 = x3 + k. II, Proc. Japan Acad. Ser. A 72
(1996), 228–229.

[7] S. Schmitt and H. G. Zimmer, Elliptic Curves: A Computational Approach, Walter de
Gruyter, Berlin 2003.

[8] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, New York
1994.

[9] M. Stoll, Program ratpoints described at http://www.mathe2.uni-
bayreuth.de/stoll/programs/ .


