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Abstract

By the theory of the Pell equation, we study the polynomial solutions and positive
integer solutions of certain Diophantine equations involving triangular numbers.

1. Introduction

A triangular number is a positive integer of the form

tn =

(
n

2

)
=

n(n− 1)

2
, n ≥ 2, n ∈ Z.

It is a classical result that all positive integer solutions of the Pythagorean equation

X2 + Y 2 = Z2 (1.1)

are given by

X = 2kuv, Y = k(u2 − v2), Z = k(u2 + v2),

where k is a positive integer and u, v are co-prime positive integers of different

parity with u > v. The solution (X,Y, Z) is called a Pythagorean triple.

In 1962, Sierpiński [6] showed that Equation (1.1) has infinitely many positive

integer solutions X = tx, Y = ty, Z = z with gcd (tx, ty) > 1. In other words, he

proved that the Diophantine equation

z2 = t2x + t2y (1.2)
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has infinitely many positive integer solutions. As pointed out by Sierpiński [6],

Schinzel showed that the set of positive integer solutions of Equation (1.2) with

gcd (tx, ty) = 1 is infinite. In 2008, Ulas [8] proved that Equation (1.2) has infinitely

many polynomial solutions x(t), y(t), z(t) ∈ Z[t]. By the theory of the Pell equation,

we give another proof of Ulas’ result in the following theorem.

Theorem 1.1. Equation (1.2) has infinitely many polynomial solutions x(t), y(t),

z(t) ∈ Z[t].

In 2010, Ulas and Togbé [7] considered the rational solutions of the Diophantine

equations

z2 = f(x)2 ± f(y)2, (1.3)

where f(x) are quadratic and cubic polynomials. In 2010, He, Togbé and Ulas

[3] further investigated the integer solutions of Equation (1.3) for some special

polynomials f(x). They gave infinitely many integer solutions of the Diophantine

equation

z2 = (x2 + a)2 − (y2 + a)2

for some special values of a. When a = −1, the above Diophantine equation reduces

to

Z2 = t2X − t2Y ,

where Z = z/8, X = (x − 1)/2, Y = (y − 1)/2. Then there are infinitely many

Pythagorean triangles (a Pythagorean triangle is a right triangle with integer side

lengths) with a leg and the hypotenuse that are triangular numbers. We shall give

a new proof of this result.

Theorem 1.2. The Diophantine equation

t2z = x2 + t2y (1.4)

has infinitely many polynomial solutions x(t), y(t), z(t) ∈ Z[t].

In 2004, Rakaczki [5] studied the integer solutions of the Diophantine equation

F

((
x

n

))
= b

(
y

m

)
, x ≥ n, y ≥ m, (1.5)

where F (x) is a polynomial with integer coefficients, m (≥ 2) and n are positive

integers, and b is a non-zero integer.

Motivated by Equations (1.2) and (1.5), we consider the positive integer solutions

of the general Diophantine equation

z2 = at2x + btxty + ct2y, (1.6)

where a, b, c are integers with b2 − 4ac 6= 0. When a = 1, b = 0, c = ±1, Equation

(1.6) reduces to Equations (1.2) and (1.4). By the theory of the Pell equation, we
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d(t) x(t), y(t)

t2 − 1 (t, 1)
t2 ± 2 (t2 ± 1, t)

9t2 ± 8t + 2 ((9t± 4)2 + 1, 3(9t± 4))
49t2 ± 20t + 2 ((49t± 10)2 − 1, 7(49t± 10))

t(t3 ± 2) (t3 ± 1, t)
t(r2t± 1), r ∈ Z+ (2r2t± 1, 2r)
t(r2t± 2), r ∈ Z+ (r2t± 1, r)

Table 1: An integer solution of the Pell equation x2 − d(t)y2 = 1

get the following results. In order to illustrate Theorem 1.3, we give an integer

solution of the Pell equation x2 − d(t)y2 = 1 in Table 1.

For some special values of a, b, c, we have the following theorem.

Theorem 1.3. Let a = 1, b = 0, c + 1 = d(t), or a = 1, b = 2, c + 3 = d(t), or

a = 1, b 6= 2 (b + 2 > 0 is not a perfect square), c = 1. Then Equation (1.6) has

infinitely many positive integer solutions.

For general values of a, b, c, we obtain the following result.

Theorem 1.4. Let a = (2t+ 1)2(r2(2t+ 1)2− s), b = −2r2(2t+ 1)2 + s, c = r2, or

a = (2t+1)2(r2(2t+1)2−2s(2t2 +2t+1)), b = −2r2(2t+1)2 +s(8t2 +8t+3), c =

r2 − s, where r, s, t are positive integers. If st(t + 1) is not a perfect square, then

Equation (1.6) has infinitely many positive integer solutions.

Lastly, we investigate the positive integer solutions of the related Diophantine

equation

tz = at2x + btxty + ct2y, (1.7)

where a, b, c are integers with a2 + b2 + c2 6= 0. When a = 1, b = c = 0, the

only positive integer solutions of Equation (1.7) are (z, x) = (1, 1), (2, 2), (9, 4) (see

[2, 4]).

By the same method of Theorem 1.4, we have the following result.

Theorem 1.5. Let a = 1
2 (2t+1)2(sr2(r+1)2(2t+1)2−2)s, b = −(sr2(r+1)2(2t+

1)2 − 1)s, c = 1
2s

2r2(r + 1)2, where r, s, t are positive integers. If 2st(t + 1) is not

a perfect square, then Equation (1.7) has infinitely many positive integer solutions.
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2. Proofs of the Theorems

Proof of Theorem 1.1. Let y = 2tx+1−2t, where t is a parameter. Then Equation

(1.2) can be written as the following equation:

1

4
(x− 1)2

(
(16t4 + 1)x2 + 16(−2t4 + t3)x + 16t4 − 16t3 + 4t2

)
= z2.

Consider

(16t4 + 1)x2 + 16(−2t4 + t3)x + 16t4 − 16t3 + 4t2 = s2,

and put

X = (16t4 + 1)x + 8(−2t4 + t3), Y = s.

We get the Pell equation

X2 − (16t4 + 1)Y 2 = −4t2(2t− 1)2. (2.1)

Equation (2.1) has a solution

(X
′
, Y

′
) =

(
8t3(2t− 1), 2t(2t− 1)

)
,

and (X
′′
, Y

′′
) = (32t4 + 1, 8t2) is a solution of the Pell equation

X2 − (16t4 + 1)Y 2 = 1.

An infinite number of solutions of Equation (2.1) are given by

Xn + Yn

√
16t4 + 1 =

(
8t3(2t− 1) + 2t(2t− 1)

√
16t4 + 1

)
×
(

32t4 + 1 + 8t2
√

16t4 + 1
)n

, n ≥ 0,

which leads to

Xn = (32t4 + 1)Xn−1 + 8t2(16t4 + 1)Yn−1, Yn = 8t2Xn−1 + (32t4 + 1)Yn−1.

So 
Xn = 2(32t4 + 1)Xn−1 −Xn−2, X0 = 8t3(2t− 1),

X1 = 8t3(2t− 1)(64t4 + 3),

Yn = 2(32t4 + 1)Yn−1 − Yn−2, Y0 = 2t(2t− 1),

Y1 = 2t(2t− 1)(64t4 + 1).

Using the relation Xn = 2(32t4 + 1)Xn−1 −Xn−2 twice, we get

Xn+1 = 2
(
2(32t4 + 1)2 − 1

)
Xn−1 −Xn−3.

Replacing n by 2n, we have the relation

X2n+1 = 2
(
2(32t4 + 1)2 − 1

)
X2n−1 −X2n−3,
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which holds for n ≥ 2. From X = (16t4 + 1)x + 8(−2t4 + t3), Y = s, we have

x2n+1 = 2
(
2(32t4 + 1)2 − 1

)
x2n−1 − x2n−3 + 256t4(−16t4 + 8t3),

s2n+1 = 2
(
2(32t4 + 1)2 − 1

)
s2n−1 − s2n−3,

where

x1 = 32t3(2t− 1), x3 = 64t3(2t− 1)(8t2 − 4t + 1)(8t2 + 4t + 1)(32t4 + 1),

s1 = 2t(2t− 1)(64t4 + 1), s3 = 2t(2t− 1)(262144t12 + 20480t8 + 384t4 + 1).

Thus, Equation (1.2) has infinitely many polynomial solutions

x2n+1 ∈ Z[t],

y2n+1 = 2tx2n+1 + 1− 2t ∈ Z[t],

z2n+1 =
1

2
(x2n+1 − 1)s2n+1 ∈ Z[t],

where n ≥ 0.

Example 2.1. When n = 0, Equation (1.2) has a polynomial solution

x1(t) = 32t3(2t− 1),

y1(t) = 128t5 − 64t4 − 2t + 1,

z1(t) = t(2t− 1)(8t2 − 4t + 1)(8t2 + 4t + 1)(64t4 − 32t3 − 1).

Proof of Theorem 1.2. Let z = 2ty + 1, where t is a parameter. Then Equation

(1.4) is equivalent to

1

4
y2
(
(16t4 − 1)y2 + (16t3 + 2)y + 4t2 − 1

)
= x2.

Letting (16t4 − 1)y2 + (16t3 + 2)y + 4t2 − 1 = s2, then(
(16t4 − 1)y + 8t3 + 1

)2 − (16t4 − 1)s2 = 4t2(2t + 1)2.

Putting X = (16t4 − 1)y + 8t3 + 1, Y = s, we get the Pell equation

X2 − (16t4 − 1)Y 2 = 4t2(2t + 1)2. (2.2)

Note that (X
′
, Y

′
) = (8t3(2t + 1), 2t(2t + 1)) is a solution of Equation (2.2) and

(X
′′
, Y

′′
) = (4t2, 1) is a solution of the Pell equation

X2 − (16t4 − 1)Y 2 = 1.

An infinite number of solutions of Equation (2.2) are given by

Xn + Yn

√
16t4 − 1 =

(
8t3(2t + 1) + 2t(2t + 1)

√
16t4 − 1

)
×
(

4t2 +
√

16t4 − 1
)n

, n ≥ 0.

In a similar way as in the proof of Theorem 1.1, we can get infinitely many polyno-

mial solutions.
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Proof of Theorem 1.3. 1) When a = 1, b = 0, let y = x + 1. Then Equation (1.6)

becomes
1

4
x2
(
(c + 1)x2 + (2c− 2)x + c + 1

)
= z2.

Letting (c + 1)x2 + (2c− 2)x + c + 1 = s2, we have

((c + 1)x + (c− 1))
2 − (c + 1)s2 = −4c.

If c + 1 = d(t) = t2 − 1 (the proofs of the remaining cases in Table 1 are similar to

this one), then (
(t2 − 1)x + t2 − 3

)2 − (t2 − 1)s2 = −4t2 + 8.

Putting X = (t2 − 1)x + t2 − 3, Y = s, we get the Pell equation

X2 − (t2 − 1)Y 2 = −4t2 + 8. (2.3)

Let us observe that the pair (X
′
, Y

′
) = (−2, 2) is a solution of Equation (2.3).

Moreover, the pair (X
′′
, Y

′′
) = (t, 1) solves the Pell equation X2 − (t2 − 1)Y 2 = 1.

An infinite number of positive integer solutions of Equation (2.3) are given by

Xn + Yn

√
t2 − 1 =

(
−2 + 2

√
t2 − 1

)(
t +
√
t2 − 1

)n
, n ≥ 0.

The remaining part of the proof is similar to the earlier ones for Theorems 1.1 and

1.2.

2) When a = 1, b = 2, put y = x + 1. Then Equation (1.6) can be reformulated

in the form
1

4
x2
(
(c + 3)x2 + (2c− 2)x + c− 1

)
= z2.

Taking (c + 3)x2 + (2c− 2)x + c− 1 = s2, we obtain Pell equation

((c + 3)x + (c− 1))
2 − (c + 3)s2 = −4c + 4.

If c+ 3 = d(t) = t2− 1 (the proofs of other cases in Table 1 are similar to this one),

we have (
(t2 − 1)x + t2 − 5

)2 − (t2 − 1)s2 = −4t2 + 20.

Letting X = (t2 − 1)x + t2 − 5, Y = s, then

X2 − (t2 − 1)Y 2 = −4t2 + 20. (2.4)

It is easy to see that the pair (X
′
, Y

′
) = (−4, 2) is a solution of Equation (2.4),

and the pair (X
′′
, Y

′′
) = (t, 1) solves the Pell equation X2 − (t2 − 1)Y 2 = 1. So an

infinite number of positive integer solutions of Equation (2.4) are given by

Xn + Yn

√
t2 − 1 =

(
−4 + 2

√
t2 − 1

)(
t +
√
t2 − 1

)n
, n ≥ 0.
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The remaining part of the proof is similar to the earlier ones.

3) When a = 1, b 6= 2, c = 1, take y = x− 1. Then Equation (1.6) is equal to

1

4
(x− 1)2

(
(b + 2)x2 − 2(b + 2)x + 4

)
= z2.

Let us consider

(b + 2)x2 − 2(b + 2)x + 4 = s2,

which is equivalent to the Pell equation

X2 − (b + 2)Y 2 = b2 − 4, (2.5)

where

X = (b + 2)x− (b + 2), Y = s.

If b + 2 > 0 is not a perfect square, then the Pell equation

X2 − (b + 2)Y 2 = 1

has infinitely many positive integer solutions. Let (u, v) be the least positive integer

solution of X2−(b+2)Y 2 = 1. And (X0, Y0) = (b+2, 2) is a positive integer solution

of Equation (2.5). An infinite number of positive integer solutions of Equation (2.5)

are given by

Xn + Yn

√
b + 2 =

(
b + 2 + 2

√
b + 2

)(
u + v

√
b + 2

)n
, n ≥ 0.

The remaining part of the proof is similar to the earlier ones.

Proof of Theorem 1.4. 1) When a = (2t+ 1)2(r2(2t+ 1)2− s), b = −2r2(2t+ 1)2 +

s, c = r2, let y = (2t + 1)x− t. Then Equation (1.6) reduces to

1

4
t(t + 1)

(
sx2 − sx + r2t(t + 1)

)
= z2.

Letting

Z = 4z, X = 2x− 1,

we get the Pell equation

Z2 − st(t + 1)X2 = 4r2t2(t + 1)2 − st(t + 1). (2.6)

If st(t + 1) is not a perfect square, then the Pell equation

Z2 − st(t + 1)X2 = 1

has infinitely many positive integer solutions. Let (u, v) be the least positive integer

solution of Z2 − st(t + 1)X2 = 1. Note that (Z0, X0) = (2rt(t + 1), 1) is a positive
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integer solution of Equation (2.6). An infinite number of positive integer solutions

of Equation (2.6) are given by

Zn + Xn

√
st(t + 1) =

(
2rt(t + 1) +

√
st(t + 1)

)(
u + v

√
st(t + 1)

)n
, n ≥ 0,

which leads to

Zn = uZn−1 + vst(t + 1)Xn−1, Xn = vZn−1 + uXn−1.

Thus,{
Zn = 2uZn−1 − Zn−2, Z0 = 2rt(t + 1), Z1 = t(t + 1)(2ru + sv),

Xn = 2uXn−1 −Xn−2, X0 = 1, X1 = 2rt(t + 1)v + u.

From

z =
Z

4
, x =

X + 1

2
,

we have
zn = 2uzn−1 − zn−2, z0 =

rt(t + 1)

2
, z1 =

(2ru + sv)t(t + 1)

4
,

xn = 2uxn−1 − xn−2 − u + 1, x0 = 1, x1 = rt(t + 1)v +
u + 1

2
.

According to the above relations and 2|t(t + 1), we have

z2n ∈ Z+, x2n ∈ Z+, n ≥ 1.

Thus, for a = (2t+ 1)2(r2(2t+ 1)2− s), b = −2r2(2t+ 1)2 + s, c = r2, if st(t+ 1) is

not a perfect square, Equation (1.6) has infinitely many positive integer solutions

(x, y, z) = (x2n, (2t + 1)x2n − t, z2n) ,

where n ≥ 1.

2) We can obtain the result in a similar way like in case 1).

Example 2.2. When r = 1, s = 1, we have

(a, b, c) =
(
4t(t + 1)(2t + 1)2,−8t2 − 8t− 1, 1

)
.

For a given positive integer t, Equation (1.6) has infinitely many positive integer

solutions (xn, yn, zn), which satisfy
xn = 2(2t + 1)xn−1 − xn−2 − 2t, x0 = 1, x1 = (t + 1)(2t + 1),

yn = (2t + 1)xn − t,

zn = 2(2t + 1)zn−1 − zn−2, z0 =
t(t + 1)

2
, z1 = t(t + 1)2.
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Proof of Theorem 1.5. 1) When a = 1
2 (2t + 1)2(sr2(r + 1)2(2t + 1)2 − 2)s, b =

−(sr2(r+1)2(2t+1)2−1)s, c = 1
2s

2r2(r+1)2, let y = (2t+1)x− t. Then Equation

(1.7) becomes

2st(t + 1)x2 − 2st(t + 1)x + r2t2(t + 1)2(r + 1)2s2 + 1 = (2z − 1)2.

Taking

Z = 4z − 2, X = 2x− 1,

we get the Pell equation

Z2 − 2st(t + 1)X2 = 4 (rst(t + 1)(r + 1) + 1)
2 − 2st(t + 1)(2r + 1)2. (2.7)

If 2st(t + 1) is not a perfect square, then the Pell equation

Z2 − 2st(t + 1)X2 = 1

has infinitely many positive integer solutions. Let (u, v) be the least positive integer

solution of Z2−2st(t+ 1)X2 = 1. And (Z0, X0) = (2(rst(t + 1)(r + 1) + 1), 2r + 1)

is a positive integer solution of Equation (2.7). An infinite number of positive integer

solutions of Equation (2.7) are given by

Zn + Xn

√
2st(t + 1) =

(
2(rst(t + 1)(r + 1) + 1) + (2r + 1)

√
2st(t + 1)

)
×
(
u + v

√
2st(t + 1)

)n
, n ≥ 0.

The remaining part of the proof can be obtained in a way similar to that of Theorem

1.4.

3. A Remark and Question on Equation (1.7)

Taking (a, b, c) = (1, 2, 1) in Equation (1.7), we have

tz = (tx + ty)2.

Considering tz = w2, we obtain

Z2 − 2W 2 = 1,

where

Z = 2z − 1, W = 2w.

From

Zn + Wn

√
2 =

(
3 + 2

√
2
)n

, n ≥ 1,
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we get

Zn =
εn + ε̄n

2
, Wn =

εn − ε̄n

2
√

2
,

where ε = 3 + 2
√

2, ε̄ = 3− 2
√

2. Thus,

zn =
εn + ε̄n + 2

4
, wn =

εn − ε̄n

4
√

2
.

It is easy to show that zn and wn are positive integers. Then we need to study the

positive integer solutions of

wn = tx + ty.

Solving it for y, we have

y =
1 +

√
−(2x− 1)2 + 8wn + 2

2
. (3.1)

By some numerical calculations, we get several positive integer solutions of Equation

(3.1) in Table 2 in the range 1 ≤ n ≤ 100 and 1 ≤ x ≤ 107.

n (x, y)
1 (2, 1)
2 (3, 3), (4, 1)
8 (61, 684), (459, 511)
10 (678, 3942), (723, 3934)
12 (12726, 19530), (15831, 17110)
14 (23496, 133812), (61491, 121147)
16 (530868, 587532)
17 (28864, 1911458), (598862, 1815453)

Table 2: Some positive integer solutions of Equation (3.1)

Maybe we could get more positive integer solutions in the large range. However,

we were not able to give a positive answer to the following question.

Question 3.1. Are there finitely many positive integer solutions of Equation (3.1)?

A similar remark can be made for the case

tz = (atx + bty)2.

There are some papers (see [1] and the related references) that studied the X-

coordinates of the Pell equations as a special number or the sum (or product) of

two special numbers, and obtained some finiteness results. But it seems that the

methods are not applicable here for our case.
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Arch. Math. Naturv. 48(7) (1946), 26-29.

[5] Cs. Rakaczki, On the Diophantine equation F (
(x
n

)
) = b

( y
m

)
, Period. Math. Hung. 49(2)

(2004), 119–132.
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