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Abstract

Let k ≥ 2 be a given integer. For any arbitrary positive integer n, we determine
the least integer `k(n) such that every positive integer sequence with terms not
exceeding n, sum kn and length at least `k(n) can be separated into k subsequences
each with sum n. The methods are elementary.

1. Introduction

The origin of the question discussed in this article is the following problem from the

12th Hungary–Israel Binational Mathematical Competition (2001):

32 positive integers, which sum up to 120 and none of which is greater

than 60 are given. Prove that they can be divided into two disjoint

subsets that have equal sum.

A similar conclusion holds in a general setting without specific numerical values.

Indeed the solution in the book [1] is for any n (such as 60) divisible by 6. The proof

uses a notion called universal sequence which also appeared as behaving sequence [2]

and other names in papers about sequence sums. In this article we discuss a gener-

alization of the problem. For us the question emerged from investigating zero-sum

problems in finite abelian groups. We tried to translate the setting into the lan-

guage of positive integer sequences, hoping that such a point of view may be useful

in answering some zero-sum questions. While our hopes turned out ungrounded,

the problem stated below and its solution are interesting in their own right.

All sequences considered in this paper have positive integer terms, so we some-

times call them just sequences for brevity. Sequences may have repeated terms. For

convenience we use multiplicative notation where term multiplicities are indicated

by exponents, e.g., upvq is the sequence with p terms u and q terms v. The length

of a (finite) sequence is the number of its terms. Let k ≥ 2 and n be positive inte-

gers. A positive integer sequence with terms not exceeding n and sum kn is called

k-separable if it can be divided into k parts each with sum n, otherwise it is called
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k-inseparable. Note that the restriction of terms not exceeding n is to avoid trivi-

alities, as the presence of a term greater than n would make the sequence trivially

k-inseparable. It is clear that for n = 1, 2, any positive integer sequence with terms

not exceeding n and sum kn is k-separable for any k ≥ 2. For brevity sometimes

we say separable or inseparable whenever it is not important to be specific or the

value of k is clear from the context. Here is the objective.

Let k ≥ 2 be a given integer. For an arbitrary integer n ≥ 3, determine

the least integer `k(n) such that each positive integer sequence with

terms not exceeding n, sum kn and length at least `k(n) is k-separable.

In other words, restricted to sequences with positive integer terms not exceeding n

and sum kn, all with length at least `k(n) must be k-separable, and at least one

with length `k(n)− 1 must be k-inseparable.

We will present a systematic approach to solve the problem completely. The

techniques are elementary.

2. The Trivial Algorithm

For convenience, we will say “collection of weights with integer masses” and “pos-

itive integer sequences” interchangeably. Let us describe a procedure for dividing

an arbitrary collection of weights into k groups. Because of its simplicity, we call it

the trivial algorithm (or just the algorithm, for brevity). We will see that the trivial

algorithm is the basis of our solution, and whenever a length condition guarantees

separability, a procedure based on the algorithm separates the sequences.

Fix an integer k ≥ 2 and let n be an arbitrary positive integer. Let α be a

collection of weights with integer masses not exceeding n of total mass kn. Let

there be k boxes each with capacity n. Start placing the weights in the boxes, one

at a time, in decreasing order of their masses. Each time the current weight w is to

be placed in the box with the smallest total mass (select one arbitrarily if there is

a tie), provided that after putting w this box has mass not exceeding n. In other

words, the capacity n of each box is not to be exceeded at any step.

Suppose the latter condition cannot be satisfied at a certain moment, that is,

placing the current weight would overload the lightest box. The first time this

occurs, with a weight t, the algorithm stops and we say that it fails. If so, we call t

the critical weight or the critical term of α. Observe that since all terms are at

most n, the trivial algorithm cannot fail at the first k steps. Clearly, if all weights

can be placed according to the rules, the procedure yields a partition of the system

into k groups of mass n. Trivially for n = 1, 2 the algorithm always succeeds.

Here is a rough idea to prove that a certain sequence is separable. First we

apply the trivial algorithm and immediately conclude separability if the procedure
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terminates successfully. If not, we focus on the reasons for the failure. It turns

out that substantial information can be obtained by looking at them, in which

the critical term of the sequence plays a crucial role. Based on the conclusions,

we then find a way to apply the trivial algorithm again. Let us make the following

observations as the result of analyzing the situation when the trivial algorithm fails.

Observations. Fix an integer k ≥ 2 and let n be an arbitrary positive integer.

Suppose the trivial algorithm fails for a positive integer sequence α with terms not

exceeding n, of length ` and sum kn, with a critical term t. Then:

(i) The sum of the terms after t in the decreasing arrangement of α does not

exceed (k − 1)t− k. In particular, t is never equal to 1.

(ii) The sequence α contains at least k + 1 terms, each of which is at least t. In

particular, ` ≥ k + 1.

(iii) Let gk(x) = (k − 1)x2 − (`+ 2k − 1)x+ (kn+ k), then t being a critical term

implies gk(t) ≥ 0.

Proof. Let A be the sum of the weights after t; then the sum of the weights before t

is kn − t − A, and it is at least k(n + 1 − t) since t is a critical term. Hence

kn− t−A ≥ k(n+ 1− t), which implies A ≤ (k− 1)t− k. As A ≥ 0, it follows that

t ≥ k
k−1 and t ≥ 2 (t is an integer). In particular, t 6= 1. Part (i) follows. Part (ii) is

clear as no term exceeds n. For Part (iii) we estimate the length of such a sequence,

` ≤ kn− t−A
t

+ 1 +A =
kn+A(t− 1)

t
≤ kn+ ((k − 1)t− k)(t− 1)

t
,

as t > 1 and A ≤ (k − 1)t − k. After rearranging the terms, it follows that

(k − 1)t2 − (`+ 2k − 1)t+ (kn+ k) ≥ 0.

3. A First Bound and the n Odd Case

Considering the quadratic function gk(x) from Observation (iii), a length condition

comes from gk(2) < 0: gk(2) = −2` + kn + k − 2 < 0 implies ` > k(n+1)
2 − 1.

Let bxc denote the greatest integer less than or equal to x. The following proposition

confirms that ` ≥ bk(n+1)
2 c guarantees separability.

Proposition 1. Fix an integer k ≥ 2 and let n ≥ 3 be an arbitrary integer. The

trivial algorithm terminates successfully for each positive integer sequence with terms

not exceeding n, sum kn and length ` ≥ bk(n+1)
2 c. In other words, such a sequence

can be separated into k parts each with sum n by the trivial algorithm.
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Proof. Suppose on the contrary that the algorithm fails for one such sequence α,

denote by t the critical term and consider the quadratic function gk(x) from Obser-

vation (iii). The length condition ` ≥ bk(n+1)
2 c > k(n+1)

2 − 1 implies gk(2) < 0.

Now gk has a positive leading coefficient (equal to k−1), so its graph is a parabola

open upwards. The condition gk(2) < 0 implies that gk has two distinct real roots r1
and r2, and r1 < 2 < r2. The graph is symmetric with respect to the vertical line

x = `+2k−1
2(k−1) . Note that `+2k−1

2(k−1) ≥ 2, i.e., ` ≥ 2k − 3, which holds under the length

condition and n ≥ 3. Then gk

(
`+2k−1
k−1 − x

)
= gk(x) for all real x. In particular,

gk

(
`+2k−1
k−1 − 2

)
= gk(2), i.e., gk

(
`+1
k−1

)
= gk(2) < 0. Since `+1

k−1 ≥ 2, we have

r1 < 2 ≤ `+1
k−1 < r2. On the other hand, by Observation (iii), the critical term t

satisfies gk(t) ≥ 0. Therefore t ≤ r1 or t ≥ r2. It follows that t < 2 or t > `+1
k−1 .

Since t is a positive integer, t < 2 is impossible as t 6= 1 by Observation (i).

Suppose t > `+1
k−1 . By Observation (ii), in α there are at least k + 1 terms, each

of which is at least t. Since each of the other terms is at least 1, the sum of α

would satisfy kn ≥ (k + 1)t+ (`− k − 1), which would lead to k(n− 1) + 2 < 0. A

contradiction is reached, and hence the trivial algorithm terminates successfully.

To construct a sequence with sum kn, length close to B1 = bk(n+1)
2 c that is

k-inseparable, we need the average of terms to be about 2 (a little less). If n is odd,

a trivial reason to be inseparable is due to parity: even terms (such as 2) cannot

make an odd sum. Here is an example for any k ≥ 2; its length is k(n+1)
2 − 1 and

k-inseparable when n is odd:

for odd n ≥ 3, α = 2
k(n−1)+2

2 1k−2. (1)

Therefore,

for any k ≥ 2, `k(n) =

⌊
k(n+ 1)

2

⌋
if n is odd and n ≥ 3.

4. Examples and Bounds

For even n, examples similar to (1) with length close to B1 = bk(n+1)
2 c cannot be

found and evidence suggests that `k(n) is significantly smaller. Before proceeding

further, let us construct some examples and investigate possible bounds for n even.

Here is another reason for being inseparable: there are too many large terms.

We may have at most k terms, each of which is greater than n/2, since each box

has capacity n and can only contain one such term. If we restrict attention to the

case when n is even, then for any k ≥ 2 the following is k-inseparable with length
n
2 (k − 1) + 1:

for even n ≥ 4, α = (n/2 + 1)k(n/2)1
n
2 (k−1)−k. (2)
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We will prove that for k ≥ 4 and even n ≥ 4, length at least B2 = n
2 (k − 1) + 2

guarantees separability, and hence `k(n) = n
2 (k − 1) + 2 (except when n = 8). One

may ask whether limiting the number of terms greater than n/2, that is removing the

trivial reason for being inseparable, can shorten the length to guarantee separability.

The answer is negative due to the following examples for any k ≥ 2:

for n ≡ 0 (mod 4), α = (n/2 + 1)22
n
2 (k−1)−1; (3)

for n ≡ 2 (mod 4), α = (n/2 + 2)(n/2)2
n
2 (k−1)−1. (4)

Example (3) is k-inseparable because each of the two terms n/2 + 1 must be in a

different box, and the remaining capacity in these two boxes is n/2−1, which is odd

hence cannot be filled up by 2’s. For a similar reason Example (4) is k-inseparable.

If k = 3, we will see that for n even, length at least B2 = n+ 2 is almost enough

to guarantee separability except in one special case.

Finally when k = 2, B2 = n/2 + 2. We will see that B2 is enough to guarantee

separability only in the case when n is even and divisible by 3, i.e., divisible by 6

(such as 60 in the Hungary-Israel contest problem). Informally this is because there

is another reason for inseparability. Example (1) is based on the parity of n. We

may look at n modulo other numbers, say 3. Suppose the average of the terms is

about 3 and the majority of them are 3. Let us suppose n 6≡ 0 (mod 3). To fill up

each box with capacity n we need terms not divisible by 3, so a reason for being

inseparable could be that there are not enough such terms to be distributed to the k

boxes. A rough bound is B3 = k(n+2)
3 . We will show that when k = 2, for n even

and not divisible by 3, `2(n) is approximately B3.

Precise results will be presented later and we will see some differences due to

the values of k. Instead of being approach-dependent, there seem to be inherent

reasons for such differences. One way to understand it is to compare B2 and B3:

B2 − B3 = n
2 (k − 1) + 2 − k(n+2)

3 = (n−4)(k−3)
6 . We may assume n ≥ 4 and notice

the difference depending on k: if k < 3, i.e., k = 2, then B3 > B2; if k ≥ 4 then

B3 < B2; and when k = 3, B2 = B3.

5. The n Even Case

Here is a general approach to handle the n even case. Apply the trivial algorithm

to α and suppose it fails with a critical term t. Use the length condition and other

considerations to restrict possibilities of t. Since the sum kn of α is even, it contains

an even number of odd terms. Form a new sequence β by leaving the even terms

of α untouched and replacing every pair of odd terms by its sum. Then try the

trivial algorithm for the new sequence. Details need to be worked out, especially in

the case k = 2 where n modulo 3 also makes a difference. In the following we treat
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the cases k = 2, 3 and k ≥ 4 separately. While there are proofs of the cases k = 3

and k ≥ 4 using results on previous values of k (k = 2, 3), it seems clearer to handle

different k values independently.

5.1. The Case k = 2 and n Even

We start with a lemma about the possible values of a critical term when the trivial

algorithm fails.

Lemma 1. Let n be a positive integer. If the trivial algorithm fails for a positive

integer sequence of terms not exceeding n, with sum 2n and length ` ≥ 2n/3 + 1,

with a critical term t, then t = 2.

Proof. Let α be a positive integer sequence of terms not exceeding n, with sum 2n

and length satisfying ` ≥ 2n/3 + 1, apply the trivial algorithm and suppose it fails

with a critical term t. By Observation (iii) with k = 2, g2(x) = x2−(`+3)x+(2n+2).

Using the length condition ` ≥ 2n/3 + 1, we have g2(3) = −3` + 2n + 2 < 0. It

implies that g2 has distinct real roots r1 and r2, and that r1 < 3 < r2. We know

g2(x) = g2(`+ 3− x) for all x, by symmetry with respect to the line x = (`+ 3)/2.

Hence g2(`) = g2(3) < 0, and since 3 ≤ (`+ 3)/2 (this is equivalent to ` ≥ 3 which

holds by Observation (ii)), we have r1 < 3 ≤ ` < r2. On the other hand g2(t) ≥ 0

by Observation (iii). Therefore t ≤ 2 or t ≥ ` + 1 (as t is an integer). Notice that

t ≥ `+1 is impossible. Indeed by Observation (ii) α has at least three terms, each of

which is at least t, we would obtain that its sum satisfies 2n ≥ 3t ≥ 3`+ 3 ≥ 2n+ 6.

Hence t ≤ 2. As t 6= 1 by Observation (i), it follows that t = 2.

Proposition 2. Let n be an even positive integer. Each positive integer sequence

of terms not exceeding n, with sum 2n and length ` ≥ 2n/3 + 1 is 2-separable.

Proof. Denote the sequence by α and apply the trivial algorithm. The task is

complete if it is successful. If not, Lemma 1 implies that the critical term t of α

is 2. Notice that having a critical term t = 2 implies that there is no 1 in the

sequence. This is because by Observation (i) with k = 2, the sum of the terms

after t is at most t − 2. If the critical term is t = 2, then it is the last term in

the sequence of decreasing order. In particular, there is no term equal to 1 in the

sequence.

The sum 2n of α is even, so it contains an even number of odd terms. Let us

form a new sequence β by leaving the even terms of α untouched, grouping all the

odd terms into pairs (in an arbitrary way), and then replacing each pair by the sum

of the two terms in it. The new sequence β has even terms and the same sum 2n.

Observe that β has at least one term 2, for instance the critical term t = 2 of α

which is also a term of β. We will show that the trivial algorithm separates β.
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Divide the terms of β by 2 to obtain a new sequence β′, with the same length as β

and with sum n. Notice that β′ contains a 1 as β contains a 2. Let n′ = n/2. This

is an integer as n is even. Then β′ has sum 2n′. Apparently the trivial algorithm

separates β if and only if it separates β′.

In view of the even term 2 present in α, the length `′ of β′ satisfies the inequality

`′ ≥ 1 + (`− 1)/2 = (`+ 1)/2. Now the assumption ` ≥ 2n/3 + 1 implies that the

analogous inequality holds for n′ and `′:

`′ ≥ `/2 + 1/2 ≥ 1/2(2n/3 + 1) + 1/2 = 2n′/3 + 1.

Finally, the terms of β′ are all at most n/2 = n′. If not, then some two odd

terms in α have a sum greater than n, hence at least n + 2 (because n is even).

So the remaining ` − 2 terms have a sum at most n − 2. But each one of them

is at least 2 as α does not contain a 1, implying that the same sum is at least

2(`− 2) ≥ 2(2n/3− 1) = 4n/3− 2. Thus n− 2 ≥ 4n/3− 2 which is false.

We are almost done. Suppose the trivial algorithm fails for β′. Then Lemma 1

applies, saying that the critical term of β′ is t′ = 2. However this is impossible,

because β′ contains a term 1. The contradiction obtained proves that the trivial

algorithm separates β′ and hence β. It follows that α is 2-separable.

Let dxe denote the least integer greater than or equal to x. By Proposition 2,

length ` ≥ d2n/3e + 1 ensures 2-separability for n even. The following examples

show that for n ≥ 3 and n 6≡ 0 (mod 3), there exists at least one 2-inseparable

sequence with sum 2n and length d2n/3e. For n ≡ 1 (mod 3), take the sequence

consisting of (2n − 2)/3 terms 3 and one term 2. For n ≡ 2 (mod 3), take the

sequence consisting of (2n− 1)/3 terms 3 and one term 1. So far we have obtained

`2(n) = d2n/3e+ 1 for all even n ≥ 4 that are not divisible by 3.

Let us handle the remaining case: n is even and 0 modulo 3, i.e., n ≡ 0 (mod 6).

We believe that in this case ` ≥ n/2+2 guarantees separability and that ` = n/2+2

is the least possible such length. The latter will follow if there exists at least one

2-inseparable sequence with length n/2 + 1. Example (2) with k = 2 is such a

sequence: consisting of two terms of n/2 + 1, one n/2 and n/2− 2 ones. It remains

to prove the following statements, analogous to the approach before.

Lemma 2. Let n be a positive integer. If the trivial algorithm fails for a positive

integer sequence of terms not exceeding n, with sum 2n and length ` ≥ n/2+2 (that

is 4` ≥ 2n+ 8), with a critical term t, then t = 2 or t = 3.

Proof. We know that n ≥ 3 as the trivial algorithm always works for n = 1, 2.

For 3 ≤ n ≤ 5, Observation (ii) implies that the sum of the sequence satisfies

2n ≥ 3t+ `− 3, which leads to t ≤ n/2 + 1/3 < 3, hence t = 2.

For n ≥ 6, ` ≥ n/2 + 2 ≥ 5. Note that g2(4) = −4`+ 2n+ 6 < 0. Analyzing the

parabola g2 and noticing that g2(4) = g2(`− 1) < 0 (` ≥ 5 is used here), yield that
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g2(t) ≥ 0 implies t ≤ 3 or t ≥ `. Like before, the second alternative is impossible.

Otherwise since there are at least 3 terms, each of which is at least t, we would have

2n ≥ 3t + ` − 3 ≥ 3` + ` − 3 = 4` − 3 ≥ 2n + 5. Hence the first alternative t ≤ 3

remains, i.e., t = 2 or t = 3.

Proposition 3. Let n be a positive integer divisible by 6. Each positive integer

sequence of terms not exceeding n, with sum 2n and length ` ≥ n/2 + 2 (that is,

4` ≥ 2n+ 8) is 2-separable.

Proof. Notice that for n = 6, n/2 + 2 = 2n/3 + 1 = 5, and it is included in

Proposition 2. In the following we may assume n ≥ 12.

Denote the sequence by α and apply the trivial algorithm. The task is complete

if it succeeds; so let the algorithm fail. By Lemma 2 the critical term t of α is t = 2

or t = 3. Now we divide the argument into two cases: a) α has at least two 2’s;

b) α has at most one 2 and at least two 3’s. One of them must hold. Indeed, if

there is at most one 2 (i. e., a) fails), then look at the critical term t. For t = 2,

there are no 1’s in α, and there is at most one 2 by assumption. If there were at

most one 3, the sum of α would satisfy 2n ≥ 2 + 3 + 4(` − 2) = 4` − 3 ≥ 2n + 5.

Similarly, for t = 3 there are no 2’s in α, and at most one 1 (by Observation (i)). If

there is at most one 3, then 2n ≥ 1 + 3 + 4(`− 2) = 4`− 4 ≥ 2n+ 4.

a) α has at least two 2’s. Let us pair up the odd terms in α and proceed as

in the proof of Proposition 2 to obtain β′. Let n′ = n/2; this is an integer as n

is even. Then β′ has sum 2n′. Because of the two 2’s in α, β′ contains at least

two 1’s, and the length `′ of β′ satisfies `′ ≥ 2 + (` − 2)/2 = (` + 2)/2. Hence

4`′ ≥ 2`+ 4 ≥ (n+ 4) + 4 = n+ 8 = 2n′ + 8.

Note that each term of β′ is at most n′ = n/2, since every two terms of α add up

to a sum not exceeding n. Otherwise if there are two terms of α add up to a sum

greater than n, then the remaining `−2 terms of α will have a sum less than n. On

the other hand, we have t = 2 in case a) (t = 3 would imply no 2’s), so that 1’s are

not to be found in α. It turns out that 2(`− 2) < n which contradicts 4` ≥ 2n+ 8.

It remains to show that the trivial algorithm works for β′. Suppose not, and

let t′ be the critical term. Lemma 2 implies t′ = 2 or t′ = 3; however both are

impossible as β′ has two 1’s.

b) α has at most one 2 and at least two 3’s. The sum 2n of α is divisible by 3

because so is n. So the terms not divisible by 3 can be partitioned into groups

of size 2 or 3, with the sum of each group a multiple of 3. Replace the terms in

each group by their sum, then divide by 3 the terms of the sequence obtained.

Set n′ = n/3 which is an integer. The result is a positive integer sequence α′

with sum 2n′ = 2n/3. Due to the two 3’s in α, there are at least two 1’s in α′,

and the length `′ of α′ satisfies `′ ≥ 2 + (` − 2)/3 = (` + 4)/3. It follows that

4`′ ≥ (4`+ 16)/3 ≥ (2n+ 24)/3 = 2n′ + 8.

Observe that no terms of α′ exceed n′ = n/3. Otherwise, suppose some term
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of α′ is greater than n/3, then the corresponding two or three terms of α add up to a

sum greater than n. The remaining at least `−3 terms will have a sum less than n.

On the other hand, there is at most one 2 in α (by the assumption in b)), and at

most one 1 (no 1’s at all if t = 2, and at most one 1 if t = 3). Hence the remaining

at least `−3 terms have a sum at least 1+2+3(`−3−2) = 3`−12 ≥ 3n/2−6 ≥ n
as n ≥ 12, and a contradiction is reached.

It remains to show that the trivial algorithm works for α′. Suppose not; by

Lemma 2 the critical term t′ of α′ would be 2 or 3. Both are impossible as α′

has two 1’s. This completes b) and the main proof.

Summarizing the results for k = 2 and n even: `2(n) = d2n/3e + 1 for all

even n ≥ 4 that are not divisible by 3, and `2(n) = n/2 + 2 for all n divisible by 6.

5.2. The Case k = 3 and n Even

Essentially the same approach works for k = 3 with some modifications.

Lemma 3. Let n be a positive integer. Suppose the trivial algorithm fails for

a positive integer sequence α of terms not exceeding n, with sum 3n and length

` ≥ n+ 2, with a critical term t. Then t = 2 except in two cases: if n ≡ 2 (mod 3)

and α = α1 = 3n−113, then t = 3; and if n is odd and α = α2 =
(
n+1
2

)4
1n−2, then

t = n+1
2 .

Proof. We know that n ≥ 3 as the trivial algorithm always works for n = 1, 2. If

the sequence is α2 =
(
n+1
2

)4
1n−2 (n must be odd), then clearly t = n+1

2 . It is also

easy to see that if the sequence is α1 = 3n−113 and n ≡ 2 (mod 3), then t = 3.

Notice that if n ≡ 0, 1 (mod 3), the trivial algorithm terminates successfully for

α1 = 3n−113. In the following we assume that α is different from α1 and α2, and

show that t = 2. For 3 ≤ n ≤ 4, Observation (ii) implies that the sum of α satisfies

3n ≥ 4t+ `− 4 which gives t ≤ n+1
2 < 3, hence t = 2. So we may assume n ≥ 5.

By Observation (iii) the quadratic function is g3(x) = 2x2−(`+5)x+(3n+3). As

n ≥ 5 and ` ≥ n+ 2 ≥ 7, we have `+5
4 ≥ 3 and by symmetry, g3

(
`+5
2 − 3

)
= g3(3).

Compute g3(3) = −3` + 3n + 6 ≤ 0. Hence g3
(
`−1
2

)
= g3(3) ≤ 0. Then g3(t) ≥ 0

implies that t ≤ 3 or t ≥ `−1
2 . We will show that t ≥ `−1

2 is possible only if the

sequence is α2, and t = 3 is possible only if the sequence is α1. As both are excluded

and t = 1 is impossible by Observation (i), it follows that t = 2.

Suppose t ≥ `−1
2 ≥

n+1
2 . By Observation (ii), the sum of the sequence satisfies

3n ≥ 4t+ (`− 4) ≥ 4(n+1
2 ) + (n+ 2)− 4 = 3n. This would lead to a contradiction

except in the case when equality holds throughout, implying that the sequence is

α2 =
(
n+1
2

)4
1n−2.

Suppose the critical term is t = 3. Let x be the number of terms after t = 3;

then the estimate of the sum 3n ≥ 3(` − x) + x = 3` − 2x ≥ 3(n + 2) − 2x leads

to x ≥ 3, i.e., there are at least three terms after t = 3. On the other hand, by
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Observation (i) the sum of the terms afterwards is at most 2t − 3 = 3. It follows

that there are exactly three terms after t = 3, and each term is 1. By the estimate

of the sum again 3n ≥ 3(`−4)+3+1+1+1 = 3`−6 ≥ 3(n+2)−6 = 3n, we see that

it is only possible if equality holds throughout, implying ` = n + 2 and each term

before t = 3 is 3. In other words, the sequence must be α1 = 3`−313 = 3n−113.

Proposition 4. Let n be an even positive integer. Each positive integer sequence

of terms not exceeding n, with sum 3n and length ` ≥ n+ 2, is 3-separable with one

exception: the sequence 3n−113 is 3-inseparable when n ≡ 2 (mod 3).

Proof. Denote the sequence by α. It is clear that if α = α1 = 3n−113, then it

is 3-separable when n ≡ 0, 1 (mod 3) and 3-inseparable when n ≡ 2 (mod 3). In

the following, assume α is different from α1. If the trivial algorithm terminates

successfully, then α is 3-separable. Suppose not; by Lemma 3 the critical term is

t = 2 since α 6= α1 by assumption and α 6= α2 as n is even.

By Observation (i) the sum of the terms after t = 2 does not exceed 2t− 3 = 1.

Hence α has at most one 1. Let x1 be the number of 1’s and x2 be the number

of 2’s in α. The sum of α satisfies 3n ≥ x1 + 2x2 + 3(` − x1 − x2), which gives

2x1 + x2 ≥ 3`− 3n ≥ 6. As x1 ≤ 1, it follows that x2 ≥ 4.

Since n is even, the sum 3n is even, so α contains an even number of odd terms.

Let us pair up the odd terms in α and proceed as in the proof of Proposition 2 to

obtain β′. Let n′ = n/2; this is an integer as n is even. Then β′ has sum 3n′ and

at least four 1’s, since there are at least four 2’s in α. The length `β′ of β′ satisfies

`β′ ≥ 4 + `−4
2 = `+4

2 ≥
n+6
2 = n′ + 3.

We show that each term in β′ is at most n′ = n/2. Suppose not, and let x, y be

two odd terms in α such that x+y > n. Since n and x+y are both even, x+y ≥ n+2.

Clearly neither x nor y is 1. The sum of α satisfies 3n ≥ x+ y+ x1 + 2(`− x1− 2),

which leads to x1 ≥ 2. However x1 ≤ 1 and a contradiction is reached.

We claim that the trivial algorithm works for β′. Suppose not; then Lemma 3

implies that the critical term of β′ is t′ = 2 (notice that `β′ ≥ n′ + 3 excludes the

two special cases in Lemma 3 as both of them have length n′ + 2). However this

is impossible by Observation (i) and the fact that there are at least four 1’s in β′.

The contradiction obtained proves that β′ and hence α are 3-separable.

Example (2) with k = 3 is a 3-inseparable sequence of length n + 1 for any

even n ≥ 4: (n/2 + 1)3(n/2)1n−3. We already saw that 3n−113 is 3-inseparable

for n ≡ 2 (mod 3) with length n + 2. There are other 3-inseparable sequences of

length n+1, for example, (n/2+1)22n−1 for n ≡ 0 (mod 4), (n/2+2)(n/2)2n−1for

n ≡ 2 (mod 4) (Examples (3) and (4) with k = 3), and 3n−223 for n ≡ 1 (mod 3).

Summarizing the results for k = 3 and n even: we have `3(n) = n+ 2 if n ≥ 4 is

even and n ≡ 0, 1 (mod 3); and `3(n) = n+ 3 if n ≥ 4 is even and n ≡ 2 (mod 3).
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5.3. The Case k ≥ 4 and n Even

The idea is like before except for additional reasoning when rejecting large values

of the critical term t and ensuring that the sum of any two odd terms in α is at

most n.

Lemma 4. Let n > 8 and k ≥ 4 be integers. Suppose the trivial algorithm fails

for a positive integer sequence of terms not exceeding n, with sum kn and length

` ≥ dn2 e(k − 1) + 2, with a critical term t. Then t = 2.

Proof. Consider gk(x) = (k− 1)x2− (`+ 2k− 1)x+ (kn+ k). The length condition

implies ` ≥ n
2 (k− 1) + 2, and we have gk(3) = −3`+ kn+ 4k− 6 ≤ (k−3)(8−n)

2 < 0,

as k ≥ 4 and n > 8. Note that `+2k−1
2(k−1) ≥ 3, which is equivalent to ` ≥ 4k − 5,

and the latter is guaranteed by the length condition and n > 8. By symmetry,

gk

(
`+2k−1
k−1 − 3

)
= gk(3), that is, gk

(
`−k+2
k−1

)
= gk(3) < 0. By Observation (iii),

gk(t) ≥ 0, hence t < 3 or t > `−k+2
k−1 . We will reject t > `−k+2

k−1 and then the

remaining case t < 3 implies t = 2.

Suppose t > `−k+2
k−1 , since ` ≥ dn2 e(k−1)+2, we have t > dn2 e−1+ 3

k−1 > dn/2e−1,

and as t and dn/2e are integers, it follows that t ≥ dn/2e.
If n is odd, then t ≥ n+1

2 . The estimate of the sum and the length condition

` ≥ dn2 e(k−1) + 2 = n+1
2 (k−1) + 2 would give kn ≥ (k+ 1)t+ (`−k−1) ≥ nk+ 1.

If n is even and supposing t ≥ n/2 + 1, then the estimate of the sum and

` ≥ dn2 e(k− 1) + 2 = n
2 (k− 1) + 2 would give kn ≥ (k+ 1)t+ (`− k− 1) ≥ nk+ 2.

Suppose n is even and t = n/2. Consider the terms before t = n/2, each is either

at least n/2 + 1 or equal to n/2. Let x of them be at least n/2 + 1 and y of them

equal n/2. Since t = n/2 is a critical term and all the terms before are in the k boxes

without exceeding the capacity n, when the trivial algorithm fails with t = n/2, each

of the k boxes must either contain one term which is at least n/2 + 1 or two terms

each equals n/2 and hence filling up the capacity n. It follows that x + y
2 = k; in

particular, y is even. The sum estimate kn ≥ x(n/2+1)+(y+1)n/2+(`−x−y−1) ≥
kn + ny

4 + 1 − y gives a contradiction if ny
4 + 1 − y > 0, which is equivalent to

(n− 4)y + 4 > 0. The last inequality holds as y ≥ 0 and n ≥ 4.

This rejects t > `−k+2
k−1 and concludes the proof.

Proposition 5. Let n > 8 be an even integer and k ≥ 4 an integer. Each positive

integer sequence of terms not exceeding n, with sum kn and length ` ≥ n
2 (k− 1) + 2

can be separated into k parts each with sum n.

Proof. Denote the sequence by α and apply the trivial algorithm. The task is

complete if the algorithm terminates with all terms placed in the k boxes. If it fails

with a critical term t, then Lemma 4 implies that t = 2.

We first show that the sum of any two odd terms in α is at most n. Let A be

the sum of the terms after the critical term t. The fact that t = 2 implies that
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when the trivial algorithm fails, each of the k boxes must either be full or have a

total mass of n − 1, and there are exactly A + 2 of the latter kind. Since n − 1 is

odd, there must be at least A+ 2 odd terms before t. Consider the subsequence τ

before t. Its sum is kn− 2−A and length `τ ≥ `− (1 +A) as there are at most A

terms after t. Let mo be the number of odd terms in τ , and recall mo ≥ A + 2.

Suppose there exist odd terms x, y in α such that x + y > n. Then x + y ≥ n + 2

and 3 ≤ x, y ≤ n− 1; in particular, both x and y are in τ . Since each odd term in τ

is at least 3, its sum satisfies kn − 2 − A ≥ x + y + 3(mo − 2) + 2(`τ −mo). This

leads to kn ≥ kn+ 2 which is impossible. Therefore, leaving even terms untouched,

we may pair up odd terms of α arbitrarily to form β so that each term is at most n.

We need a lower bound on the length of β. To that end it is enough to estimate x2,

the number of 2’s in α. Let x1 denote the number of 1’s in α. The sum of α satisfies

kn ≥ x1 + 2x2 + 3(`− x1 − x2), which gives 2x1 + x2 ≥ 3`− kn. Apply the length

condition, we have 2x1 +x2 ≥ (k−3)n
2 + 6. By Observation (i), the sum of the terms

after the critical term t = 2 is at most (k − 1)t− k = k − 2. Hence x1 ≤ k − 2 and

x2 ≥ (n−4)(k−3)
2 + 4. Therefore the length `β of β satisfies

`β ≥
`− x2

2
+ x2 =

`+ x2
2
≥ (n− 2)(k − 2)

2
+ 4.

Divide each term of β by 2 to get β′ and let n′ = n/2 (n′ is an integer as n is even).

The sum of β′ is kn′ and length `β′ = `β ≥ (n−2)(k−2)
2 + 4 = (n′ − 1)(k − 2) + 4.

Each term in β′ does not exceed n′ as each term in β is at most n. Note that

n′ = n/2 > 4. If `β′ ≥ bk(n
′+1)
2 c, then we may apply Proposition 1 and conclude

that the trivial algorithm succeeds for β′, and hence β and α are k-separable. It is

sufficient if (n′− 1)(k− 2) + 4 ≥ k(n′+1)
2 , which is equivalent to (n′− 3)(k− 4) ≥ 0.

The last inequality holds as k ≥ 4 and n′ ≥ 3. The proof is complete.

Remark 1. The last part of the proof of Proposition 5 is slightly different from

the previous proofs for n even (such as Propositions 2 and 4), in that we did not

apply Lemma 4 to β′ but were able to use Proposition 1. This is because β′ is long

enough due to the estimate of the number of 2’s in α: x2 ≥ (n−4)(k−3)
2 + 4. The

lower bound is a multiple of n if k ≥ 4, a constant if k = 3, but useless if k = 2.

It follows from Proposition 5 and Example (2) that for k ≥ 4 and even n ≥ 10,

`k(n) = n
2 (k − 1) + 2. There remain the cases of small values of even n, n = 4, 6, 8.

For n = 4, 6, using techniques present one can prove that Lemma 4 holds as well.

Then the same argument in the proof of Proposition 5 works with one modification:

for n = 4, in the end n′ = 2 for β′; there is no need to apply Proposition 1, as

admissible sequences with capacity 2 are always k-separable. It is a little curious

that for n = 8 there are k-inseparable sequences with length ` = n
2 (k−1)+2 = 4k−2:

e.g., α = 32k+112k−3 for any k ≥ 2. Clearly the trivial algorithm fails with t = 3.

Moreover, the sequence is k-inseparable because in order to make n = 8 with 3’s
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and 1’s, there are three possibilities: 8 = 3 · 0 + 1 · 8 = 3 · 1 + 1 · 5 = 3 · 2 + 1 · 2.

In each possibility, we need at least two terms equal 1; hence to fill up k boxes of

n = 8, we need at least 2k terms equal 1, but in α there are only 2k− 3 terms of 1.

When ` ≥ n
2 (k − 1) + 3 = 4k − 1, separability for n = 8 follows from arguments in

the proofs of Lemma 4 and Proposition 5.

In summary, for k ≥ 4, for any even n ≥ 4 and n 6= 8: `k(n) = n
2 (k − 1) + 2.

When n = 8, for any k ≥ 2, `k(8) = n
2 (k − 1) + 3 = 4k − 1 (the bounds obtained

before in the cases k = 2, 3 obey the same formula).

6. Comments

From a Hungary-Israel contest problem, we solved a certain generalization to its

completion with the unexpected observation that the answer for k ≥ 4 is structurally

simpler than the one for k = 3, and the case k = 2 turns out most intriguing. This

suggests that other generalizations might yield more interesting questions. For

example, consider sequences with sum kn and no proper subsequence having a

sum divisible by n. One can also look at inverse questions such as describing all

inseparable sequences of a certain length.

From a different perspective, the problem considered here seems a good exercise

for students. It involves some typical features of mathematical investigation and

requires minimum knowledge. Such a training may introduce and inspire one to be

engaged in more substantial work on additive number theory.
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