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Abstract
For 0 < o, 8 € N for which ged (o, 8) = 1, we tackle an elementary method for the

evaluation of the convolution sum > o3(l)o3(m). Modular forms are used to
(1,m)eN?
al+Bm=n
establish this result. We then apply the convolution sums belonging to this class of
levels to determine formulae for the number of representations of a positive integer

8 16
n by the quadratic form a 27 + b>_ 2? with 0 < a,b € N when the level a3 = 0
i=1 i=9

4 8
(mod 4), and by the quadratic form ¢ (23, | + @2i_172; + 23;) +d>_ (23, | +
i=1 i=5

Toi_1T2; + 23;) with 0 < ¢,d € N when the level a3 = 0 (mod 3). We illustrate
our approach by explicitly evaluating the convolution sums for a5 = 3, 5, 6, 8, 9,
10, 12, 15, 16, 18, 20, 25, 27, 32. We then apply some of these convolution sums
to determine formulae for the number of representations of a positive integer n by
quadratic forms of the above given types.

1. Introduction

The problem of the evaluation of the summation
0'7-(1)0'3(77, - 1) + 0'7-(2)0'3(71 - 2) +o 4+ UT'(n - 2)08(2) + UT'(n - 1)08(1)7 (1)

wherein 0 < n,r, s,k € N and o(n) denotes the sum of the k" powers of the positive
divisors of n, began with the work of Liouville [9]. Hence, research on convolution
sums and the number of representation of a natural number by quadratic forms can
be traced back to Liouville [19, chap. 12] whose pseudonym was Besge or Besgue.
Note that Liouville did state the results on convolution sums and provided the proofs
by examples. Results on convolution sums (1) were later obtained by Glaisher [2],
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Lahiri [6, 7] and Ramanujan [16] for pairs (7, s) such that r and s are odd positive
integers and r + s < 14.

Let N, Ny, Z, Q, R and C denote the sets of natural numbers, natural numbers
without zero, i.e., N\ {0}, integers, rational numbers, real numbers and complex
numbers, respectively.

Suppose that & € N and n € Ny. Formally, the sum of the k'* powers of the
positive divisors of n is

or(n) = > _ o~ (2)
0<d|n
It is obvious from the definition that o4 (m) = 0 for all m ¢ Ny. We write d(n) and
o(n) as a shorthand for o¢(n) and o1(n), respectively.

Assume that the positive integers o and § with a@ < 8 are given. Then the

convolution sum W(?’(fﬁ) (n) is defined by

W(Sjg)(”): Z o3(l)os(m). ®3)

(I,m)eN?
al+Bm=n

We set Wé’ygﬁ) (n) = 0 if for all (I,m) € N? it holds that ol + B m # n.
In this paper, we evaluate the convolution sum W(?’(;Sﬁ)(n) for the level af € Ny.
In order to achieve this goal, we let

N ={2"0C|v e {0,1,2,3} and U is a finite product of distinct odd primes },

then consider the evaluation of the convolution sum ngﬂ) (n) for the levels af € N
and af € Ny \ 9, respectively.

The convolution sums known so far whose evaluation involve cubic divisor func-
tions o3(n) are displayed in the following table.

Level «f3 Authors | References
1 | Lahiri, Ramanujan 6, 7, 16
2,4 | Cheng & Williams [1

Table 1: Known convolution sums W(B(fm(n) of level af3

The evaluation of convolution sums involving cubic divisor functions for a class
of levels is new.

We then apply the result for this class of levels to determine the convolution sum
for af = 3, 5, 6, 8, 10, 12, 15, 20 € D and af = 9, 16, 18, 25, 27, 32 € Ny \ N.
Again, these explicit convolution sums have not been evaluated as yet.

Certain of these convolution sums are applied to establish explicit formulae for
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the number of representations of a positive integer n by the quadratic forms

a(af + a3+ +2F +af) + b (a5 + 2l + - + a¥5 + i) (4)
and
4 8
Y (31 + moiawai +3;) +dY (23,1 + wai 132 + 23;), (5)
=1 1=5

where (a,b), (¢, d) € N2.

Based on the structure of the level a8, we provide a method to determine all pairs
(a,b), (c,d) € N2 which are neccessary for the determination of the formulae for the
number of representations of a positive integer by the quadratic forms (4) and (5),
respectively. Then we determine explicit formulae for the number of representations
of a positive integer n by the quadratic forms (4) and (5), whenever a8 =0 (mod 4)
and aff = 0 (mod 3), respectively. As an example, we determine formulae for the
number of representations of a positive integer n by the quadratic form (4) using
the convolution sums for the level a8 = 4, 8, 12, 16, 20 and 32, and that by the
quadratic form (5) using the convolution sums for the level af = 3, 6, 9, 12, 15, 18
and 27.

The results of this paper are obtained using Software for symbolic scientific com-
putation. This software is composed of the open source software packages GiNaC,
Mazima, REDUCE, SAGE and the commercial software package MAPLE.

2. Essential Knowledge

2.1. Modular Forms

Let H = {z € C | Im(z) > 0} be the upper half-plane and let I' = G = SLy(R) =
{(2%) | a,b,c,d € R and ad—bc = 1} be the group of 2 x 2-matrices. Let N € N.
Then

P(N) ={(e¢g)esla(2) | (¢§)=(s?) (modN)}

is a subgroup of G and is called the principal congruence subgroup of level N. A
subgroup H of G is called a congruence subgroup of level N if it contains T'(V).
For our purpose, the following congruence subgroup is relevant:

Lo(N)={(2%) €SLy(Z) | c=0 (mod N) }.

Let TV C T be a congruence subgroup of level N. Let k € Z,v € SLy(Z) and f
be a meromorphic function on the upper half-plane H. We denote by fDIx the
function whose value at z is (cz + d) " f(7(2)), i.e., fIr(2) = (cz + d)* f(7(2)).
The following definition is according to Koblitz [4, p. 108].
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Definition 1. Let N € Ny, k € Z, f be a meromorphic function on H and I C T’
be a congruence subgroup of level N.

(a) fis called a modular function of weight k for T if the following two conditions
are met.
(al) For all v € T’ it holds that fIYlx = f.
2mizn

(a2) For any ¢ € T it holds that fI%*(2) has the form 3 a,e”™ %" and a, # 0
neL

for finitely many n € Z \ N.

(b) f is called a modular form of weight k for T” if the following three conditions
are met.

(bl) f is a modular function of weight & for T"”.
(b2) f is holomorphic on H.
(b3) For all 6 € I" and for all n € Z \ N it holds that a,, = 0.

(¢) f is called a cusp form of weight k for T” if the following two conditions are
met.

(c1) f is a modular form of weight k for I".
(c2) For all 6 € T' it holds that ag = 0.

Let us denote by M (I") the set of modular forms of weight k for T, by S (T”) the
set of cusp forms of weight k for IV and by F(I"”) the set of Eisenstein series. The
sets M (I"), Sk(I'") and Ey(I") are vector spaces over C. Therefore, M (T'o(N))
is the space of modular forms of weight k for T'g(N), Sk(T'o(NN)) is the space of
cusp forms of weight k for T'g(NV), and E(T'g(V)) is the space of Eisenstein series.
The decomposition of the space of modular forms as a direct sum of the space of
Eisenstein series and the space of cusp forms, i.e., M (To(N)) = Ex(To(N)) &
Sk(To(N)), is well-known; see for example Stein’s book (online version) [17, p. 81].

We asume in this paper that & € Ny and that x and ¢ are primitive Dirichlet
characters with conductors L and R, respectively. Stein [17, p. 86] has noted that

EQkyX_’w(q) =Cy+ Z <Z ¢(d)x(%) d2k1)qn7 (6)

n=1 “dn

where

0 if L >1
CO_{ 1 >

P pp =1

and By, are the generalized Bernoulli numbers. Theorems 5.8 and 5.9 in Section
5.3 of Stein [17, p. 86| are then applicable.
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If the primitive Dirichlet characters y and 1 are trivial then their conductors L
and R are one, respectively In that case (6) can be normalized and then given as

follows: Ear(q) =1 — B—% Z oar—1(n) ¢". This is the case whenever the level a3

belongs to 1.
Let m,n € Ny be such that m is a positive divisor of n, and let k € Ny. Then we
apply Miyake [11, Lemma 2.1.3] to conclude that

My (To(m)) C Mag(Lo(n)). (7)

This implies the same inclusion relation for the bases, the space of Eisenstein forms
of weight 2k and the spaces of cusp forms of weight 2k.

2.2. Eta Quotients

On the upper half-plane H, the Dedekind n-function, n(z), can be defined as follows:
n(z) = e*55 [] (1 — e2™"%). Let us set ¢ = €™, Then it follows that
n=1
o0

ﬁH (1—-q")=q> F(q), where F(q)=[](1-¢").

n=1

Let  be a finite subset of Ny and e; € Z with j € k. According to Kéhler [5, p.
31] an n-product or n-quotient, f(z), is a finite product of Dedekind n-functions of

the form
TTnG=)*. (8)
j€k
Note that n-function, n-quotient and n-product are used interchangeably as syn-
onyms.
Based on this definition of an 7n-quotient, there exists a positive integer N such
that N =lem{j | j € k }. We call such an N the level of an n-product. Therefore,
an 7-quotient is simply understood as

11 =)

0<j|N

If 2k = 5 3 e; then the n-quotient f(z) behaves like a modular form of weight
0<j|N
2k on T'g(N) |with some multiplier system.

Kilford [3, p. 99] and Kohler [5, Corollary 2.3] have formulated the following
theorem which is a result of the work of Newman [12, 13] and Ligozat [8]. This
theorem is effectively used to exhaustively determine n-quotients, f(z), which belong
to M2y (I'o(N)), and in particular those n-quotients which are in Sor(T'o(N)).
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Theorem 1 (Newman and Ligozat). Let N € Ny, D(N) be the set of all positive

divisors of N, 6 € D(N) and rs € Z. Furthermore, let f(z) = [[ n"°(6z) be an
s€D(N)
n-quotient. If the following four conditions are satisfied:

(i) > drs =0 (mod 24),
s€D(N)

(i) > &rs =0 (mod 24),
§eD(N)

(iii) I 0" is a square in Q,
s€D(N)

(iv) for alld € D(N) we have > M rs >0,

then f(z) € Moy(To(N)), where 2k =3 > rs.
S€D(N)
Moreover, the n-quotient f(z) is an element of Sar(To(N)) if (iv) is replaced by

(iv’) for alld € D(N) we have > M’f’g > 0.
SED(N)

Remark 1. For an n-quotient f(z) = [[ 7n"¢(dz), it can be shown that if in
seD(N)

Theorem 1 either the condition (i) or (ii) is not considered then f(z) belongs to

Mg (To(N)) under some restrictions. Moreover, f(z) is an element of Sor(I'0(N))

under some restrictions if the condition (iv’) is satisfied.

2.3. Convolution Sums W?&?:B)(n)

Given «, 8 € Ny such that o < 3, let the convolution sum be defined by (3).
Suppose in addition that ged (o, ) = 6 > 1 for some § € Ny. Then there exist
a1, 81 € Ny such that ged (aq,81) =1, a =da; and § =6 §;. Hence,

n
Welym = Y aoskos)= D ososlk) =W 5 (5) (9)
(k,l)EN? (k,l)eN?
ak+pBl=n dai k40 B1l=n

Therefore, we may simply assume that ged («, ) = 1. Moreover, due to the com-
mutativity of the addition and the multiplication, it is obvious that W(‘So’égﬁ)(n) =

W (0)-

We note that the primitive Dirichlet characters x and

1. are trivial whenever a8 € 91 holds;
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2. are such that y = ¢ and that x is a Legendre-Jacobi-Kronecker symbol oth-
erwise.

The following Eisenstein series hold:

Eay(q) =1—24 ila(n)q", (10)
Ey(q) =1+ 240 iag(n)q", (11)
Eg(q) =1 — 504 i o5(n)q", (12)
Es(q) = 1+ 480 imm)qn, (13)

Eain (@) = Bai(q) @ x(N)

(Co—i—z ) 021 )q’\")
00+Z (An) ook—1(n) ",
C}H—Z n) oog—1( )qn’

where A € Ny,

B pp =1

if L >1
CO_{O i >

and Bsy , are the specially generalized Bernoulli numbers.
Note that E4(q), Es(q), Es(q) are special cases of (6) or (14) and hold if af € M.
We state two relevant results for the sequel of this work.

Lemma 1. Let k,a, 3 € Ng. Then

(a Ear(q®) — B Ear(q”))? € Mur(To(ap)).

Proof. If a = f3 then trivially 0 = (a Ea(q¢%) — a Ea,(¢%))? € My (To(a)) and
there is nothing to prove. Therefore, we may suppose that a # 3 in the sequel. We
apply the result proved by Stein [17, Theorems 5.8 and 5.9] and (7) to deduce that

Eor(q) — a B2 (¢%) € Max(To(a)) € Maog(Lo(a3))



INTEGERS: 21 (2021) 8

and
Ea(q) — BEar(q”) € Mak(To(B)) € May(To(af)).
Therefore,
a Eg(q%) =B B (¢°) = (Eak(q)—B Ear(q”)) — (Ear(q) —a Eak(q®)) € Map(To(eB))
and so (a Ea(q%) — B Eak(q”))?* € My(To(ap)). -

Theorem 2. Let o, 8 € Ny be such that a < B, and a and 8 are relatively prime.
Then

2 [e%s)
(aBita®) = BEA)) = (-5 + 450 3 (ater)+ 8 on()

@I 3 /-\

~afoa(2) ~ador(5) ~ 2008 WL () ). (19

Proof. We first observe that

2
(aE4<qa> - 5E4<q6>) 02 EA¢) + B2 EAd) — 208 Ea(¢®)Ea(d®). (16)

Lahiri[6] has derived the identity

E3(q) =1+480 > or(n)q" (17)

n=1

which we apply to deduce that

E3(q*) =1+ 480 )" or(2)g" (18)
and -
Ef(¢7) = 1+480 207(%)‘1 (19)
Since
[eS) ﬁ . o0 U ﬁ 2 9] . 33 n
(Srton) (i) = (5 thitn ) = w0

we conclude that

Ey(¢®)E4s(¢®) = 1 + 240 Zag )q" + 240 Zag 34 "4 2402 ZW(?’QSB) q".
n=1 n=1
(20)
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Therefore,

2 [ee}
(amq“) —m(qﬁ)) = (@~ §)* + 480 Z( @ or(1)+ B or()
n=1
—aBoy(%) - ap ag(%) —240af W2, (n) )qn
as asserted. O

If we suppose in the above theorem that o = 3 and combine this fact with Lemma
1 then we deduce the following.

Corollary 1. Let n be a positive integer. Then for all a € Ng it holds that

3,3 syt oy 1 m
Wiao (M) = Wiy (D) =15577(3) =~ 15573(3)- (21)

In particular, if o« =1 then we obtain the result proved by Ramanujan [16], namely

1 1

w23 (n) =1577(") = 15573 (- (22)

(1.1)

3. Evaluating W?f’ﬁ)(n), Where afp € Ny

We carry out an explicit formula for the convolution sum Wi)’lgﬁ) (n), where the level
af belongs to Nj.

3.1. Bases of Eg(lo(af)) and Sg(To(xB))

Let D(af) denote the set of all positive divisors of af3.

Pizer [15] has discussed the existence of a basis of the space of cusp forms of
weight 2k € Ny for T'o(a8) when af is not a perfect square. We suppose in the
sequel that the weight 2k € Ny. We apply the dimension formulae in Miyake’s book
[11, Theorem 2.5.2] or Stein’s book [17, Proposition 6.1] to conclude the following:

e for the space of Eisenstein series,

dim(Exi(Tofaf))) = 3 plecd(d, 7)) = me, (23)
dlap

where mp € Ny and ¢ is the Euler’s totient function;

e for the space of cusp forms, dim(Sai(To(af))) = mg, where mg € N.
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If af € 91 then

dim(Eqx(To(aB))) Zgﬁ ged (9, Zl = op(aB) = d(ap). (24)

Slap Sl

For a fixed a8 € Ny, we use Theorem 1 (i) — (iv') to exhaustively determine as
many elements of the space of cusp forms, Sor(To(af8)), as possible. From these
elements of the space Sai(I'o(f5)), we select relevant ones for the purpose of the
determination of a basis of this space.

The so-determined basis of the vector space of cusp forms is in general not unique;
however, due to the change of basis which is an automorphism, it is sufficient to
only consider this basis for our purpose.

Let € denote the set of primitive Dirichlet characters x(n) = () as assumed
n (14), where m,n € Z and (%) is the Legendre-Jacobi-Kronecker symbol. Let
D, (o) € D(ef3) denote the subset of D(af) associated with the character x.

The selection of a primitive Dirichlet character as required in (14) is not straight-
forward. Not all primitive Dirichlet characters are good candidates such that a basis
of the space of Eisenstein series for that given level can be found. For example, if the
levels are 25 and 32, the primitive Dirichlet characters (E) and ( ) do not permit
one to prove the linear independence of a basis of Ear(I'g(25)) and E2:(T0(32)),
respectively.

Let 4, x be natural numbers. The expression of a positive integer in the form

K
[1p;* modulo a permutation of the primes p;, where e; is in Ny, is standard. In the
following, we use this form to express a level aff € Ny \ M.

Definition 2. Let i,x € Ny and n € N. Furthermore, let C € 7Z be fixed. Suppose

that the level af € Ny \ 9 is fixed and of the form le , where p; is a prime
=1

number and e; is in Ny. We say that a primitive Dirichlet character x(n) = (%)
annihilates Fop(To(aB)) or is an annihilator of Eop(To(af)) if for some 1 < j < k
there exists 1 < p;‘-j € No \ M positive divisor of a3 such that Eay, ,(q°) vanishes for
all 1 < § positive divisor of p;j.

A set @ of primitive Dirichlet characters annihilates Ear(To(af)) or is an annihilator
of Ea,(To(apB)) if each x(n) € € is an annihilator of Fqy(I'o(af)).

To illustrate the above definition, suppose that a8 = 18 and the primitive Dirich-
let character is x(n) = (=2). Then C' = —3 so that |C| is a positive divisor of 9 = 32.
Hence, for all kK € N and for all 1 < ¢ € D(9) it holds that

Ear (g Z n) oak—1( )Q":Q

Therefore, the primitive Dirichlet character x which is such that x(n) = (=2) is an

annihilator of Eax (T (18)).
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The following theorem provides a strong criteria when selecting a primitive
Dirichlet character for a given level a8 € Ny \ .

Theorem 3. Let i,k be in Ng. Let C' € Z be fixed. Let x be a primitive Dirichlet
chamcter with conductor |C] > 1 and let the level af € Ng \ N be fized and of the

form Hpel, where p; is a prime number and e; is in Ng. Furthermore, suppose that
=1

S NO \Nisa posztwe divisor of af for some 1 < j < k. If the conductor |C| is
a posztwe divisor of p] and hence of the level af then x(n) = ( ) for alln € N,
is an annthilator of Eox(To(af)).

Proof. Suppose that af € Ny \ 9N is fixed and of the form le , where p; is a
=1
prime number and e; is in Ny. As an immediate consequence of the structure of a8

there exists 1 < j < k such that p;j € Ny \ M is a positive divisor of a3. Since the
conductor |C| is a positive divisor of the level p’, the existence of 1 < § € D(p;’)
is given. It is well-known that for each 1 < f < e; it holds that pf is a positive
divisor of pjj. On the other hand, It holds that

(C>{0 i ged(|Cl,m) # 1, o5)

n nonzero otherwise.

For each 1 < 6 € D(pjj) it holds that ged(|C|,0) # 1. Since the conductor of x is
greater than one, it follows that Cy = 0 in (6); that means

Eor (g Z n) oak—1( )qn~

n=1

Since it also holds that

(26)

5)

02k—1 ( < .
nonzero otherwise,

n {0 if 2 ¢ No,

we obtain the stated result by simply putting altogether; that is Eay ,(¢°) = 0 for
all1 <6 eD(p;). O

If a8 € 91 holds then the primitive Dirichlet characters are trivial. Therefore,
the set C is empty. Hence, the case where a8 € 91 holds is a special case of the
following theorem.

Theorem 4. Suppose that a8 € Ny is given.

(a) Let C be a set of primitive Dirichlet characters such that for each x € € it
holds that x is not an annihilator of Eor(To(aB)). Then the set

Bp={En(d") | t€ D(ap) }U |J{ B (d) |t € Dy(aB)}

x€eC
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is a basis of Ear(To(afB)).

(b) Let 1 < i < mg be positive integers, 6 € D(af) and (r(i,0)):s be a table of

the powers of n(0z). Furthermore, let Bogi(q) = [[ 1" (02) be selected
Slap

elements of Sor(To(af)). Then the set Bs = {Bapi(q) | 1 <i<mg}isa

basis of Sax(To(af)).
(¢) The set By = Bg U Bg constitutes a basis of Map(To(af)).

Remark 2. Each B,p,(¢) can be expressed in the form Y b,g,(n)¢”, where
n=1

1 <i < mg and for each n > 1 the coefficient b,p ;(n) is an integer. If we divide
the sum, which results from Theorem 1 (iv’), when d = N, by 24 then we obtain
the smallest positive degree of ¢ in Byp.i(q).

The existence of a basis of the space of cusp forms for all square-free levels has
been proved by Pizer [15], and Theorem 1 provides a method to find as many
elements of the space of cusp forms as possible. Hence, the proof of Theorem 4
(b) is essentially restricted to show that the selected elements of the space of cusp
forms of the given level are linearly independent.

Proof of Theorem 4. We only consider the case where of is in Ny \ 9 since the case
afl € M is proved similarly and even using a relatively straightforward process due
to the fact that € = ().

(a) Stein [17, Theorems 5.8 and 5.9] has shown that for each ¢ positive divisor
of af it holds that Eap(q") is in Max(To(t)). Since Max(To(t)) is a vec-
tor space and the set C of primitive Dirichlet characters does not annihilate
Eo(To(af)), it also holds for each Legendre-Jacobi-Kronecker symbol x € C
and ¢ € D, (af) that 0 # Eak(q") is in Mok(To(t)). Since the dimension
of Eo,(To(cp)) is finite, it suffices to show that B is linearly independent.
Suppose that for each x € €, s € D, (af) we have z(x)s € C and that for each
t|af we have x; € C. Then

Ziﬂt Eor(q") + Z( Z Z(X)SEZk,x(qS)> =0.

tlaf XEC N seDy(ap)

We recall that y is a Legendre-Jacobi-Kronecker symbol; therefore, for all
0 # a € Z it holds that (%) = 0. Since the primitive Dirichlet character y
is not trivial and has a conductor L which we may assume greater than one,
we can deduce that Cp = 0 in (14). Then we equate the coefficients of ¢™ for

n € D(aB)U | {s|s € Dy(aB)} to obtain the following homogeneous system
x€C
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of linear equations in mg unknowns:

Soma(r Y Y Mou (02000 =0, L€ Dad).

ulaf XEC vED, (af)

Since af € Ny is fixed, one can easily show that the determinant of the matrix
of this homogeneous system of linear equations is not zero. Hence, the unique
solution is z; = z(x)s = 0 for all ¢ € D(af) and for all x € €, s € D, (af).
So, the set B is linearly independent and hence is a basis of Ea;(Tg(af)).

First, we show that each B,5,(q), where 1 < i < mg, is in the space
Sar(To(aB)). This is obviously the case since B,p.(q),1 < i < mg, are
obtained using an exhaustive search which applies the conditions (i) — (iv’)
in Theorem 1.

When the level N is a prime number or a composite integer whose dimensions
of the composita are all zero, the set Bg is determined by applying Theorem 1,
making appropriate selection of the elements which can build the basis and
proceeding as in the fourth paragraph hereafter.

Here is an elegant way to determine Bg when the level IV is not a prime number
and a composite integer such that the dimensions of the composita are all zero.
In order to achieve this, we apply the following stated and proved by Miyake
[11, pp. 153-175]. Let A be a positive integer and Say(To(V), x) be defined as
in Miyake [11, p. 115]. If f(2) € Sox(To(N), x) then f(Az) € Sox(To(AN), x).
In other words, let the level NV be of the form UV, where 0 < U,V € N. Fur-
thermore, let f(z) € Sa(To(U), x), g(2) € Sak(To(V), x), and 0 < p,v € N
be such that puU, vV € D(N). Then f(uz),g(vz) € 8ok (To(N), x). In partic-
ular, if f(z) and g(z) are basis elements of Sar(T'o(U), x) and S2x(T'o(V), x),
respectively, so are f(uz) and g(vz) basis elements of Sox(To(N), x).

We then apply Theorem 1 with the additional condition

2
S BN e dimn(Sae (To(0) dim( S (T (V) )
S€D(N)

to exhaustively search for and determine the rest of the basis elements.
Since the dimension of Sar (o (f)) is finite, it suffices to show that the set Bg

ms
is linearly independent. Suppose that z; € C and ) z; Bag,i(¢) = 0. Then
i=1

ms o0 ms
we apply Remark 2 to obtain Y ; Bag.i(q) = D, (D 25 bap.:(n))g" = 0
i=1 n=1 i=1

which gives the following homogeneous system of mg linear equations in mg
unknowns:

mg
Zbaﬁ,i(n) x; =0, 1<n<mg. (27)
i=1
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Two cases arise:

The smallest degree of B,3,(q) is i for each 1 <i < mg. The square ma-
trix which corresponds to this homogeneous system of mg linear equa-
tions is triangular with 1’s on the diagonal. Hence, the determinant of
that matrix is 1 and so the unique solution is x; = 0 for all 1 < i < mg.

The smallest degree of B,3,(¢) is i for 1 <i < mg. Let n’ be the largest
positive integer such that 1 < i <n' < mg. Let By = {Bapi(q) | 1 <
i <n'}and B = {Bapilg) | » <i<mg}. Then Bg = By U B
and we may consider Bg as an ordered set. By the case above, the set
B's is linearly independent. Hence, the linear independence of the set
Bg depends on the set BY. Let A = (bag,:(n)) be the mg x mg matrix
in (27). If det(A) # 0, then z; = 0 for all 1 < i < mg and we are
done. Suppose that det(4) = 0. Then for some n’ < [ < mg there
exists Bop,(¢) which is causing the system of equations to be inconsis-
tent. We substitute B,g:(¢) € B with, say B, 5,(¢), which does not
occur in B and compute the determinant of the new matrix A. Since
there are finitely many B,p,(¢) with n’ <1 < mg that may cause the
system of linear equations to be inconsistent and finitely many elements
of Sox(To(aB)) \ Bs, the procedure terminates with a consistent system
of linear equations. Since Pizer [15] has proved the existence of a basis
for the space of cusps, we find a linearly independent set of elements of

Szk(ro(aﬂ)).

Therefore, the set { Bop,:(¢) | 1 <i < mg} is linearly independent and hence
is a basis of Sai(To(f)).

(c) Since Mo (To(af)) = Eap(To(aB)) ® Sk (To(af)), the result follows from (a)
and (b).

O

If the set € is empty then the formulation and the proof of Theorem 4 are
straightforward.

If the level a8 belongs to the class 91 then Theorem 4 (a) is provable by induction
on the set of positive divisors of af; see for example Ntienjem [14]. Note that each
positive divisor of af is in 9T whenever the level a8 belongs to 1. This nice property
does not hold in general if the level a3 belongs to Ny \ 91. For example 45 is an
element of Ny \ 91; however, 15, which is a positive divisor of 45, does not belong to
Np \ 2.

The proof of Theorem 4 (b) provides us with an effective and most probably
efficient method to determine a basis of the space of cusp forms of weight 2k € N
and of level aff whenever af belongs to Nj.
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3.2. Evaluating the Convolution Sums W?f’ﬁ)(n)

We recall that it is sufficient to assume that the primitive Dirichlet character x is
not trivial since the case for which x is trivial can be deduced as an immediate
corollary.

Lemma 2. Let o, € Ny be such that ged(a, 3) = 1. Furthermore, let By =
BrUBg be a basis of Mg(To(aB)). Then there exist X5, Z(x)s,Y; € C, where 1 <
Jj<mg,x €C,s € Dy(af) and 6 € D(afB), such that

(aEa(q™) — B Ealq ZX5+Z(48OZ 5)X

5o Slap

P05 S o200, + 3 bas) Y ) (29

X€EC seDy(apf)

Proof. That (aE4(q®) — BE4(¢?))? € Mg(T'o(ap)) follows from Lemma 1. Hence,
by Theorem 4 (c), there exist X5, Z(x)s,Y; € C, wherein 1 < j < mg,x € C,s €
D, (af) and ¢ is a divisor of o3, such that

ms
(aEi(q¢*)-BEs(¢)? = Y Xs Bs(@)+Y_ Y. Z(x)s Bsx () +Y_ Y;B;(q)
5lafB XEC seD, (ap) J=1
s n
= Z X5+ Z<480 Z 07(5)X5
dlap n=1 Slap

+480 ) Y x(n )07( +Zbaﬁj )L.

X€C s€Dy(ap)

We equate the right-hand side of (28) with that of (15) to obtain

(e%e] n ms
Z<480 > Xsor( +480 Z( > x(n) 07(8)Z(X)s)+ZYj baﬁyj(n)> q
n=1 5lafB X€C “seDy(ap) Jj=1

Z<480a o7( )+48OB207(5) 480aﬂ03(g)

n=1

— 480 aBas(2) — 2 x 2402 af W2, (n ))q".

B (@,8)

We then take the coefficients of ¢" such that n is in D(af) and 1 < n < mg, but as
many as the unknowns, X5 for all 0 < d|lafB, Z(x)s for all x € € and s € D, (af),
and Y7,...,Yn,, to obtain a system of mg + mg linear equations whose unique
solution determines the values of the unknowns. Hence, we obtain the result. [
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For the following theorem and for the sake of simplicity, let X5, Z(x)s and Y;
stand for their values obtained in the previous lemma.

Theorem 5. Let n be a positive integer. Then

1

3,3

W — }: X 5:7 b,
(™) 240&[3 s01( 5 o 2% 2402083 "’ 8.4(")

d|ap
s+£a, B
1 9 n 1 9 n
+ 51007 (a® — Xa)G?(*) + 3005 (B = Xﬁ)O?(B)

2><24020152 >, Z00s0 ()

X€EC se€Dy (af)

1 n 1 n

- %03(04) - %03(3)'

Proof. We equate the right-hand side of (28) with that of (15) to yield

2 x 240° @B W5 (n) = — 480 ) X50’7 —480 ) > Z(x)scw(%)

Slap X€EC se€Dy(ap)

_zmaﬁ] +480 a2 o7(~ )+48052U7(6)

3

(n) to obtain the stated result. O

+ 480 af 03(5) + 480 o o5

We then solve for W( 5)

Remark 3. We observe that
n 1 n

210 03(5) + 210 03(5),

which is part of Theorem 5, depends only on n, o and 3; it does not rely on the
basis of the modular space Mg(I'o(af)). For all x € € and for all s € D, (af) the
value of Z(x)s appears to be zero in all explicit examples evaluated as yet. Will the
value of Z(x)s always vanish for all af belonging to Ny \ 91?7

Now, we have the prerequisite to determine a formula for the number of repre-
sentations of a positive integer n by a quadratic form.

4. Number of Representations of a Positive Integer for this Class of Lev-
els

We discuss the determination of formulae for the number of representations of a
positive integer by the quadratic forms (4) and (5).
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4.1. Representations of a Positive Integer by the Quadratic Form (4)

We determine formulae for the number of representations of a positive integer by
the quadratic form (4).

4.1.1. Formulae for the Number of Representations by (4)

Let n € N and let the number of representations of n by the quadratic form z% +
23+ -+ 22 + 22 be

rg(n) = card({(z1, 22, -+ ,27,28) € 78 | n= a:% + mg 4o x% + x%})

It follows from the definition that rg(0) = 1. For each n € Ny, the identity rg(n) is
n

rg(n) = 16 o3(n) — 3203(2) +25603(7)

(29)
and its arithmetic proof is given by Williams [18].
Now, let the number of representations of n by the quadratic form (4) be

Nfé?b) (n) = card({(z1, 2, - - , Z15, 216) € Z'° |

n=a(x}+a5+- - +a3+a3)+b(xd+ a3+ + 235 +2l6)}),

where a,b € Ny.

It is clear from the definition that for all a,b € Ny it holds that N(Sa’gb)(O) =1.
It immediately follows from the definition of N(Sfb) (n) that N, (ga’gb) (n) = N(Sb’i) (n).

If a,b € Ny are such that ged(a,b) = d > 1 for some d € Ny then N(i’?b)(n) =

N(sf b )( 7). Therefore, one may simply assume that a,b € Ny are relatively prime.
d’d

We then derive the following result:
Theorem 6. Let n € Ny and let a,b € Ng be relatively prime. Then

n n n n

8.8 _ n ny _ n n
N(a,b)(n)— 1603(a)+1603(b) 3203(2a) 3203(2b)+25603(4a)+25603(4b)
3,3 3,3 3,3 3,3

+ 256 W(mb) (n) — 512 W(a,zb) (n) + 4096 W(Mb)(n) — 512 W(%b) (n)
33 (N 3,3 (1 3,3

+ 1024 W(a,b)(g) — 8192 W(a,%) (5) + 4096 W(4a7b) (n)
33 1 33 1

— 8192 W(Qa,b)(§) + 65536 W(a,b)(z)'

Proof. From the definition of IV, (sa,sb)

(n) it follows that
Nty = 32 rsOrs(m) = rs(rs@)+rs@prs()+ 30 rs(Drs(m).

(1,m)EN? (1,m)ENg
al+bm=n al+bm=n
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We make use of (29) to obtain

b) 8203(3, 2% a 4b)
+ ) (160—3 3203(;)—5—25603(1))(1603( )— 3203(2)+25603(T)>.

(1,m)eN?
al4+bm=n

N8 (n )71603( )+ 16 o3(

(a,b) ) —3203(

)+ 25605 (=) + 25605

We know that

(160’3(1) — 320’3(%) + 2560’3(1)) (160’3( ) 320’3( 9 ) + 2560’3( 1 )) =

25605 (1) o3 (m) — 51203(1)03(%) + 409603(l)03(%)

- 51203(é)03(m) + 102403%)03(%) - 819203%)03(%)

l l l
+ 409603 (2o (m) — 819205 (2) o3 (1) + 65536 3(= Yoz ().
4 4 2 4 4
In the sequel of this proof, we assume that the evaluation of

WE = S oslosim),
(I,m)eNg
al4+bm=n

Wé’ib) (n), W(Sa’éb) (n), W(Bij,b)( n) and W(a ap)(n) are known.

Let u,v € Ng and f,g: N+— N be IHJeCtIVB functions such that f(n) = u-n and
g(n) =wv-n for each n € N.

When we simultaneously apply the functions f and g with [ and m as argument,
respectively, we derive

l m
> o3()os(- ) = o aos(m) =W, ().
(I,m)eN? (1,m)eN?
al+bm=n wa l+vbm=n
We set (u,v) = (1,1),(1,2),(2,1),(2,2),(1,4),(2,4), (4,1),(4,2),(4,4), respec-
tively, and put all these evaluations together to obtain the stated result for N (8 Sb)( n).

From this proof, one immediately observes that a formula for the number of
representations of a positive integer n by the quadratic form (4) depends on the
evaluated convolution sums for some given levels ab and 4ab with a,b € Ng.

Based on this observation, we only take into consideration those levels a8 which
are multiple of 4; that is a8 =0 (mod 4).
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4.1.2. Determination of All Relevant (a,b) € N2 for N(Sa;sb) (n) for a Level
(X|3 S No

For a given level aff € Ny such that a8 =0 (mod 4) holds, we carry out a method
to determine all pairs (a,b) € N2 which are necessary for the determination of

8,8
N(a,b) (n).

Let A = (Z—B = 2720, Py = {po = 22} U U {p; | pj is a prime divisor of U }
j>1
and P(Py) be the power set of P;. Then for each Q € P(Py) we define p(Q) = [] p-

PeEQ
We set u(Q) =1 if Q is an empty set. Now let

Q= {(u(Q1), 1(Q2)) | there exist Q1,Q2 € P(Py) such that
ged (u(@Qn1), 1(Q2)) =1 and pu(Qr) w(Q2) = A}

Observe that Q4 # 0 since (1,A) € Qq.
To illustrate our method, suppose that o = 23 -3-5. Then A = 2-3 -5,
Py =1{2,3,5} and Q4 = {(1,30),(2,15),(3,10),(5,6)}.

Proposition 1. Suppose that the level aff € Ny and af =0 (mod 4). Furthermore,
suppose that Q4 is defined as above. Then for all n € Ny the set Q4 contains all
pairs (a,b) € N3 such that N(ga’?b) (n) can be obtained by applying W(?’a?’ﬂ)(n) and some
other evaluated convolution sums.

Proof. We prove this by induction on the structure of the level a 5.
Suppose that aff = 2Yps, where v > 2 and py is an odd prime. Then by the
above definitions we have

A= 2V72p27

Py = {21/727]72 }a
fP(P4) = {@, {2y_2}, {p2}7{2y_2,p2} } and

Q4= {(1,2"%ps), (2" 2, p2) }.

Following the observation made at the end of the proof of Theorem 6, we note
that a8 = 4ab = 2¥p,y. Hence, ab = 2"~ 2py which leads immediately to N(%Sb) (n).
We show that €4 is the largest such set. Assume now that there exists another

set, say €}, which results from the above definitions. Then there are two cases.
Case Q) C Q4 There is nothing to show. So, we are done.

Case Q4 C Q) Let (e, f) € Q) \ Q4. Since ef = 2""?p, and ged (e, f) = 1, we
must have either (e, f) = (1,2""2pg) or (e, f) = (2“72,p2). So, (e, f) € Q4.
Hence, Q4 = Q).
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Suppose now that af = 2"pyps3, where v > 2 and po, p3 are distinct odd primes.
Then by the induction hypothesis and by the above definitions we have essentially

Qa4 = {(1,2" 2pap3), (2" 72, pap3), (2° " 2p2, p3), (2° " 2p3, p2) }-

One notes that a8 = 4ab = 2"pyp3. Hence, ab = 2~ 2pyp3 which immediately gives
8,8

Ng (a, b)( n).
Again, we show that € is the largest such set. Suppose that there exists another

set, say €}, which results from the above definitions. Two cases arise.
Case Q) C Q4 There is nothing to prove. So, we are done.

Case 24 C Q) Let (e, f) € Q) \ Q4. Since ef = 2" 2pops and ged (e, f) = 1,
we must have (e, f) = (1,2" 2pap3) or (e, f) = (2V72,pap3) or (e, f) =
(2¥=2po, p3) or (e, f) = (2¥"2p3,p2). So, (e, f) € Q4. Hence, Q4 = .

We then deduce the following.

Corollary 2. Let n,af € Ny with a8 =0 (mod 4) and Q4 be determined as above.
Then for each (a,b) € Q4 it holds that

n
b)_3203(2 % 1a

+256W(ff (n) = 512W(%, (n) + 4096 W05, (n) = 512W (50 (n)

N&% (n) = 16 03(— )+16a3(

( b) )—320’3(

) + 25605 () + 25605

4b)

+ 1024 W5 (5) — 8192 W05, (5) + 4096 W32 (n)

71 TL)

— 8192 W33 (3)+ 65536 W, b)(

(2a,b)

4.2. Representations of a Positive Integer by the Quadratic Form (5)
We now determine formulae for the number of representations of a positive integer
by the quadratic form (5).

4.2.1. Formulae for the Number of Representations by (5)

Let n € N and let sg(n) denote the number of representations of n by the quadratic

4
form Y (23, + @2i_122; + 23;), that is,
i=1

4

sg(n) = card({(x1,22,...,07,28) € Z® | n = Z(m%i_l + o129 + 23;)}).
i=1
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It is obvious that sg(0) = 1. It is well-known that
ss(n) =24 05(n) + 216 0—3<§). (30)

A proof of this identity is given by Lomadze [10].
Now, let the number of representations of n by the quadratic form (5) be
R?fd)(n) = card({(z1, 22, ..., 715,216) € Z'° |
4 8
n= CZ(Z’%Fl + Toi_120; + 23;) + dZ(Igi,l + To;_ 122 + 25,)}),
i=1 i=5
where ¢, d € Ny.

It is obvious from the definition that for all ¢,d € Ny it holds that Rfc’s d)( )=1.
From this definition of R (o d)( n), suppose that ¢,d € Ny are such that ged(c, d)
e > 1 for some e € Nyg. Then R?pgd)( n) = Rfcsd)(ﬂ) and R(pgd)( n) = R?dsc)(
Hence, one can simply assume that ¢, d € Ng are relatively prime.

n).

We infer the following.

Theorem 7. Let n € Ny and c¢,d € Ny be relatively prime. Then

n

3,3 3,3 3,3 3,3 N1
+ 576 (W(pd)( )+9W((3d)( )+9W(3cd)( )+81W<c’d)(3)>.

RS (n) =2403(%) + 21603(-) + 2405(5

Proof. From the definition of R( d)( n) it holds that

n n
Rty = D ssss(m) = ss(-)ss(0)+ss(0)ss()+ Y ss(l)ss(m).
(1,m)eN? (1,m)eNg
cl+dm=n cl+dm=n

We apply (30) to derive

8.8
R(c,d)( ) = 240’3( ) + 2160’3(3 ) + 2403(d) + 2160’3(3d)
!
+ 0y <2403 + 21603(3)> <2403(m) + 21603(7;)).
(1,m)eN?
cl4+dm=n

We know that

(2403(l)—|—21603(§)) <2403(m)+21603(7§)> =576 03(1)o3(m)+5184 0'3(%)0’3(7’71)
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(%) +4665603(§)03(T).

+518403(l)0’3 3

We assume that the evaluation of

Wi )= > as(Dos(m),
(1,m)eN?
cl+dm=n

W(i% Q) (n) and Wéf Q) (n) are known. We set A = 3 in the sequel. We apply the

function 7 to m to derive

m
> o3(l)os(5) = Y. osDos(m) = Wiy (n).
(Lm)eN? (1m)eN:
cl+dm=n cl+3d m=n

Let A and 7 be defined as in Subsection 4.1.1. We make use of the function 7 with
[ as argument to conclude

l
S omeh = T oo = W00
(1,m)eNZ (1,m)eNg
cl+dm=n 3cl4+dm=n

We simultaneously apply the function 7 to [ and to m as arguments, respectively,
to infer

m l 3 N
Z 03(3)03(? = Z o3(l)os(m) = W(?)C’Z)(g)~
(1,m)eN? (1,m)EN?
cl+dm=n cl+dm:%

Finally, we bring all these evaluations together to obtain the stated result for
RS (n). O

From this proof, we note that a formula for the number of representations of a
positive integer n by the quadratic form (5) depends on the evaluated convolution
sums for some given levels cd and 3cd with ¢,d € Ny.

As a consequence, we do consider only the levels a3 which are divisible by 3,
that is, @8 =0 (mod 3).

4.2.2. Determination of All Relevant (c,d) € N2 for R?(’:Sd)(n) for a Level
0([5 S No

The following method determines all pairs (¢, d) € NZ necessary for the determina-
tion of R?;S o (n) for a given af € Ny. This method is quasi-similar to the one in
Subsection 4.1.2.
Let A = %5 =20, Let Py = {po = 2"} U ‘U2{pj | pj is a prime divisor of U }.
7>

Let P(Ps) be the power set of P3. Then for each @ € P(Ps) we define p(Q) = [] p.
PeEQ
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We set pu(Q) = 1if Q is an empty set. Now let Q3 be defined in a similar way as
Q4 in Subsection 4.1.2; however, with A instead of A, i.e.,

Q3 = {(1(Q1), (Q2)) | there exist Q1, Q2 € P(Ps) such that
ged (1(Q1), 1(Q2)) = 1 and (@) p(Q2) = A}
Note that Q3 # 0 since (1,A) € Qs.
As an example, suppose again that a3 = 23-3-5. Then A =23.5 P3 = {235}
and Q3 = {(1,40),(5,8)}.
The proof of the next proposition is omitted, as it is very similar to that of
Proposition 1.

Proposition 2. Suppose that the level af € Ny and af = 0 (mod 3). Suppose
in addition that Q3 is defined as above. Then for all n € Ny the set 3 contains
all pairs (c,d) € N3 such that R(C d)( n) can be obtained by applying W, gy(n) and
some other evaluated convolution sums.

We then infer the following.

Corollary 3. Let n € Ny, aff € Ny with a8 =0 (mod 3) and Q3 be determined as
above. Then for each (c,d) € Q3 we obtain

n
RS, (n) —2405(2 )+21603(3 )+2403(d)+21603(3d)
n
+ 576 (W(?’c‘";)( ) +IWS, () +9WED ) (n )+81W(3C3d)(3)).

5. Evaluation of the Convolution Sums When af§ = 3,5,6,8,10,12,15,20

In this section, we give explicit formulae for the convolution sum W(3 36)( n) when
af = 3,5, 6,8, 10, 12, 15 and af = 20. These levels belong to 9. Hence, the
primitive Dirichlet characters are trivial.

The following graphical illustration shows the relationship induced by (7).

In the directed graph illustrating the inclusion relation, we interpret an edge
(k, 1) with k,1 € Ny as k is a positive divisor of I; for example (4,20). Only levels
whose basis of the space of cusp forms is non-empty are taken into consideration in
the representation as a directed graph.

5.1. Bases of Eg(l'o(af)) and Sg(I'o(axB)) for afp = 12,15,20

When we apply (7), it suffices to only consider the basis for the levels 12, 15 and
20. Observe, using again (7), that Mg(T'o(8)) C Mg(T'o(16)) C Mg(I'y(32)). This
implies that the bases of Mg(I'y(2)), Ms(T'0(4)) and Mg(T'((8)) are contained in
the basis of Mg(T'9(32)); see the following section.
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L

Figure 1: Inclusion relation of the modular space of weight 8 for considered levels

We apply the dimension formulae in Miyake’s book [11, Theorem 2.5.2] or in
Stein’s book [17, Proposition 6.1] to deduce that

dlm(58(ro(12))) = 11, dlm(Sg(F0(15))) =12 and dlm(58(1—‘0(20))) = 18.
We use (24) to infer that

We apply Theorem 1 as mentioned in the third paragraph of Subsection 3.1 to
determine as many elements of Sg(I'9(12)), Ss(I'0(15)) and Ss(I'0(20)) as possible.
Then we apply Remark 2 and (7) when selecting basis elements of a given space of
cusp forms as stated in the proof of Theorem 4 (b). Tables containing the powers
of the n-quotients are displayed in Appendices.

Corollary 4. (a) The sets Br i1z = { Es(q") | |12}, Bris = { Es(q") | t|15}
and Bgoo = { Es(¢") | t|20} are bases of Es(To(12)), Es(To(15)) and
Eg(T(20)), respectively.

(b) Let j,k,leNg satisfy 1 <j<11,1<k<12and 1 <1< 18.
Let 62 € D(12) and (r(j,02)),,s, be Table 2 of the powers of n(d22).
Let §3 € D(15) and (r(k, d3))k,s, be Table 3 of the powers of n(dsz).
Let 64 € D(20) and (r(l,04))1,6, be Table 5 of the powers of n(d4%).

Furthermore, let B12 j(q) = [[ 7709 (622), Bisr(q) = T[] n"*%)(532),
55[12 5315
and Bog 1(q) = [ 7710 (042) be selected elements of Sg(To(12)), Sg(To(15))
§4]20
and Sg(T'0(20)), respectively.
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Then the sets Bgi2 = {B12;(q) | 1 <j <11}, Bgis = {Biselg) | 1<
k <12},

and Bgao = {B20,(q) | 1 <1<18} are bases of Sg(T'(12)), Ss(To(15))
and Sg(T'0(20)), repectively.

(C) The sets BM’lg = BEJQ U 'Bs’lg, BM,IS = BE,15 U BS,IS and
Bar2o = Br,ooUBgo constitute bases of Mg(Lo(12)), Mg(I'o(15)) and
Mg(Ty(20)), respectively.

By Remdrk 2, the basis elements B12 ;(q), B1s.x(¢) and Bog ;(g) can be expressed
in the form Z b12,;(n)g", > bisk(n)g™ and Y boo;(n)g™, respectively. In these
n=1 =1

| = n—
expressions, blgd( n), bis k(n) and bgg;(n) belong to the set of integers.

Proof of Corollary 4. It follows immediately from Theorem 4. O

5.2. Evaluation of W‘?"f’ﬁ)(n) When «= 3,5,6,8,10,12,15,20

A basis of the space Ss(I'o(3)) is Bss = { Bis1(q) = n'2(2)n*(32) }. We are able
to determine it by omitting the condition (ii) in Theorem 1. Therefore, this basis
element does belong to Mg(I'y(3)), and so to Sg(I'y(3)) as per Remark 1, provided
n =0 (mod 3) for all n € Ny.

Corollary 5. The following equations are derived.

(Ei0) ~2Eua?)? =14 3 ( 130000+ 17 01(5) = H2 baaa () ), (31

(Ei0) -3 B =14 3 ( 5 oro)+ 1 0r(5)+ Bl )7 (22)

(Ex0) 4B =9+ Y (G ntn) = 35 or(5) + Lt on()

n=1
32400 518400 )

-7 32,1(n) — T b32,2(”)>qna (33)
308 4700 n
E — 5E =16 —_— —
(Ea(q) a( +n21<313 or(n) + 353 o7(3)

748800 16934400 93600000
_ =Y it _ 2V n 4
313 b151(n) 313 15,2(n) 313 b1573(n)>q , (34)
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— [ 691 96 n, 486 n

E4(q) — 6 E4(¢%))* =25 — — (=) — 2 (=

(Bula) ~0 B =25+ 3 Gz ot — g on(3) g ()

17316 n 2004480 1981440 160355520
gor 77(6) T Taar Pt T T Pl = Tger bresln)

— 46080 [31274(77,) + 184320 51275 (n) > q", (35)

2692 n
2F E =1 — —
(2 Ex(q?) ~ 3 Bs( +Z( o)+ 2 (%)
5787 n 7776 n 2880 92160
oy D2 b b
607 77(3) ~ Go7 77(§) + Gz Pr2a(n) = = biza(n)
1774080
— 697 51273 (n) + 46080 51274(71) — 184320 512’5 (n) ) q", (36)
271 15 n 15 n 832 n
(Ea(q) — 8 Eulq 49+Z(272 or(n 27207(5)*1*707(1)+T707(§)
65250 1105200
— 17 [13271(71) — T [13272(71) — 57600 b32,3(n)
16704000 66816000
BT baz,a(n) — — 17 53275(71)) q", (37)

>/ 59454261 1543161120 n
Ei(q) — 10 Ey(q'9))? = 81 Rl oA (2
(Ba(q) +(a7)) +n§ 65613251 77"+ “gse13251 °7(2)

71033070 n 3783091020 n 311987289600

e (= Y- b
65613251 °7(5) * Tese13251 7710’ T eseizant 20
334600790400 () - 2505535488000 () - 1424231654400 )
3859603 22 3859603 20,3 3859603 204
BL674848872000 () - 82312327296000 () + 564939648000 )
65613251 20,5 3859603 20,6 12331 20,7
31190957568000 27189941760000
bttt ittt no(38
3859603 20(7) 3859603 20’9(71)) q", (38
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49230 241515564  n
2F — 5 By( — 2410lo0bd ~ n
(2B4(¢") =5 Bala)* =9 + Z( a5613251 O+ Gaermas1 (3
1563188445 - 1214135520 (o 23630400 )
65613251 C''5’ 65613251 _''10’ ' 65613251 2O!
| 17744486400 () - 138931200000 ) + 9418521600 )
3859603 202 3859603 20 3859603 0
788634432000 ) + 278326656000 , () 6933888000 )
65613251 2P 3859603 206 12331 207
5667945984000 10401523200000 .
W bQO,S(n) - W b2079(n)> q 9 (39)

2785 45 n 243 n
(Es(g) =12 E4(q"))* =121 + Z( 5758 77" ~ 5755 77(5) — 375 77(3)
192 - 3645 ™)+ 84816 2y 4014360 , )
697 ‘4’ 2788 "'6 697 12 697 &t

68195520 336205080 165813120
T a0 bi22(n) — o7 bi2,3(n) — o7 bi2.4(n)
B 454273920 b (n) — 5856330240 b (n) + 6855632640 b (n)
6o7 1o\ 697 12,647 6o7 T\
B 14998348800 (n) — 6908613120 b (n) — 1926696960 b (n)
— g7 0128 o7 D129 —97 1210

1874085120
_ 200 Ay noo(y
697 512,11(71)) q", (40)

45 n
=1 -
(3E4(q®) — 4 Eu(q + Z( 7788 77 ~ 3755 77 (3)
24849 m. 10960 n. 3645 . 15552 m . 360
a7 73 T or 7D ~ 9ms 77(G) ~ Tgor 77(12) t go7 Pr2a(®)
54720 2983320 2805120 35521920
607 bi22(n) — 607 bi2,3(n) + 607 bi2,4(n) + o7 b12,5(n)
| 262103040 () 1189866240 )+ 1381708800 , -
697 12,6 697 12,7 697 12,8

2052241920 2183639040 1064689920
+ o7 bi2,9(n) — 607 b12,10(n) + 697 b12,11(”)) q", (41)
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(E4(q) — 15 E4(¢"®))* = 196 +

10141314825000 n

28

1044336707 77" ~ 3336530 77 (3)
31749581850 . 7506469209600

i ( 1017763622 75000 n

04336707 °7\5) ~ 3330830 °7\15) T “Toaasseror o)
171118182124800 973566223200000
~ qoamseror 2 T T omusseror o)
732348000000 18505802419200
~ 3336530 4 T 3336830 15,5(1)
41495373446400 2622520108800
T 3330530 0ot 333539 017()
18375785625600 187616606745600
3336530 08 T 3336539 01e0()
_ 1518886974240000 () — FHA95T2I6T10400 -
3336539 15,10 3336539 15,11
46658163301600 .
_ 200 O by (42
81379 b1 J2(")> ¢, (42)
5 ./ 23283120 29794566  n
3E.(¢%) — 5 Ea(¢°))? =4 + 2909200 (2
(3E4(¢") al §:<1mmmmnw o1(n) + 3336539 773
_ 9307656835450  n 20720400000 n 1LLTSSOTO00
1044336707 ''5 3336539 “157 1044336707 !
1598153356800 43861572000000
~ Toasseror 52 T “Tousseror Ces ()
774254592000 11360058624000
T 3336530 AWt 3336530 P1ea()
12396170880000 19221873696000
3336539 15.6(n) = —g335e3g t1s.7(n)
94553354592000 415246609728000
T 3336539 15.8(0) — —3336539 15,9(1)
| 1321283124064000 0 3711541061952000 )
3336539 15,10 3336539 15,11
42939419328000
W b15,12(”)) qna (43)
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_ 20\)2 _ kit (=
(Es(q) — 20 E4(¢*°)) 36”; 351888 °7" T 110120022 772

45200 () SO | n TSTII05  n
_ 45200 ~ n, 831695 ~ on, 7873822505 ~ n
21993 7747 7 5982006 °7\5’ 1872396048 °7\10

= ( 349063 220208065 n

136245280 o 70349350 () - 375469902000 )
373831 °7\20 7331 20t 2294603 202
3336969500800 ) 500846721600 )

2294603 203\ 2294603 204
170775562301850 () 25580350027200 ()

39008251 20,547 2294603 206
46439225094400 ) 366667176043200 ()
2294603 20,731 2204603 20,8
1163337163523200 () 15436341936000 )

92294603 20,917 124627 20,107

1066465872000 () - 2089807776000 )
7331 20,1147 7331 20,12

7405984992000 () - 6563369184000 )

7331 20,137 7331 20,1417
29137235712000 () - 82106975872000 )
—7331 20,15\1 —7331 20,1610

419141760000 70301805696000
7331 20,17(n) 7331 E120,18(”)) q", (44)

145 4626185 n
4 £, (a°))2 } :
(4E4(q") — 5 Es(q”)) 1 n_1< 351888 o7(n) 110140944 07(2)

349568 n 148675145 n 4208930545 n

51003 °"(1) T Sos2006 775~ 1872306018 710
036080 m ) 150, 15015600
373831 7\20” T 7331 201 2294603 202
LL4902A00 18502010400 51617430550
2294603 203\ 9294603 204\ 39008251 200
122216281000 o BTIZOSIS6S00 o BS62407TTIOM00
2294603 206\ 2204603 207\ 2294603 208
1063844566400 241946966400 () < 1017040000 )
92294603 20,917 124627 2010 7331 20,11
38416492800 () 4 10328032000 186435526400
7331 20,1247 7331 20,131 7331 20,14
662308608000 () — 1724891571200 (n) 4 6306016000 -
7331 20,15{7 7331 20,1617 7331 2017
1240614835200

/’L. 4
7331 E120,18(”)) q (45)



INTEGERS: 21 (2021) 30

Proof. These equations follow immediately when one sets (o, 8) = (1,2), (1,3),
(1,4), (1,5), (1,6), (2,3), (1,8),(1,10), (2,5), (1,12), (3,4), (1,15), (3,5), (1,20),
and (4,5) in Lemma 2. As an example let a8 = 12. Then take allnin {1,2,...,16,24}
to obtain a system of 17 linear equations with unknowns Xs and Y; in each case
(1,12) and (3,4), where § € D(12) and 1 < j < 11. These systems of linear
equations each have a unique solution displayed in (40) and (41), respectively. [

Now, we are in a better posture to state and prove our main result of this section.

Corollary 6. Let n be a positive integer. Then

3.3 R 2 L ot on 1
Wi () = 5555070 + 355 97(5) = 55 78(0) = 355 73(5) + 575 baza(n)
(46)
3,3 R 2 oy 1 IR
Wi () = 5530770 + 3580 77(3) ~ 540 73(M) — 555 73(3) (47)
1 L
~ 193 big1(n) ifn=0 (mod3),
1 1 n 2 n 1
w33 - - - i _c N -
0" =35610 77 + 5176 97(5) + 555 07(3) — 55 78(0)
n 9
— a2 - 4
240 03( )+ 2176 b2 1(n) + 136 b32,2(n), (48)
1 125 n. 1 1
w33 - - e PN & = i
(W07 =755 770 + 5557 77(5) ~ 555 7307 — 55 73(5)
13 147 325
2y b 220 49
+ 3130 15,1( )+ 1565 15 2( )+ 626 15,3(”)7 (49)
1 1 n 27 n 27 n
W33 b nye 20 oy 200
00" =Te7a80 77+ Toas5 77(2) + 55760 77(3) + 385 7§
1 1 n. 29 43
- L T b
510 (™ ~ 35 03(6) * Go7g L1221 (M) + G5 br22(n)
55679 4
bias(n) + — [112 a(n) — —=bigs(n), (50)

167280 15 15

1 1 n 27 n 27 n
W33 _ 20 2 (2
25" =Te7a80 77+ Toas5 77(2) + 55760 77(3) + 3585 725

1 n 1 n 1 2
(2 - — o3 (B) = ———b = g
520 *(3) ~ 220 73(3) ~ Tgramo V121 (M) T G br22()
77 1 4
+ bi23(n) — — b12,4(n) + — b125(n), (51)

15 15
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33 y__ 1 1 n 1 ny, 2 _n
Wi ™ =550910 77 + 35216 77(3) + 2176 77 F 255 7).
B (n) 1 (ﬁ)+ﬂ ()+£b (n)
240 73" 7 240 7387 T 34816 321\ T 435 V322
1 145 145
- = 22 s 5(n), 52
+ 16 bs2,3(n) + 136 b32,4(n) + 31 b32,5(n) (52)
53 615899 3214919 n 2367769 n
Wii10) (") = 5727180220 7™~ 328066255 77(2) * 5249060080 775
17363063 (3)_i0 (n)—ia o
984198765 10’ 240 ° 240 “*'10
2708223 ) 1452651 ™ 2253069 , -
656132510 21\ T 19298015 202 3859603 20*
6181561 ) 1134372001 ) 71451673 )
19208015 24" ™ 1049812016 = 2%° 3859603 ¢
490399 27075484 23602380
. ke ittt 53
12331 220707 ~ Sgsg603 02080 + Sgeggp3 P00, (53)
53 1641 130859 n 7714283 n

25 =5319060080 77" T 981108765 772) * T57a7180000 75
2529449 ( n ) 1 (n) 1 (n)
2029449 o om, L my L
328066255 °7\107 ~ 240 7*'27 T 240 7*'5
1641 ) + 77016 ) 120600
5249060080 22\ T 19298015 202 3859603
40879 ) 1369157 ) 241603
_ 40879 — _ 241603
19298015 204 131226502 29° 3859603

6019 4920092 9029100
12331 207" ~ 3550603 °205 (") + 3550608 P00 (W) (54

b20,3(n)

20,6(n)

1 1 n 27 n 1 n
3,3 _ - _ _
Wit (") =5676150 77 * 173132 77(3) * 892160 7730+ Toums 773
+ 81 (n)+ 27 (n) 1 () 1 (n)
& ony, 2t onm, 1 1 om
178432 77\ 67 T 3485 77\ 127 T 240 7? 9240 7%\ 12
3717 () 5 7593 () BLIBOL 28T
892160 >V T 111520 V122 T Zo2160 22V T 167280
26289 o BUTRTL L 198369 21699
55760 2° 13940 '2© 27880 7 1394
99951 20906 54227
13940 bi2g(n) + 10455 blz,lo(n) 57380 512,11(71)7 (55)

)

b12,8(n)

12,4(”)
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3,3 o 1 1 n 27 n 1 n
30" =5676180 77" T 773132 77(3) * 892160 7730+ 10455 77 ()
+ig (ﬁ)—&—Q—?a (ﬁ)_ia (@)_La (E)
178432 77 67 " 3485 T 7127 240 "2'37 240 *'4
1 19 8287 487
S — "y 00 g -
2676180 7121 (") ~ 335560 1122 + eraieg Br2a(n) — fareg P12a(n)
6167 () - 948 ) + 34429 () - 1999 )
167280 '*° 3485 % 27880 27 1394 128
29691 7898 30807
~ 13940 12,9(”) + 3485 12,10(”) ~ 97330 b12,11(”)7 (56)
590513 125 n. 16902191375 n
w3 _ n, n
(@15 ™ = 53516936560 77" T 20019231 77'3) ~ 6266020202 775
433337375 (ﬁ)—ia (n)—ia o
160153872~ °157 240 ° 240 “*'12
65160323 ) + 2970801773 () + 3380438275 )
15665050605 > 31330101210 2 6266020242 °°
847625 ) 53546882 ) + 240135263 )
6673078 ! 16682695 *° 33365390 °F
15176621 () - 53170676 () - 542872126 )
33365390 7 16682695 °° 16682695 Y
1757971035 ) + 11138809134 )
6673078 10 16682695 ot
135006261
W b15,12(71)» (57)
97013 15619 n. 41483401125 n
w3 _ n b
(3.5 (") 15665050605 °7™ * 200760360 77 (3) T 16700387312 77 (5)

24767000 n 1 n 1 n

~ Toooo617 77(15) T 220 ©#(3) T 249 (5)

97013 ) + 13872859 () + 152297125 )
15665050605 > 15665050605 2 6266020242 °°
448064 () 6574108 () 7173710 )

3336539 4 3336539 ° 3336539 0
22247539 () 109436753 ) 240304751 )
6673078 7 6673078 08 3336539 °°
1532688801 () 2147882550 ()
6673078 1010\ T Tagggrgg P1s11
24849201
- W b15,12(”)a (58>
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53 113 44041613 n 113 n
(20 (") =g7562106 77" ~ 105735306210 77 2) 263016 777
166339 ™ 1574764501 oy 166339 o
_ 166339 _ 1574764501 o m. 166339 n
5742812160 5’ ' 1797500206080 10’ ' 22432860 20
1 ) 1 Ty 1406987 )

—=——03(n) — =——=03(52) + 505
240 ~® 240 "*'207 " 337812480 **

20859439 ) + 1042802969 ) 104343067 )
20859439 ) 4 1042802969 _ 104343067

293709184 202 1652114160 2% 1101409440 24
1138503748679 ") 31986938659 (n)_7256128921 )
599166735360 2 6608456640 2:° 826057080 27

76388995009 ) 363542863601 ) 107196819 )
1101409440 28 1652114160  2°° 1994032 2010

7406013 (n)+7256277b (n)777145677b )
117296 2t 58648 2012 175944 2013
68368429 (n)7379391096 (n)+641460749b )
175944 20t 21993 2010 131958 2016
1091515 61025873

—m 20,17(”)—W 20,18(”); (59)
29 925237 n 29 n

3,3 _ . _ _
(45 (") = 337275180 7™ ~ 105735306220 772 T 1310580 77( 7
175451 o 841786109 (4 175451 2
_ sl oy 847860 o, 10401 n
5742812160 "5’ " 1797500206080 10’ 22432860 20
_ b (ﬁ)_i (ﬁ)_ 29 bo0.1 (1)
240 7*\1’ T 240 7*'5’ T 337812480 2O*

Cw () - 348407 ) 3854773 )
1468545920 202 1652114160 2% 1101409440 204
1677449537 ) 30554071 () - 58015337 )
599166735360 20 1321691328 20° 826057080 27
804668273 (n)+3324670177 ) 8505103 ()
1101409440 208 1652114160 2*° 9970160 2010

354285 ) 666953 () 1565017 ()

117296 20 293240 212 175944 2013

| 7106017 ) 862381 () 67378577 ()
1106017 ) — 62381 67378577
879720 201 21993 2015 659790 2016
17099 5384613

- _ 200 . 60
13086 °2017(") ~ Tr337 b0a8(n) (60)

Proof. These identities follow from Theorem 5 when we set (o, §) = (1,2), (1,4),
(1,5), (1,6), (2,3), (1,8), (1,10), (2,5), (1,12), (3,4), (1,15), (3,5), (1,20), and

(4,5).

O
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6. Evaluation of the Convolution Sums W?"f’ﬁ) (n) When a8 = 9,16, 18, 25,27, 32

In this Section, we give explicit formulae for the convolution sums Wy gy(n), W1 16)(n),
Wi ,18)(n), Wia,0)(n), W 25)(n), Wi 27y(n) and Wy 39)(n). These levels belong to
Np \ 9. Hence, the primitive Dirichlet characters are non-trivial.

The convolution sum Wy 25y(n) is interesting due to the fact that the positive
divisors of 25 which are associated with the Dirichlet character for the formation of

a basis of the space of Eisenstein series constitute the entire set of positive divisors
of 25.

6.1. Bases for Eg(I'o(ap)) and Sg(Il'o(xB)) When «ff = 9,16, 18, 25, 27,32

When we apply (7), it is then sufficient to only consider the basis for the levels 18,
25, 27 and 32. By still using (7) we obtain

Mg(T'o(3)) € Mg(T0(6)) C Mg(T'o(18)), (61)

Ms(o(3)) € Ms(I'0(9)) C Ms(To(18)), (62)

Ms(To(5)) € Ms(I'o(25)), (63)

Ms(Io(3)) € Ms(I'o(9)) C Ms(To(27)), (64)

Ms(Io(2)) € Ms(T'o(4)) C Ms(T'o(8)) C Ms(I'o(16)) C Ms(I'o(32)) (65)

The dimension formulae for the space of cusp forms as given in Miyake’s book
[11, Theorem 2.5.2] and Stein’s book [17, Proposition 6.1] and (23) are applied to
compute

dim(Es(I'o(18))) =8, dim(Ss(I'9(18))) =17,
dim(Es(I'0(25))) =6, dim(Ss(I'9(25))) = 15,
dim(Es(I'0(27))) =6, dim(Ss(T'0(27))) =18,
dim(Es(To(32))) = 8, dim(Ss(To(32))) = 24.

We use Theorem 1 to determine many 7n-quotients which are elements of the vector
spaces Sg(I'0(18)), Ss(I'p(27)) and Sg(I'y(32)), respectively.

Let D(18), D(25), D(27) and D(32) denote the sets of positive divisors of 18, 25,
27 and 32, respectively.

Corollary 7. Let n be a positive integer.

(a) Let x(n) = (=2) and ¥(n) = (=2) be primitive Dirichlet characters such that
X is not an annihilator of Eg(I'0(9)), Es(T0(18)), Es(I'y(25)) and
Eg(Ty(27)), and ¢ is not an annihilator of Eg(T'o(16)) and Eg(T'y(32)). Then

the sets

Bpas ={ Bs(q') [ 18} U{ Eyg (=4)(¢") | s = 1,3},
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Bros ={ Fs(q") | 1125} U{ By (=3)(¢”) | s € D(25) },
Bror = { Es(q") | t[27} U {Eg,(—#)(qs) |s=1,3} and
Bps2 = {Es(q") | 132} U {Eg,(;f)(qs) |s=1,2}
constitute bases of Eg(T'0(18)), Fs(T0(25)), Fs(T¢(27)) and Es(T(32)), re-
spectively.
(b) Let 1 <i<17,1<j <15, 1<k <18 and 1 <1< 24 be positive integers.

Let 61 € D(18) and (r(3,61)):,5, be Table 4 of the powers of n(d1 z).
Let 62 € D(25) and (r(j,02)),,s, be Table 6 of the powers of n(d2 z).
Let 63 € D(27) and (r(k, d3))k,s, be Table 7 of the powers of n(ds z).
Let 64 € D(32) and (r(l,04))1,6, be Table 8 of the powers of n(d4 2).

Furthermore, let

Bisi(g) = [[ 0" (G12), Basjle) = [[ 0962 2),

51118 5225
Borr(q) = [[ "% (0s2) and  Bazu(q) = [ n " (612)
9327 54]32

be selected elements of Sg(T'o(18)), Ss(T'0(25)), Ss(T0(27)) and Ss(T'y(32)),
respectively. The sets

Bsis = {Bis,i(q) | 1<i <17}, Bgos = {DBos(q) | 1 <5 <15}

Bsor ={Bari(q)| 1<k <18} and Bgsz={Bs2,(q)| 1<1<24}
are bases of Sg(I'o(18)), Ss(I'0(25)), Ss(To(27)) and Ss(T'o(32)), respectively.
(¢) The sets

Bum,is = Br1sUBs s, Buos = Beos UBgos,

Bror = BrorUBsor  and  Bprze = Bpzs UBgao

constitute bases of Mg(I'g(18)), Mg(T'9(25)), Ms(I'0(27)) and Mg(I'z(32)),
respectively.

By Remark 2, each B,gs,(¢q) is expressible in the form Z bags,i(n)g", where

af =18,25,27,32 and for each n € Ny it holds that byg i (n) 6 Z

The basis element B3z24(q) = 1n*(42)n*(82)n~4(162) n8(322) of the vector
space Sg(I'p(32)) belongs in fact to the space S4(T'g(32)) which is contained in
Ss(T'0(32)).
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Proof of Corollary 7. It holds that 18 = 32 x 2 and 27 = 33. Since ged(4,3) = 1,
it is clear that the primitive Dirichlet character x(n) = (_74) is not an annihila-
tor of Eg(I'o(3?)) and Es(I'g(3%)). Hence, x(n) = (=) is not an annihilator of

n

Eg(I'g(18)). Since ged(3,5) = 1, the primitive Dirichlet character 1 (n) = (=2) is

not an annihilator of the space Eg(Io(5%)).

One also observes that the primitive Dirichlet character (n) = (_—3) is not an

annihilator of the spaces Eg(I'g(2%)) and Eg(Tg(2%)).
We only give the proof for By o5 = By o5 UBg 25 since the other cases are proved
similarly.

(a) Suppose that x5, 25 € C with 0 < 0]|25. Let

Z(m Es(q°) + 2 By (=) (q)> =0.

8125
We observe that
4 -1 ifn=2 (mod 3),
(n) =40 if ged(3,n) # 1, (66)
1 ifn=1 (mod 3),
and we recall that for all 0 # a € Z it holds that (%) = 0. Since the conductor

of the Dirichlet character (=2) is 3, we infer from (6) that Cy = 0. We then
deduce

Nt n -3 n "
S st 3 (180 0r(Gran + (22 Sor(5 ) o =
525 n=1 525 825

Then we equate the coefficients of ¢™ for n € D(25) to obtain a system of 6
linear equations whose unique solution is 25 = zs = 0 with § € D(25). So, the

set By is linearly independent. Hence, the set By is a basis of Eg(I'0(25)).

15
(b) Suppose that z; € C with 1 <4 < 15. Let > x; Bas,:(¢) = 0. Then
i=1

oo

15 15 oo 15
D 2 Bosilg) = > 2 basi(n)g" = Z( bos,i(n) ffi)qn =0.
i=1 i=1 n=1 i=1

So, we equate the coefficients of ¢ for 1 < n < 15 to obtain a system of
15 linear equations whose unique solution is x; = 0 for all 1 < i < 15. It
follows that the set Bg is linearly independent. Hence, the set Bg is a basis
of Sg(T'y(25)).

(c) Since Mg(Ty(25)) = Eg(I'x(25)) @ Ss(T'0(25)), the result follows from (a) and
(b).
O
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6.2. Evaluation of W?;f:ﬁ)(n) for aff = 9,16, 18, 25, 27, 32

In this section, the evaluation of the convolution sum W, g)(n) is discussed for
(o, B) = (1,9), (1,16), (1,18), (2,9), (1,25), (1,27) and (1, 32).

Corollary 8. The following equations are obtained.

368 80 m. 2592 n
Ei(q) — 9 Eqf — 64 P e T N e
(Ealg) a( +n21<369 (n) = 355 07(3) + g o7(§)
531200 3712000 129081600
_ o 1152 _ 2T n
123 ba7,1(n) 10 b27,2(n) +115200 by 3(n) 10 527,5(71)) q",
(67)
2175 5 n. 15
(Balg) ~ 16 Ba(q'™)" = 225+ Z( 7176 77" " 3176 773~ 136 77D
80 (T, 38340 3840 o 522225 () — 2218950 )
17778 T 17 T\ 16 68 ot 17 322
35503200
- 122400 532 3( ) T 53274(71,) — 115200 532’5(?1) — 1036800 532’6(7%)
9284083200
— 3686400 b3z 7(n) — — 7 bazs(n) — 27648000 b32,0(n)
— 117964800 532,11(71)) ¢, (68)
6271 32 n
Eu(q) — 18E —9 22 (2
(Eala) =18 Ei(q") 89+Z<6273 o1(n) = G373 77(3)

160 n 2560 n 1458 n 202500 n 18065920

N, ) - ) - — ) — b
6273 77 3) ~ G2m3 77(6) ~ o7 ()t o7 97(ig) ~ Topr  Prsa(®)
_ 379340800 3824640, 50TO0400
72091 18,2\ 717 18,3\ 7697 18,4\
13033150720 o AT2TSI0 0 ITIS0S280
2091 18,517 697 1se 697 18,7471
_41037TAT40 | TASO6LSS0 28631792640 )
697 18,8 697 18,9 697 18,10
_ 20046658560 24250060800 () 4 03207840,
o7 su o7 182 o7 1813
| 523814824960 ) 15482880 () — 11564154880 )
o001 is14 o7 1815 o7 U816
14231700480
+ 697 bl&l?(")) q", (69)
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6273 7 6273
160 n 2560 n 54999  n 23328 n

521373 T e () T e ) T eer ()

(2 Es(¢®) — 9 Eulq _49+Z< )+@07(g)

320 18016000 5760
+ 2001 0181 (M) = g7 B1s2(n) + == biss(n)
50790400 () - 726729280 () 134991360 ()
697 o4 2091 % 697 18,6
140058880 () + 87626240 () + 410508480 ()
697 18,7 697 18,8 697 18,9
592988160 ) - 1113239040 () 2728857600 ()
97 D110 ooy s o7 lsa2
5082595840 ) 5309212160 () - 10776084480 )
607 18,13 2001 18,14 607 18,15
6935674880 12217274880 .
ittt it 70
+ 607 18,16(n) 697 blS,l?(”)) q", (70)
7824 624
Ei(q) — 25 E = 576 —= ga(=
(Baa) 25 Ba(g™) +Z( T () — 2L (D)
180000 _ (L 18779904 n) 431926272 )
313 '\25 1565 2>t 1565  2>2
506997504 1222490880
— —gqg b2sa(n) = TT8T52ba5.4(n) — —— g0 bas 5(n)
— 8801280 bys (1) — 40435200 bys 7(n) — 307008000 bas s (n)
42272064000
+ 284544000 [12579(71) — T [125710(7?,) — 2021760000 [125,11(71)

— 5241600000 bys 12(n) — 10670400000 bys 13(n) — 936000000 bys, 14(12)

293436000000
- B sl ) ", ()
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9962 58400 n
E —2TE4(¢*))? = + E == _
(£a(9) 4(a™) 676 1( 9963 or(n) 9963 o1 3)

n=

640 n 27702 n 43040000

t13° (5) T 07(2*7) BT ba7,1(n)
B 301273600 (n) 41804800 (n) — 4032000 bor 4(n)
1107 27,2 123 27,3 41 27,4
409939200
- T 527,5(’0) — 729600 627’6(77/) — 3110400 [127’7(77/)
538963200
— 9331200 [127’8(77‘) - T bg7)g<n) — 52876800 527’10(77/)
3701376000
— 55987200 b27711(n) — T [327}12(77,) — 102643200 []27,13(77,)
6499180800
— 419904000 [127714(’(7/) + T 527715(’0) — 839808000 527716(71)

— 755827200 b7 17(n) 4 755827200 bar 15(n) ) 7", (72)

17407 15 n
E —32F 1 —_— —
(Balg) 32 B4(q™))? = 961 + Z( 0T () — o ar(%)
15 n 15 n 60 n
1088 07(1) T 68 07(§) 17 U?(ﬁ)

+ 16384 ; (ﬁ) B 8355825 bas 1 (n) — 17755875 b2 (1)

17 "7'32 544 %! 68 7

71268300
— 245700 53273(711) — T 63214(?1) — 244800 53275(711)
603691200
— 2203200 632,6(71) — 7833600 632,7(71) — 177 gzyg(n)

— 2300313600 bs,o(n) — 2073600 bsy,10(n) — 9223372800 by, 11 ()
— 16819200 532712 (TL) — 29491200 532713(71) — 66355200 532,14 (n)
4578969600

17
— 497664000 532718(72,) — 2713190400 [132,19(71) — 8980070400 [332,21 (’I’L)

— 117964800 [132715(’(7/) — 532716(’0) — 704102400 532717(71)

— 2123366400 b, 22(n) — 25480396800 bsy 23(n) + 2241331200 byy 24() > Q"
(73)

Proof. We only provide the proof for the case & = 2 and 5 = 9 since the other cases
can be done similarly.

The proof follows in principle immediately when we set a = 2 and § = 9 in
Lemma 2. However, we briefly show it for (2 FE4(¢?) — 9 E4(q°))? as an example.
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Let x = (_74) be the primitive Dirichlet character. One obtains

(2E4(q*) = 9E4(¢"))* = Z 25Es(¢°) + 21 Bs () + 23 Es 5 (¢°)

0<4|18

17
+ Z y; Bis,;(q)

j=1
- Z s + i Z 48007(2)965 + ;4 o7(n) 21

) n
0<4]18 n=1 “0<s|18
—4 n 1

+ (n> or(z)a + ; b1g,5(n) yj) q". (74)

Since the conductor of the Dirichlet character (=) is 4, from (6) we have Cy = 0.
Now, when we equate the right-hand side of (74) with that of (15) and when we
take the coefficients of ¢™ for which 1 < n < 17 and n = 18,19, 20, 21, 36, 54 for
example, we obtain a system of linear equations with a unique solution. Hence, we
obtain the stated result. O

We can state and prove our main result of this subsection.

Corollary 9. Let n be a positive integer. Then

WS, (n) =z 07(n) + oz 07(3) 4 oo a7(h) — 51 03(n)
~ 510 03(3) + % bo71(n) + 323% bo72(n) — % ba7,3(n)
+ % ba7,5(n), (75)
W) (1) = gamres o7(n) + sz 07(5) o on() + g on()
+ e 1(18) 515 03(0) — 15 03(76) + ponat b2 (1)
6499% b32,2(n) + %76 b32,3(n) + % b32,4(n) + Tlfi b32,5(n)
+ 1% ba2,6(n) +2bs2,7(n) + % b32,s(n) + 15 b32.9(n)

+ 64 b3211(n), (76)
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1 1 n 1 n 16 n
W33 b n ny, 16~ n
1™ = 3519680 77" T 71655 772 160371 77(3) 160371 77 (6)
b or(5) + oot or(1e) — 510 03(n) — 55 05(1%)
——o07(=)+ === o7 o3(n) — —o03(—
55760 19’ " 3485 240 °® 240 “*'18
7057 14818 83 1984
P 0% b 7%
Teo3710 1517 F Tgoz7y P1s2(n) = 75 bisa(n) + gz bisa(n)
BUGIT LG 2600 01512
1693710 ®° 10455 86 282285 &7 282285
15204703 1864049 305121
1505520 &9 94095 1BOUY T Tgang5 Vet
B8y 12T (n) 4 102307583 )
2091 12 282285  &13 846855 oM
112 92258624 926543
~ o455 91 ogasg M)~ ggggs Ot (T0)
1 1 n 1 n
W33 _ _ n
29" = 13519680 °7"™ * 516855 77 (2) + Tee371 (3)
+L (ﬁ)+i (E)+£ ( ) — 1 (ﬁ)
169371 767 T 55760 779’ T 3485 77 187 240 7*'2
1 n 1 2815
~ 210 9) 13519680 1) rzasg M2
1984 9971029
~ 120 o) gaas7 990 T 13549650 01 ()
651 109421 34229
+ 5970 big,6(n) — 1129140 big,7(n) — 564570 bigs(n)
427613 38606 144953
~ 05520 "0 095 V100 Tggpgg s ()
1316 () . 1985389 () — 2073911 -
697 B2 564570 513 1693710 &
25984 1354624 1590791
2000 g g5 () — 22 20090 (18
3185 01815(7) ~ Sgoogs P1s16(n) + Jogrgy busar(n), - (78)
4s o 13 n. 125 o n
Wiz (™) = T5950000 77" * o78105 77(5) 15024 77(35)
1 1 n 8151 93734
~ 510 73" ~ 335 73(35) * To56250 °21 (M) T graigs P2 (W)
9220051 169 106119 382
391950 bas,3(n) + 35 bas,a(n) + 3950 bas5(n) + — 195 bas.6(n)
351 533 494 73389
o0~ 2990 _ 2y 19907
+ 5% bas 7(n) + 5 b2 8(n) 3 25.9(n) + 1565 bas.10(n)
+ 702 525)11(71) + 1820 [125,12(n) + 3705 [325713(77/) + 325 b25)14 (n)
203775
[’25,15(n)a (79)

626

b1g,s(n)
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1 730 n 8 n

61560210 °7" ¥ 307003 77(3) ~ 9963 779
27 n 1 1 n 6725
2t on 1 L _my . 6725
+3280 07(27) 540 o3(n) 510 03(27)+ L1006 271(n)
23537 3266 35 117
b —— b b
260001 272"~ agggg P2 () gy el g5y

19 3119
+ — bar6(n) + 1 b2z 7(n) + 3 b7 g(n) + 38

81
1190
+17b97 10(n) + 18 b7 11(n) + —— 1 ba7.12(n) + 33 bar 13(n)

4179
2 [127715 (n) + 270 527716(?1) + 243 527717(71)

— 243 b27,18 (’I'L), (80)

3,3
W(l 27)< n) =

bo75(n)

ba7,9(n)

+ 135 [727714(’/l> -

s o) + ez 0r(2) + e o()
133693440 8912896 772’ T 557056 77\ 4
1 n n 2 n
* 31816 (§) 2176 77(16) + 255 77(33) ~ 249 73"
L )t AT i)+ —5 () 4 2
240 7*'327 " 8912806 321\ T 1114112 322"

O 52.4(1) + o by s () + oo
69632 °2* 256 °2° 256

41923 9
24 — 2502
1352 bs2,s(n) + 624 b3z 9(n) + 16 b32,10(n) + 2502 b3z 11(n)
73
+ 6 b32,12(n) + 8 bs2,13(n) + 18 bag 14(n) + 32 b32 15(n)
9937
136 b32,16(n) + 191 b32 17(n) 4+ 135 bsg 18(n) + 736 bz 19(n)

+ 2436 532721(71) + 576 b32,22 (TL) + 6912 b32723 (TL) — 608 532724(71).

3,3 _
W50 (n) =

2006 %22 3(n)

17
b32,6(n) + 3 b32,7(n)

Proof. Tt follows immediately when we set (o, 8) = (1,9), (1,16), (1,18), (2,9),
(1,25), (1,27), and (1,32) in Theorem 5. O

7. Formulae for the Number of Representations of a Positive Integer

We make use of the convolution sums evaluated in Sections 5 and 6 among others to
determine explicit formulae for the number of representations of a positive integer
n by the quadratic forms (4) and (5), respectively.
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7.1. Representations by the Quadratic Form (5)

We determine formulae for the number of representations of a positive integer n by
the quadratic form (5). We mainly apply the evaluation of the convolution sums
of levels 3,6,9,12,15,18,27 and other well-known convolution sums to determine
these formulae. In order to do that, we recall that the levels 3,6,9,12, 15, 18,27 are
each congruent to zero modulo 3. These levels are therefore of the restricted form
in Section 4.2. Hence, from Proposition 2 we derive that Q3 = {(1,2), (1, 3), (1,4),
(1,5), (1,6), (2,3), (1,9) }. We then deduce the following result.

Corollary 10. Let n € Ny. Then
n
R(glsl)( ) 4803 (TL) + 4320’3(5)
3,3 3,3 3,3 (1
+ 576 (W(1 1)( n) + 18W(1 3)( n) + 81 W(1 1)(3))
240 19440 n 864

a1 Tt T o) o Pl

si6(n)  ifn=0 (mod 3),

wherein Big1(q) = n'? 25181

R, (n) =2403(n) + 21604( 3) + 2403( 2) + 21603 ( 6)

3,3 3,3 83 (I
+ 576 <W(12)( ) +OW e () +9W 5 (n )+81W(12)(3)),

R, (n) =2403(n )+21605(3) +2405(3) +21603(2)

n n
+576 <W31§)( )+ IWG, () +9WE (5 )+81W3133>(3)),

©|

8,8
R

oy (n) =2403(n) + 21603 (= )+2403(4)+21603(n2)

)
n
+ 576 (W(?f;) OW e (n) +IWE, (n )+81Wfli)(3)>,

R88

55 (n) =2405(n )+21603(3)+2403(5)+21603(

15)
3,3 3,3 3,3 8.3 (I
+ 576 <W(15)( ) +FIWs () +OWES (n )+81W(15)(3))7
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n
R{{%)(n) =2405(n) + 21605(5 ) + 2o 6) +21603(35)
- 33 N 33 (N
+ 576 (W(l 6) (1 18)( n) + W(1 2)(3) +381 W(1,6)(3))7

8,8 o n
R(2’3) (n) —240’3(5 )

n 2 n
+576 <W(23)( )+ OWED () +9WES (& )+81Wf§,33)(3)>,

) + 21603(9) + 240’3(3) + 2160’3(

©o|

R{;%) (n) =2403(n )+21603(3)+2403(9)+21603( 7)
n n
+ 576 (Wg?g)(n)+9w(3l?’27)( )+9W(?’1’?3)(3)+81W(313;)(3)).

Proof. We only consider the case (¢,d) = (1,2) since the other cases can be proved
in a similar way.

It follows immediately from Theorem 7 with (¢,d) = (1,2). One can then make
use of (46), (50) and (51) to simplify Rfii) (n). O

7.2. Representations by Quadratic Form (4)

We give formulae for the number of representations of a positive integer n by

the quadratic form (4). We apply among others the evaluated convolution sums
3,3 3,3 3,3 3,3 3,3 3,3 3,3

W(1, )( n), Wi's)(n), Wiy (1), W(3,4)( n), W 20)( n), W5y (n), Wiiie)(n) and

Wé’%z)(n). To achieve this, we recall that the levels 4, 8,12, 16, 20, 32 are all divisi-

ble by 4. Hence, they are of the restricted form in Section 4.1. Therefore, we apply

Proposition 1 to arrive at the conclusion that Q4 = {(1,1), (1,2), (1,3), (1,4),

(1,5), (1,8) }.
Corollary 11. Let n € Ng. Then

Ny (n) = 3203(n )—6403(2)+51203(4)+256W(3131)( n) — 1024 W%, (n)

n 3,3 N 3.3 3,3 N1

+ 1024 W () — 16384 WY () + 8192 W (m) + 65536 WY ()
32 64 n 8192 n 512 8192 n
—1—707(71)—ﬁa7(§)+1—707(4)+1—7b32,1(n)+ 7 b321(2)

- 7"16(77/),

wherein Bz 1(q) = n®( 25321 ;
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n n n n n
N5y (n) = 1603(n) + 16 03(5) = 3203(5) — 3203(7) + 25603(7) + 25603(3)
+ 256 W% (n) = 512WY, () + 4096 Wi (n) — 512 W7 (5)
+ 5120 W3S (5) — 8192 W05 (5) — 8192 W5 ()
3,3 (1
+ 65536 Wy ) (7),
8,8 _ n n n n g
Ny (n) = 1605(n) + 16 03(5) = 3203(5) — 3203(5) + 25603(7) + 25603(3)
3.3 3,3 3,3 3,3
+256 W% (n) — B2 (n) + 4096 Wi, (n) — 512 W55 (n)
+ 1024 WY (5) — 8192 W) (5) + 4096 W35, ()
33 M 33 (M
= 8192575 (5) + 65536 W5 (),
NG (n) = 1603(n) + 16 03(%) - 32 ‘73(3) - 32 03(3) * 25603(%) - 25603(%)
1956 ng) (n) — 512 W(f”f;) (n) + 4096 Wfl’?’m) (n) — 512 W(?’f;) ( g)
+ 1024 W33, (%) —8102W3% (g) 14096 W53, (%)
n n
— 8192 W% () + 65536 W%, (),
8,8 _ n i " n y
Niis)(n) = 1603(n) + 16 03() = 3203(35) — 3203(1) + 25603(7) + 25603 (55)
+256 WS (n) — B12W (7 (n) 44096 Wiy (n) — 512 W5 (n)
+ 1024 W3 (5) — 8192 W, (5) + 4096 W%, (n)
33 M 3,3 N1
= 8192Wy75) (5) + 65536 Wiy (),
8,8 _ n i " n -
N5 (n) = 1603(n) + 16 03(3) = 3203(3) — 3203(7¢) + 25603(7) + 25603(55)
+256 W) (n) — B12W 4 (n) 44096 WS, (n) — 512 (g)
+1024 W (g) — 8192w %) (g) +4096 W) (%)
33 M 3,3 N1
— 8192 W(IA)(Z) + 65536 W(LS)(Z)'

Proof. These formulae follow immediately from Theorem 6 when we set (a,b) =

(1,1), (1,2), (1,3), (1,4), (1,5) and (1, 8), respectively. One can then use the result
of (21), (46), 48 and (52) to simplify N(; o). O
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8. Concluding Remark

The evaluation of the convolution sums > o1(D)os(m)and >  o5(0)o1(m)

(1,m)eN? (1,m)eN?
al+Bm=n al+Bm=n

for those 0 < «, 8 € N for which ged (o, ) = 1 is complete and will be submitted
for publication very soon.

As suggested by an anonymous referee, a future work will focus on the properties
and arithmetic of the n-quotients resulting from a path in a graph of cusp spaces.
Such a work may therefore explain some properties and arithmetic of their Fourier
coefficients.

Acknowledgments. I express my gratitude to the anonymous referee for fruitful
comments and suggestions on a draft of this paper. I am grateful to Bruce Landman
for pointing out some English errors, Lawrence C. Washington for reading through
and Bruce C. Berndt for taking a look at the refereed version of this paper.
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Appendix

1 2 3 4 6 12
118 8 0 0 0 0
2 |4 4 4 0 4 0
3|0 0 8 0 8 0
4 |3 -3 -1 0 17 0
56 -6 -10 0 26 0
6 ([0 0 O 0 8 8
710 0 0 6 -4 14
8 |0 3 0 3 -1 17
9 |0 4 0 -2 -8 22
100 6 O -6 -10 26
11|{0 8 0 -10 -12 30

Table 2: Power of n-quotients being basis elements of Sg(I'g(12))
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15

14

14
12

11
12
14

19

10
11

12

Table 3: Power of n-quotients being basis elements of Sg(T'y(15))

18

12

12

12
19

-11

24
26
29
32

-12
-10
-13
-16

-6
-7
-8

6

10
11

12
13
14
15
16
17

Table 4: Power of n-quotients being basis elements for Sg(I'y(18))
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1 2 4 5 10 20
1 8 8 0 0 0 0
2 8§ 0 0 8 0 0
3 2 0 0 14 O 0
4 |0 8 0 0 8 0
5 0 0 O 8 8 0
6 0 2 0 0 14 0
7110 -6 0 -10 22 0
8 2 0 0 -10 24 O
9 4 4 0 -12 28 O
10/ 0 0 O 0 8 8
1i1|0 3 -3 -8 171 7
121 0 0 2 0 0 14
13,0 4 -4 -8 12 12
14| 0 10 -6 0 -10 22
50 1 -3 8 -13 23
16| 0 2 0 0 -10 24
7| 2 3 -5 -2 -7 25
8,0 4 -4 0 -12 28

Table 5: Power of n-quotients being basis elements of Sg(I'y(20))

1 5 25
1 14 2 0
2 8 8 0
3 2 14 0
4 1 14 1
5 0 14 2
6 4 8 4
7 8 2 6
8 2 8 6
9 1 8 7
10| 0 8 8
11 4 2 10
1213 2 11
1312 2 12
14| 1 2 13
15,0 2 14

Table 6: Power of n-quotients being basis elements for Sg(I'y(25))
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1 3 9 27
1 (12 4 0 0
2 0 16 0 0
3 6 4 6 0
4 3 4 9 0
5 0 4 12 0
6 0 0 16 O
710 5 8 3
8 0o 1 12 3
9 0 6 4 6
10, 0 2 8 6
11,0 7 0 9
12,0 3 4 9
13/ 0 8 -4 12
14 0 4 0 12
15/ 0 0 4 12
16| 0 5 -4 15
7,0 1 0 15
181 3 2 -7 18

Table 7: Power of n-functions being basis elements of Sg(I'g(27))
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N N o | |
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s < 0|5 (S clolo|T oo |« | |o o |~

1

< i | |o|lo || |lo oo lolo|o|o ||

™ < v |lo|lo|lo|lolo|w oo olw|olo|o

— o ololo|lc|lc|lo|lo|lo|lolo|lolc|lololo|o
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Table 8: Power of n-functions being basis elements of Sg(I'g(32))
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