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Abstract
We study the following problem, first introduced by Dekking. Consider an infinite
word x over an alphabet {0, 1, . . . , k − 1} and a semigroup homomorphism S :
{0, 1, . . . , k − 1}∗ → N. Let Lx denote the set of factors of x. What conditions on
S and the abelian complexity of x guarantee that S(Lx) contains all but finitely
many elements of N? We examine this question for some specific infinite words x
having different abelian complexity functions.

1. Introduction

It is well-known that if a and b are two co-prime positive integers then all sufficiently
large positive integers n can be written as a linear combination n = xa+ yb, where
x and y are non-negative integers. Frobenius posed the problem of determining the
largest positive integer that cannot be so represented; Sylvester [12] was the first to
give a solution to Frobenius’ problem: he showed that the largest non-representable
number is

ab− a− b. (1)

Ramírez Alfonsín [10] has written a monograph devoted entirely to this problem.
Dekking [6] studied the following variation of this problem. Let S : {0, 1}∗ → N

be a semigroup homomorphism, i.e., there are non-negative integers a and b such
that S is defined by S(0) = a, S(1) = b, and S(uv) = S(u) + S(v) for any words u
and v over the binary alphabet {0, 1}. Given an infinite word w over the alphabet
{0, 1}, let Lw denote the set of all factors of w and let Ln,w denote the set of all
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length-n factors of w. Define

S(Lw) = {S(u) : u ∈ Lw}.

What conditions on w and S ensure that S(Lw) is co-finite (contains all but finitely
many elements of N)?

Certainly a and b must be co-prime (and so we will assume this to be the case
for the remainder of the paper). The set S(Lw) is closely related to the abelian
complexity [14] of w (as well as the additive complexity [2] of w). For any word u
over an alphabet A, we write |u|a to denote the number of occurrences of a letter
a ∈ A in the word u and |u| to denote the length of n. If A = {a1, . . . , ak}, the
Parikh vector of u is the vector ψ(u) whose i-th entry equals |u|ai . Let A = {0, 1}.
For any n, we have n ∈ S(Lw) exactly when there is a factor u of w such that
n = xa + yb and ψ(u) = (x, y). The abelian complexity function of w is the
function ρw(n) that maps n to the cardinality of the set ψ(Ln,w). If ψ(Ln,w) =

{(0, n), (1, n − 1), . . . , (n − 1, 1), (n, 0)} for all n (i.e, ρw(n) = n + 1), then w has
maximal abelian complexity and it is clear that in this case S(Lw) is co-finite.
Indeed, in this case the problem is the classical one stated by Frobenius. On the
other hand, for words with lower abelian complexity functions, this may not be the
case.

Dekking studied the case where w is a Sturmian word. Sturmian words are
the aperiodic words with the smallest possible abelian complexity; i.e., if w is an
aperiodic binary word then w is Sturmian if and only if ρw(n) = 2 for all n ≥ 1

[5]. Dekking gave an explicit formula for S(Lw) for any Sturmian word w; this
formula implies that for any given w there are only finitely many maps S such that
S(Lw) is co-finite. For the Fibonacci word, Dekking characterized exactly the set
of such maps S. Given the close relationship between Sturmian words and Beatty
sequences, we also mention the work of Steuding and Stumpf [11] concerning the
Frobenius problem and Beatty sequences.

The general question we are interested in then is, “What conditions on the abelian
complexity of w are sufficient to ensure that S(Lw) is co-finite for all maps S?”
(Remember, we are assuming that S(0) and S(1) are relatively prime.) If S(Lw) is
co-finite for all maps S, we say that w has the Frobenius property. As previously
noted, if w has maximal abelian complexity, then w has the Frobenius property,
and if w is Sturmian, then w does not have the Frobenius property. In this paper
we analyze some example of words w whose abelian complexity is intermediate
between these two extremes.

Finally, we note that the Frobenius problem can be extended from two given
positive integers a and b to any number of given positive integers. Similarly, we
can extend the notions defined above to words over larger alphabets. Recall that
Dekking studied S(Lw) for Sturmian words w, which are infinite binary words with
constant abelian complexity ρw(n) = 2. We examine S(Lt) for a certain infinite
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ternary word t with constant abelian complexity ρt(n) = 3.
To summarize, in the next sections we study:

• the paperfolding word pf , which has abelian complexity ρpf (n) = O(log n);
this word does not have the Frobenius property.

• a pure morphic binary word Φ with abelian complexity ρΦ(n) = Θ(nlog5 2);
this word has the Frobenius property.

• a balanced ternary word t with abelian complexity ρt(n) = 3 for all n ≥ 1;
this word does not have the Frobenius property.

2. The Paperfolding Word

In this section we examine whether the (ordinary) paperfolding word has the Frobe-
nius property. This is a word whose abelian complexity function is unbounded,
unlike that of the Sturmian words. For a nice introduction to the paperfolding
words and their properties, see the series of papers by Dekking, Mendès France,
and Poorten [7]. There are a number of equivalent definitions of the paperfold-
ing word pf . If w = w1w2 . . . wk is a word over {0, 1} then the complement of w
is the word w = (1 − w1)(1 − w2) . . . (1 − wk) and the reversal of w is the word
wR = wkwk−1 . . . w1. The word pf may be constructed as the limit of the following

process: Let f (1) = 0. Having constructed f (n), we define f (n+1) := f (n) 0 f (n)
R
.

Then pf = limn→∞ f (n).
The next construction of the paperfolding word is known as the Toeplitz construc-

tion. We begin with a sequence of empty spaces and fill every second space with
the alternating sequence (01)ω. After infinitely many repetitions of this process, we
obtain the ordinary paperfolding word pf . Beginning with _ _ _ _ _ _ · · · , the
first few steps in this process are

_ _ _ _ _ _ _ _ _ _ _ _ · · ·
0 _ 1 _ 0 _ 1 _ 0 _ 1 _ · · ·
0 0 1 _ 0 1 1 _ 0 0 1 _ · · ·
0 0 1 0 0 1 1 _ 0 0 1 1 · · ·
0 0 1 0 0 1 1 0 0 0 1 1 · · ·

This construction implies the following recursive definition of pf = (fn)n≥1:

(f2n−1)n≥1 = (01)ω and (f2n)n≥1 = pf . (2)

We may also define the n-th term fn of pf from the binary representation of n.
Let n = m · 2j be given, where m is odd. Then define

fn =

{
0 if m ≡ 1 (mod 4)

1 if m ≡ 3 (mod 4).
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Madill and Rampersad [9] studied the abelian complexity of pf . They proved
that ρpf (n) = O(log n); however, it is also the case that ρpf takes the value 3

infinitely often. In particular, we have

ρpf (2n) = 3 for n ≥ 1. (3)

This can be proved by induction on n, using [9, Claim 5] (which states that
ρpf (4m) = ρpf (2m)). As we will see, these low values of the abelian complexity
function prevent pf from having the Frobenius property.

We define ∆ : Lpf → Z by ∆(w) = |w|0 − |w|1 and M : N → Z by M(n) =

max{∆(Ln,pf )}.

Example 1. For n = 2 we have

• Ln,pf = {00, 01, 10, 11},

• ψ(Ln,pf ) = {(2, 0), (1, 1), (0, 2)},

• ∆(Ln,pf ) = {2, 0,−2}, and

• M(n) = 2.

Note that for any w ∈ Ln,pf we have wR ∈ Ln,pf , so −M(n) ≤ ∆(w) ≤ M(n).
We need the following two facts [9, Claims 3 and 4 (and their proofs)]:

ρpf (n) = M(n) + 1 (4)

M(n+ 1) = M(n)± 1. (5)

Lemma 1. For n ≥ 2, the Parikh vectors
(
2n−1 ± 2, 2n−1 ∓ 2

)
do not occur in

ψ(L2n,pf ).

Proof. Since (1, 3), (2, 2), (3, 1) are all elements of ψ(L4,pf ), we can apply the recur-
sive definition (2) inductively to show that

(
2n−1 ± 1, 2n−1 ∓ 1

)
and (2n−1, 2n−1)

are elements of ψ(L2n,pf ). From (3), we see that these three vectors are the only
vectors in ψ(L2n,pf ), which establishes the claim.

Theorem 1. If S(0) = a and S(1) = b and 4 ≤ a < b then N\S(Lpf ) is an infinite
set. In particular, the word pf does not have the Frobenius property.

Proof. Suppose that 2 ≤ a < b and consider a positive integerm with representation
m = a·(2n−1−2)+b·(2n−1+2) for some (large) n. By Lemma 1, pf does not contain
any factor with Parikh vector (2n−1 − 2, 2n−1 + 2), so so we must look for another
representation m = a ·(2n−1−2+ tb)+b ·(2n−1 +2− ta) for some non-zero integer t.
This representation will correspond to a factor w of length |w| = 2n + t(b− a) with
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Parikh vector (u, v) = (2n−1−2+tb, 2n−1+2−ta). Then ∆(w) = u−v = t(b+a)−4.
Now by (4), we have

|t(a+ b)− 4|+ 1 = |∆(w)|+ 1 ≤M (2n + t(b− a)) + 1 = ρ(2n + t(b− a)) (6)

Furthermore, by (4)–(5), we have ρ(|w|+ 1) ≤ ρ(|w|) + 1, which implies

ρ(2n−1 + t(b− a)) ≤ ρ(2n−1) + |t|(b− a) = 3 + |t|(b− a). (7)

The inequalities (6) and (7) give

|t(a+ b)− 4|+ 1 ≤ 3 + |t|(b− a). (8)

If t < 0 we get a contradiction immediately, since |t(a+b)−4| = |t|(a+b)+4 and (8)
becomes a|t| ≤ −1, which is impossible. If t > 0 we have |t(a+b)−4| = |t|(a+b)−4

(since a + b ≥ 4), and (8) becomes a|t| ≤ 3. Since t ≥ 1 we find that a ≤ 3. We
conclude that if a ≥ 4, there are infinitely many m /∈ S(Lpf ).

3. A Binary Word With Abelian Complexity Θ(nlog5 2)

In the last section we saw that the ordinary paperfolding word pf does not have the
Frobenius property, and that in this case this is due to the fact that lim infn→∞ ρpf (n)

is bounded. This suggests that to produce an (interesting) example of an infinite
word with the Frobenius property, we should consider a word Φ with less than
maximal abelian complexity but for which

lim inf
n→∞

ρΦ(n) =∞.

Let φ := {0, 1}∗ → {0, 1}∗ be the morphism that sends 0 → 00101 and 1 →
11011. Let Φ be the fixed point of φ that starts with 0: that is, let Φ = φω(0) =

limn→∞ φn(0).

For a general morphism h : {0, 1, . . . , k − 1}∗ → {0, 1, . . . , k − 1}∗ we define the
incidence matrix of h as the matrix Mh whose ith column is the Parikh vector
of h(i). Blanchet-Sadri et al. [4] conducted an extensive study of the asymptotic
abelian complexities of binary words generated by iterating morphisms. We will
make use of several ideas from their paper in this section. Following the notation of
[4], we will use z(u) to denote the number of zeroes that appear in the factor u. Let
z0 = z(φ(0)) and z1 = z(φ(1)). We will also use zM (n) (resp. zm(n)) to denote the
maximum (resp. minimum) number of zeroes among factors of length n in Φ. The
difference and delta functions are defined in [4] for a general `-uniform morphism; for
our morphism φ we have d = |z0−z1| = 2 and ∆ = zM (`)−max {z0, z1} = 3−3 = 0.
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Example 2. For φ as defined above, we have Φ = 0010100101110110010111011 · · · ,
z0 = 3, z1 = 1, d = 2, ∆ = 0, zm(2) = 0, zM (2) = 2, and

Mφ =

[
3 1
2 4

]
.

The following result allows us to determine the asymptotic abelian complexity
of Φ.

Theorem 2. ([4, Theorem 7]). Let ϕ be an `-uniform binary morphism, and define
f(n) = 1 if log2 n ∈ Z, and f(n) = log n otherwise. Then the following hold:

ρab(n) =



Θ(1), d = 0;

Θ(1), ϕ = ((01)b
`
2 c0, (10)b

`
2 c1) if ` is odd;

Θ(1), ϕ = (01`−1, 1`);

Θ̃(f(n)), d = 1, ∆ = 0, and not earlier cases;
O(log n), d = 1,∆ > 0;

Θ(nlog` d), d > 1.

We thus find that ρΦ(n) = Θ(nlog5 2), which is certainly not maximal. The
following is the main result of this section.

Theorem 3. The word Φ has the Frobenius property.

We need a preliminary result (Proposition 1 below). In the proof of this result,
and again later in this section, we will need to determine, by computer search, the
Parikh vectors of all factors of Φ of length r for r up to some specified bound. In
order to perform this computation we make use of the following fact:

If r ≤ 5t for some t ∈ N, then each factor of Φ of length r appears
in some φt(x), where |x| = 2.

We also note that when performing such a computation there is no need to save all
Parikh vectors for factors of length r. This is due to the following result:

Lemma 2. ([14, Lemma 2.1]). If an infinite word ω has two factors u and v of
the same length n for which the i-th entry of the Parikh vector are p and p + c

respectively, for some p and c, then for all ` = 0, . . . , c, there exist factors u` of ω
whose ith entry is p+ `.

Lemma 2 thus implies that the Parikh vectors of factors of length r in Φ are
completely determined by the pair (zm(r), zM (r)).

We need the following result.

Lemma 3. ([4, Lemma 13]). For a uniform binary morphism with a fixed point at
0 such that z0 ≥ z1,
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zM (`n) = dzM (n) + z1n+ ∆ and zm(`n) = dzm(n) + z1n−∆.

Similarly, for a uniform binary morphism with a fixed point at 0 such that z0 ≤ z1,

zM (`n) = −dzm(n) + z1n+ ∆ and zm(`n) = −dzM (n) + z1n−∆,

(and the formulas are equal if d = 0).

Proposition 1. For each integer C ≥ 4, we have

1. zM (n) ≥ n
3 + C whenever n ≥ 29 · 5C−4 and

2. zm(n) ≤ n
3 − C whenever n ≥ 132 · 5C−4.

Proof. To prove part 1 we define NC = 29 · 5C−4. The proof of part 2 is similar,
but with the definition NC = 132 · 5C−4. For clarity, we parametrize the property

P (j, C) :
[
5j ·NC ≤ n ≤ 5j+1 ·NC ⇒ zM (n) ≥ n

3
+ C

]
.

Clearly, if P (j, C) holds for a given C and for all j ∈ N then our proposition holds
for that C. Thus, we proceed by double-induction on j and C.

We first verify by computer that 29 ≤ n ≤ 145 ⇒ zM (n) ≥ n
3 + 4 and thus

P (0, 4) is satisfied. Suppose that P (j, 4) holds for some j ∈ N and let 5j+1 ·N4 ≤
n ≤ 5j+2 · N4. We may write n = 5k + r for some integers k, r with 0 ≤ r ≤ 4.
Then 5j · N4 ≤ k + r

5 ≤ 5j+1 · N4 and we have two cases: either k < 5j+1 · N4 or
k = 5j+1 ·N4.

If k < 5j+1 · N4 then 5j · N4 ≤ k + 1 ≤ 5j+1 · N4 and by P (j, 4) we have
zM (k + 1) ≥ k+1

3 + 4. One of the inequalities (for an `-uniform morphism) in the
proof of [4, Lemma 18] is

zM (`k + r) ≥ dzM (k + 1) + z1(k + 1) + ∆− zM (`− r),

which, after substituting the appropriate values for the constants for φ, becomes

zM (5k + r) ≥ 2zM (k + 1) + k + 1− zM (5− r) ≥ 2zM (k + 1) + k − 2, (9)

since zM (1) ≤ · · · ≤ zM (5) = 3. Thus, we have

zM (n) = zM (5k + r)

≥ 2zM (k + 1) + k − 2 (by (9))

≥ 2

(
k + 1

3
+ 4

)
+ k − 2 (by P (j, 4))

=
1

3
(5k + 4) +

16

3

≥ 1

3
(5k + r) + 4

=
n

3
+ 4, (since 0 ≤ r ≤ 4)
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as required.
If k = 5j+1 ·N4 then by Lemma 3 we get

zM (n) = zM (5j+2N4) = d · zM (5j+1N4) + 5j+1N4 + ∆

= 2zM (5j+1N4) + 5j+1N4

≥ 2

(
5j+1N4

3
+ 4

)
+ 5j+1N4

=
5

3
(5j+1N4) + 8

=
n

3
+ 8

≥ n

3
+ 4,

as required, and so in either case, P (j+1, 4) holds and by induction we have P (j, 4)

for all j ∈ N.
Suppose that there exist C ≥ 4 and NC with (∀j ∈ N)[P (j, C)]. Now if n ≥ 5NC

we may write n = 5k + r where k ≥ NC and 0 ≤ r ≤ 4. Then we have

zM (n) = zM (5k + r)

≥ 2zM (k + 1) + k − 2 (by (9))

≥ 2

(
k + 1

3
+ C

)
+ k − 2

=
1

3
(5k + 4) + 2C − 8

3

≥ 1

3
(5k + r) + C + 1

=
n

3
+ (C + 1),

so NC+1 = 5NC and the result holds by induction.

Corollary 1. For each C ≥ 4 and NC = 132 · 5C−4, we have{(⌊n
3

⌋
+D,n−

⌊n
3

⌋
−D

)
: −C ≤ D ≤ C

}
⊆ ψ(Ln,Φ)

for all n ≥ NC .

We will use Corollary 1 to show that, given a and b, every sufficiently large integer
has a representation ax + by where (x, y) ∈ ψ(LΦ). Theorem 3 therefore follows
from the next lemma.

Lemma 4. Let C =
⌈
max

{
1 + a+2b

3 , b, b−a3 , 4
}⌉

. Then every integer

M ≥Ma,b := max

{
(a+ 2b) ·max{a, b}, a+ 2b

3
(132 · 5C−4 + |a− b|)

}
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has a representation M = a(x − tb) + b(y + ta) where (x − tb, y + ta) ∈ ψ(LΦ) for
some t ∈ Z.

Proof. Suppose that (a, b) = 1 is given and let M = ax+ by for some non-negative
integers x, y (note that M is larger than the quantity from (1), so such a represen-
tation exists). For each t ∈ Z we have M = a(x − tb) + b(y + ta). Our aim is to
show that there is a choice of t for which (x− tb, y + ta) ∈ ψ(LΦ). Note that, from
Corollary 1, if we look at large enough factors of Φ we eventually obtain a factor
that is roughly one third 0’s. Thus, if we define n(t) = x + y + t(a − b), then we
seek a t0 such that x − t0b = 1

3n(t0) and thus let t0 = 2x−y
2b+a . However, t0 is not

necessarily an integer, so we will use either the floor or ceiling bt0e and show the
existence of a subword with length n(bt0e) and x− bt0eb zeroes.

We first claim that x−bt0eb and y+bt0ea are nonnegative (and thus it is possible
to speak of a factor with length n(bt0e) and x− bt0eb zeroes). We have

x− t0b =
1

3
n(t0) =

1

2
(y + t0a)

and so x− t0a, n(t0), and y + t0a each have the same sign. As well,

x− t0b =
ax+ by

2b+ a
=

M

2b+ a
≥ 0

so the three integers are nonnegative. Now note that replacing t0 with bt0e only
changes each expression by a small amount:

|x− t0b− (x− bt0e)b| < b and |y + t0a− (y + bt0e)a| < a.

Thus if M > (2b+ a) ·max{a, b} then we have

x− bt0eb > (x− t0b)− b >
M

2b+ a
− b >

(
2b+ a

2b+ a

)
max{a, b} − b ≥ 0

and

y + bt0ea > y + t0a− a = 2(x− t0b)− a = 2

(
M

2b+ a

)
− a

> 2

(
2b+ a

2b+ a

)
max{a, b} − a

= 2 ·max{a, b} − a
> 0,

and thus both x− bt0eb and y + bt0ea are nonnegative as required.
We now show that the corresponding factor exists within Φ. We have two cases:
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Case 1: a > b. Then we have⌊
1

3
n(bt0c)

⌋
≤ 1

3
(x+ y + bt0c(a− b)) ≤

1

3
(x+ y + t0(a− b))

= x− t0b by our choice of t0
≤ x− bt0cb

and ⌊
1

3
n(bt0c)

⌋
≥ 1

3
(x+ y + bt0c(a− b))− 1

≥ 1

3
(x+ y + (t0 − 1)(a− b))− 1

= x− t0b−
1

3
(a− b)− 1 by our choice of t0

≥ x− (bt0c+ 1)b− 1

3
(a− b)− 1

= x− bt0cb−
(
a+ 2b

3
+ 1

)

so ⌊
1

3
n(bt0c)

⌋
≤ x− bt0cb ≤

⌊
1

3
n(bt0c)

⌋
+

(
a+ 2b

3
+ 1

)
. (10)

Case 2: a < b. Then we have⌊
1

3
n(dt0e)

⌋
≤ 1

3
(x+ y + dt0e(a− b)) ≤

1

3
(x+ y + t0(a− b))

= x− t0b by our choice of t0
≤ x− (dt0e − 1)b

= x− dt0eb− b

and⌊
1

3
n(dt0e)

⌋
≥ 1

3
(x+ y + dt0e(a− b))− 1 ≥ 1

3
(x+ y + (t0 + 1)(a− b))− 1

= x− t0b+
1

3
(a− b) by our choice of t0

≥ x− dt0eb+
1

3
(a− b)

so ⌊
1

3
n(dt0e)

⌋
− b ≤ x− dt0eb ≤

⌊
1

3
n(dt0e)

⌋
+

1

3
(b− a). (11)
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In either case, we may take C =
⌈
max

{
1 + a+2b

3 , b, b−a3 , 4
}⌉

and since

n(bt0e) ≥ n(t0)− |a− b| = 3M

a+ 2b
− |a− b| ≥ 132 · 5C−4 = NC ,

by Corollary 1 we have that there exists a subword w of Φ such that |w| = n(bt0e)
and ψ(w) = (x− bt0eb, y + bt0eb).

As noted, Theorem 3 follows directly from Lemma 4. However, the bound on
M described in Lemma 4 is certainly not optimal; the maximum non-representable
integer may be much smaller than Ma,b. We therefore now compute exactly the
largest value of N \ S(LΦ) for several small values of a, b.

We compute the complement of S(LΦ) based on the Parikh vectors of factors of
length up to

ra,b =
Ma,b

min{a, b}
and thus for any integer M < Ma,b, if it is representable then its representation
should appear among the Parikh vectors of factors up to length ra,b. For conve-
nience, we collected the Parikh vectors of factors up to length r0 = max{ra,b : 1 ≤
a, b ≤ 6} = 16500 < 57 and then computed S(LΦ) and its complement only using
the Parikh vectors of factors of the appropriate lengths. The results are reported
in Table 1.

(a, b) dMa,be N \ S(LΦ)

(1,1) 132 {}
(1,2) 222 {}
(1,3) 313 {}
(1,4) 405 {3}
(1,5) 2435 {3,4,9}
(1,6) 14322 {3,4,5,10,11}
(2,1) 178 {}
(2,3) 355 {1}
(2,5) 2652 {1,3,6,8,13}
(3,1) 244 {}
(3,2) 311 {1}
(3,4) 2424 {1,2,5,9}
(3,5) 14309 {1,2,4,7,9,12,17}
(4,1) 270 {}
(4,3) 2204 {1,2,5}
(4,5) 15405 {1, 2, 3, 6, 7, 11, 12, 16, 21, 25}
(5,1) 318 {}
(5,2) 405 {1,3}
(5,3) 2428 {1,2,4,7,15}
(5,4) 14305 {1, 2, 3, 6, 7, 11, 15, 20, 24}
(5,6) 93506 {1, 2, 3, 4, 7, 8, 9, 13, 14, 15, 19, 20, 25, 26, 30, 31, 36, 42, 59}
(6,1) 366 {5}
(6,5) 88006 {1, 2, 3, 4, 7, 8, 9, 13, 14, 18, 19, 24, 25, 29, 30, 35}
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Table 1: N \ S(LΦ) for small values of a, b

4. A Ternary Word With Constant Abelian Complexity

Dekking [6] proved that Sturmian words do not have the Frobenius property. If
s is a Stumian word, then s is balanced, i.e., for all letters a ∈ {0, 1}, we have
||u|a− |v|a| ≤ 1 whenever u and v are factors of s of the same length. Furthermore,
as noted in the introduction, we have ρs(n) = 2 for all n ≥ 1, and indeed, the
aperiodic words with this abelian complexity function are exactly the Sturmian
words. Dekking also performed a detailed analysis of S(Lf ) for the Fibonacci word
f defined as follows.

Definition 1 (Fibonacci Word). Let φ = 1
2 (1 +

√
5) = 1.618 · · · and let α = 2−φ =

0.38196 · · · . We define

f = (b(n+ 1)αc − bnαc)n≥1 = 01001010010010100 · · ·

We also note that

(b(n+ 1)φc − bnφc)n≥1 = 21221212212212122 · · ·

is the sequence obtained from f by applying the map 0→ 2.

Dekking showed that S(Lf ) is co-finite except when

(S(0), S(1)) ∈ {(1, 1), (1, 2), (1, 3), (2, 1)}.

If one wished to extend Dekking’s analysis to ternary words, then in this setting,
the natural ternary analogue of Sturmian words are aperiodic ternary words x
with abelian complexity ρx(n) = 3 for n ≥ 1. Currently there is no complete
characterization of such words; however, Richomme, Saari, and Zamboni [14] proved
the following:

Theorem 4. ([14, Theorem 4.2]). If x is aperiodic, ternary, and balanced, then
ρx(n) = 3 for n ≥ 1.

Hubert [8] gave a useful characterization of aperiodic balanced words. The reader
may consult Hubert’s paper for more details. Here, we will use his characterization
to construct a word t from the Fibonacci word f with abelian complexity 3 for all
lengths. For ease of notation, let T be the operation that sends 1 → 1 and every
second 0 → 2, starting with the second 0. Similarly, let T be the operation that
sends 1→ 1 and every second 0→ 2, starting with the first 0.

Example 3. Let χ = 01010101 · · · . Then T (χ) = 01210121 · · · and T (χ) =
21012101 · · · .
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We define
t = T (f) = 01201210210210120 · · ·

and we immediately have the following.

Lemma 5. ρabt (n) = 3 for all n ≥ 1.

Proof. By [8] (and its English explanation in [13, Section 4]), the word t is an
aperiodic, uniformly recurrent, balanced word on {0, 1, 2}, so the result follows
from Theorem 4.

We will also make use of the following property.

Definition 2 (WELLDOC Property [3]). We say that an infinite aperiodic word λ
on A = {0, 1, . . . , d − 1} has well distributed occurrences (WELLDOC) if for every
m ∈ N and every subword w of λ we have

{(|u|0, |u|1, . . . , |u|d−1) mod m : λ = uwv} = Zdm.

Sturmian words have the WELLDOC property [3, Theorem 3.3].

Definition 3. For a subset A ⊆ R and a constant c ∈ R we define c+A := {c+ a :
a ∈ A}.

Lemma 6. Lt = T (Lf ) ∪ T (Lf ).

Proof. Certainly Lt ⊆ T (Lf ) ∪ T (Lf ), since any factor of t is obtained by taking
a factor of f and and replacing every other 0 with a 2. Let t0 ∈ T (Lf ) ∪ T (Lf ).
Without loss of generality, say t0 = T (w) for some w ∈ Lf . Then by the WELLDOC
property (with m = 2), there is an occurrence of w in f where it is preceded by an
even number of 0’s and an occurrence where it is preceded by an odd number of
0’s. Then T (w) and T (w) both occur as subwords of t.

It is well-known that 0f [1, n] ∈ Lf and 1f [1, n] ∈ Lf . Thus we have T (0f [1, n]),
T (1f [1, n]), T (0f [1, n]), and T (1f [1, n]) in Lt. We will refer to these as the generating
prefixes later on. Since we only have 3 possible Parikh vectors for each n, exactly
two of these must be equal. This equality depends on the parity of |f [1, n]|0.

Theorem 5. For n ≥ 1 define h(n) = b(n+ 1)αc. If |f [1, n]|0 is odd then

ψ(T (0f [1, n])) = ψ(T (0f [1, n])) =

(
n− h(n)

2
+

1

2
, h(n),

n− h(n)

2
+

1

2

)
ψ(T (1f [1, n])) =

(
n− h(n)

2
+

1

2
, h(n) + 1,

n− h(n)

2
− 1

2

)
ψ(T (1f [1, n])) =

(
n− h(n)

2
− 1

2
, h(n) + 1,

n− h(n)

2
+

1

2

)
.
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If |f [1, n]|0 is even then

ψ(T (0f [1, n])) =

(
n− h(n)

2
+ 1, h(n),

n− h(n)

2

)
ψ(T (0f [1, n])) =

(
n− h(n)

2
, h(n),

n− h(n)

2
+ 1

)
ψ(T (1f [1, n])) = ψ(T (1f [1, n])) =

(
n− h(n)

2
, h(n) + 1,

n− h(n)

2

)
.

Proof. First note that

|f [1, n]|1 =

n∑
i=1

(b(i+ 1)αc − biαc) = b(n+ 1)αc − bαc = b(n+ 1)αc − 0 = h(n).

If |f [1, n]|0 is odd, it is clear that

ψ(T (0f [1, n])) =

(
n− h(n) + 1

2
, h(n),

n− h(n) + 1

2

)
= ψ(T (0f [1, n]))

since exactly half of the 0’s in 0f [1, n] will become 2’s after we apply T . For 1f [1, n],
we have

ψ(T (1f [1, n])) =

(
n− h(n)− 1

2
+ 1, h(n),

n− h(n)− 1

2

)
.

By Lemma 6, we get the third Parikh vector by swapping the first and last compo-
nents.

If |f [1, n]|0 is even, we apply a similar line of reasoning to ψ(T (1f [1, n])) =
ψ(T (1f [1, n])), ψ(T (0f [1, n])), and ψ(T (0f [1, n])), which gives the above.

Let S : Lt → N be a morphism with S(0) = S0, S(1) = S1, and S(2) = S2. As
always, we assume that gcd(S0, S1, S2) = 1. Define

m(n) =
1

2
bnφc(S0 − 2S1 + S2)− 1

2
n(S0 − 4S1 + S2). (12)

(Note that 2m(n) is a generalized Beatty sequence, in the sense of Allouche and
Dekking [1].) Using the fact that b−xc = −bxc − 1 for x /∈ Z, we see that bnαc =
2n−bnφc−1. Using this identity and the fact that S(w) = S0|w|0 +S1|w|1 +S2|w|2,
we obtain (after some algebra) the following corollary of Theorem 5.

Corollary 2. If |f [1, n− 1]|0 is odd then

S(T (0f [1, n− 1])) = S(T (0f [1, n− 1])) = m(n) +
1

2
S0 − S1 +

1

2
S2

S(T (1f [1, n− 1])) = S(T (0f [1, n− 1]))− S2 + S1 = m(n) +
1

2
S0 −

1

2
S2

S(T (1f [1, n− 1]) = S(T (0f [1, n− 1]))− S0 + S1 = m(n)− 1

2
S0 +

1

2
S2.
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If |f [1, n− 1]|0 is even then

S(T (0f [1, n− 1])) = m(n) + S0 − S1

S(T (0f [1, n− 1]) = S(T (0f [1, n− 1]))− S0 + S2 = m(n)− S1 + S2

S(T (1f [1, n− 1]) = S(T (1f [1, n− 1])) = S(T (0f [1, n− 1]))− S0 + S1 = m(n).

Define

k1 = o1 =
1

2
S0 − S1 +

1

2
S2 k2 = o2 =

1

2
S0 −

1

2
S2 k3 = o3 = −1

2
S0 +

1

2
S2

k4 = e1 = S0 − S1 k5 = e2 = −S1 + S2 k6 = e3 = 0.

We will refer to the m(n)’s as main terms and the ki’s as offsets.

Theorem 6. Define µ(n) = [(n − 1 − b(n − 1)αc) mod 2]. Then S(Ln,t) =
{g1(n), g2(n), g3(n)}, where

g1(n) = m(n) + e1 + o3µ(n)

g2(n) = m(n) + e2 + (o2 − e2)µ(n)

g3(n) = m(n) + o3µ(n).

Proof. Note that ei + (oi − ei)µ(n) is oi when |f [1, n − 1]|0 is odd and ei when
|f [1, n− 1]|0 is even. We therefore obtain the equations

g1(n) = m(n) + e1 + (o1 − e1)[(n− 1− b(n− 1)αc) mod 2]

g2(n) = m(n) + e2 + (o2 − e2)[(n− 1− b(n− 1)αc) mod 2]

g3(n) = m(n) + e3 + (o3 − e3)[(n− 1− b(n− 1)αc) mod 2]

from Corollary 2.

Theorem 7. The word t does not have the Frobenius property.

Proof. From Theorem 6 we see that among the first max{g1(n), g2(n), g3(n)} natural
numbers, at most 3n are in S(Lt). From (12) and Theorem 6 we find that there is
a constant C such that for n ≥ 1, we have

max{g1(n), g2(n), g3(n)} ≥ 1

2
nφ(S0 − 2S1 + S2)− 1

2
n(S0 − 4S1 + S2) + C.

Let
δ := lim

n→∞

|S(Lt) ∩ {1, . . . , n}|
n

denote the natural density of S(Lt). Then

δ ≤ lim
n→∞

3n
1
2nφ(S0 − 2S1 + S2)− 1

2n(S0 − 4S1 + S2) + C

=
6

(φ− 1)(S0 + S2) + 2(2− φ)S1
.
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The denominator of this last expression is approximately 0.618(S0 +S2) + 0.764S1.
Since each Si is at least 1, we see that if any Si is at least 8, this denominator is
larger than 6 and hence δ < 1. It follows that if Si ≥ 8 for some i, then S(Lt) has
an infinite complement. Thus t does not have the Frobenius property.

Next, we determine the maps S for which S(Lt) is co-finite. We only have to
consider those S for which Si ≤ 7 for i = 1, 2, 3. We will show that it is possible to
determine if S(Lt) is co-finite by checking (by computer) a finite initial segment of
the sequence m(n). We begin with an analysis of the first difference sequence

∆m(n) = m(n+ 1)−m(n)

=
1

2
(b(n+ 1)φc − b(n)φc)(S0 − 2S1 + S2)− 1

2
(S0 − 4S1 + S2)

= (b(n+ 1)φc − bnφc)k1 − k1 + S1.

Recalling that (b(n+1)φc−bnφc)n≥1 is equal to the Fibonacci sequence over {2, 1},
we see that ∆m(n) is equal to the Fibonacci sequence over {k1 + S1, S1}. Let
F = (∆m(n))n≥1; i.e, F [n] = k1 +S1 if f [n] = 0 and F [n] = S1 if f [n] = 1. There is
one degenerate case to consider here, namely, the case where k1 = 0. In this case F
is constant with each term equal to S1. However, the analysis below is not affected
by this degenerate situation.

Let
k = max{|ki| : i = 1, 2, . . . , 6},

and for a given factor F [i, j] of F , let

I(F [i, j]) =

k + 1,

j+1∑
q=i

F [q]− (k + 1)

 .
Definition 4 (Semi-image). We define the even semi-image of F [i, j] as

S0(F [i, j]) =

{
s∑
q=i

F [q] + er + (or − er) [|f [i, s]|0 mod 2] :

r = 1, 2, 3, and s = i, . . . , j

}

and the odd semi-image of F [i, j] as (k1 + S1) + S1(F [i, j]) where

S1(F [i, j]) =

{
s∑
q=i

F [q] + er + (or − er) [1− |f [i, s]|0 mod 2] :

r = 1, 2, 3, and s = i, . . . , j

}
.
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These formulas are analogous to the ones from Theorem 6, but instead of using
the generating prefixes we can use any factor of F . Since, by the WELLDOC
property, each factor of F appears with either parity of (k1 + S1)-steps prior to
it, we must have two semi-images; the even (resp. odd) semi-image represents the
image of the factor with an even (resp. odd) number of (k1 + S1)-steps before it.
The odd semi-image is shifted by k1 + S1 to account for non-integral k1 but the
same lines of reasoning will apply.

Definition 5 (Semi-complement). We define the even semi-complement as

K0(F [i, j]) = (I(F [i, j]) \ S0(F [i, j])) ∩ N

and the odd semi-complement as

K1(F [i, j]) = ([(k1 + S1) + I(F [i, j])] \ [(k1 + S1) + S1(F [i, j])]) ∩ N

Example 4. Consider the triple (1, 1, 2). The odd offsets are {0.5, -0.5, 0.5}, the
even offsets are {0,1,0},

(m(n))n≥1 = (1, 2.5, 3.5, 5, 6.5, 7.5, 9, 10, 11.5, 13, 14, . . .),

and
F = (1.5, 1, 1.5, 1.5, 1, 1.5, 1, 1.5, 1.5, 1, . . .).

Let w = F [1, 4] = (1.5, 1, 1.5, 1.5). Then we have k = 1, I(w) = [2, 4.5], S0(w) =
{1, 2, 3, 4, 5, 6}, and K0(w) = {2, 3, 4} \ {1, 2, 3, 4, 5, 6} = ∅. We also have S1(w) =
{1.5, 2.5, 3.5, 4.5, 5.5, 6.5}, and K1(w) = {4, 5, 6} \ {3, 4, 5, 6, 7, 8} = ∅.

Theorem 8. Fix (S0, S1, S2) and let l =
⌈

2(k+1)
min{S1,k1+S1}

⌉
. Then the complement of

S(Lt) is finite if and only if K0(F [i, i+ l−1]) = K1(F [i, i+ l−1]) = ∅ for all i ≥ 1.

We need two preliminary lemmas.

Lemma 7. Let R(F [i, i+ l − 1]) =
∑i−1
q=1 F [q] + I(F [i, i+ l − 1]). Then⋃

i≥1

R(F [i, i+ l − 1]) ⊇ {n ∈ N : n > k}.

Proof. It suffices to show that

i∑
q=1

F [q] + k + 1 ≤
i+l∑
q=1

F [q]− (k + 1),

which happens if and only if

2(k + 1) ≤
i+l∑
q=1

F [q]−
i∑

q=1

F [q] =

i+l∑
q=i+1

F [q].

Since we have
∑i+l
q=i+1 F [q] ≥ lmin{S1, k1 + S1} ≥ 2(k + 1), we are done.
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Lemma 8. If x ∈ R(F [i, i+ l − 1]) then

x 6=
i−1−s∑
q=1

F [q] + kj and x 6=
i+l+s∑
q=1

F [q] + kj

for every s ≥ 0 and j = 1, 2, . . . , 6.

Proof. For any s ≥ 0 and j = 1, 2, . . . , 6 we have

i+l+s∑
q=1

F [q] + kj ≥
i+l∑
q=1

F [q]− k > x >

i−1∑
q=1

F [q] + k ≥
i−1−s∑
q=1

F [q] + kj ,

as required.

Proof of Theorem 8. We begin with the converse. First note that if x is a factor of
F and |x| = l then

∑
xi > 2(k+ 1) so I(x) is nonempty. If every semi-complement

is empty, then there exists a sequence (r(i))i≥1 on {0, 1} such that

N ∩R(F [i, l + i− 1]) = N ∩

(
i−1∑
q=1

F [q] + I(F [i, i+ l − 1])

)

= N ∩

(
i−1∑
q=1

F [q] + Sr(i)(F [i, i+ l − 1])

)
.

By Lemma 7, we get that S(Lt) is co-finite.
Now suppose that for some i the set K0(F [i, i+ l−1]) (resp. K1(F [i, i+ l−1])) is

non-empty, and so one of the semi-images ‘misses’ an integer xi. By the WELLDOC
property, there exist infinitely many indices {ir : r ∈ N} where F [ir, ir + l − 1] =
F [i, i+ l− 1] and |F [1, ir − 1]|0 is even (resp. odd). Thus, for each r there exists an
integer xir ∈ R(F [ir, ir + l − 1]) such that xir /∈

∑ir−1
q=1 F [q] + S0(F [ir, ir + l − 1])

(resp. xir /∈
∑ir−1
q=1 F [q] + S1(F [ir, ir + l − 1])). By Lemma 8, xir /∈ S(Lt). Thus

the complement of S(Lt) is infinite.

Note that by Lemma 6, our results are symmetric with respect to S0 and S2 and if
S0 = S2 then all of the results in [6] hold. As well, any triple with a greatest common
divisor greater than one will have infinitely many elements in the complement of
S(Lt). Thus, in all of the following calculations we skip any triple (x, y, z) where
gcd(x, y, z) > 1, x = z, or where (z, y, x) has already been evaluated.

For each triple, we first calculate l =
⌈

2(k+1)
min{k1+S1,S1}

⌉
and then calculate all l+ 2

factors3 of length l + 1 in4 F . We then calculate the semi-complements of each
3In the cases where S0 + S2 = 2S1, i.e. F is constant, we merely check the semi-image for the

single factor F [1, l + 1].
4Different letters may follow different occurrences of each factor. The extra term at the end

allows us to account for all possible values of F [j + 1] when calculating I(F [i, j]).
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factor of F , and by Theorem 8, if we find a non-empty semi-complement we know
that the complement of S(Lt) is infinite; otherwise, the complement of S(Lt) is
finite. We found 13 triples with finite complements. These are listed in Table 2.

(S0, S1, S2) N \ S(Lt)
(1, 1, 2) {}
(1, 1, 3) {}
(1, 1, 4) {}
(1, 2, 2) {}
(1, 2, 3) {}
(1, 2, 4) {}
(1, 3, 2) {}
(1, 3, 5) {2}
(1, 4, 2) {}
(2, 1, 3) {}
(2, 1, 4) {}
(2, 1, 5) {}
(2, 3, 4) {1}

Table 2: Maps S for which S(Lt) has a finite complement

5. Futher Work

We have just given some examples of infinite words that either have or do not have
the Frobenius property. In general, we would like to have a theorem that classifies
an infinite word as either having or not having the Frobenius property based on
its abelian complexity. For instance, is it true that if w has abelian complexity
ρw(n) = Ω(nr) for some r > 0, or perhaps even ρw(n) = Ω(log n), then w has the
Frobenius property? What happens when we move to ternary or larger alphabets?
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