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Abstract

A Perron number is an algebraic integer A > 1 whose conjugates u; satisfy |u;| < .
We prove that given a Perron number A, there is an integer hg such that for h > hg
there exists a primitive integer matrix Bj, whose spectrum includes only A" and its
conjugates, and whose order is equal to the degree of \. We also prove that if A
is a Pisot number of degree 2 or 3, then there exists an integer primitive matrix of
order 2 or 3 whose Perron eigenvalue is A, and that if a Perron number A is a Parry
number without pirate value, then the trace of A is equal to [A] or [A] + 1.

1. Introduction

A real matrix B is primitive if it is nonnegative and if there exists an integer k
such that all entries of B* are strictly positive (hence for h > k, B" is also strictly
positive).

Perron’s theorem asserts that a primitive matrix B admits a real eigenvalue
A > 0 such that every other eigenvalue p satisfies |p| < A; A is said to be the Perron
eigenvalue or strictly dominant eigenvalue of B. In this paper, we are interested in
matrices with coefficients in N (integer matrices).

Lind [9] defines a Perron number of degree d to be any algebraic integer A > 0,
that is a root of an irreducible polynomial P = X%+ ¢; X% 1 + ... 4+ ¢4, where all ¢;
belong to Z, and where all other zeroes pa, - - - , 1g of P satisfy |u;| < A. The zeroes
of P are the algebraic conjugates of A\. He proved the following theorem.
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Theorem 1 (Lind [9]). Given a Perron number A, there is a primitive integer
matrix B whose Perron eigenvalue is \. It is also possible to find such a matrix with
entries 0 or 1.

See also [4] for a proof via language theory. Of course the order of B cannot be
strictly smaller than d, but in Lind’s construction the order of B is often greater
than the degree of A and B admits eigenvalues which are hence not conjugates of
A. In this case the irreducible polynomial of the Perron eigenvalue A divides the
characteristic polynomial of B and the algebraic degree d of A is smaller than the
order of B, so the following question arises.

Question 1. Given a Perron number of degree d, can we find a primitive matrix
B of order d, with entries in N, for which A is an eigenvalue?

Of course, A is the Perron eigenvalue of B. This is not always the case, and
following Boyle and Handelman [6] and the work of Kim, Ormes and Roush [8],
we recall necessary conditions for the existence of such a matrix. The following
question also arises.

Question 2. Given a Perron number A, if there is no such matrix, let C and D be
two positive integer matrices of minimal order having A as eigenvalue; do they have
the same spectrum?

In what follows, we shall prove Theorem 2 and Propositions 3 and 4. Recall that
Lind [9] proved that given a Perron number A and an integer k, A and A¥ have the
same degree. (Proposition 5 in [9] asserts that A belongs to Q (A*) so A and A
have the same degree.)

Theorem 2. Let A be a Perron number and let d be the common degree of \ and its
powers \*. Then there exists an integer k and a primitive integer matriz B of order
d whose spectrum consists of \¥ and its conjugates (so ¥ is the Perron eigenvalue
of B). We can choose k such that, for each h > k, \" is the eigenvalue of some
primitive integer matriz of order d.

The trace tr A of an algebraic integer A is the sum of its conjugates (including A
itself); it is equal to —cy, the coefficient of X¢~! of the minimal polynomial. If X is
the eigenvalue of a nonnegative integer matrix of order d the trace of this matrix is
the trace of A and has to be nonnegative. A Pisot number is an algebraic integer
B > 1 whose conjugates p; satisfy |u;| < 1.

Proposition 1.

(1) A Perron number of degree 2 is the Perron eigenvalue of some primitive integer
matriz of order 2.

(2) A Pisot number of degree 2 (resp. 3) is the Perron value of some primitive
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integer matriz of order 2 (resp. 3).
(8) For each d > 3 there exist Perron numbers of degree d whose traces are negative
and which are not eigenvalues of a primitive integer matriz of order d.

McKee, Rowlinson, and Smyth [12] proved the existence of Pisot numbers of any
desired traces (even negative). McKee and Smyth [11] found a Pisot number with
negative trace of degree d = 16.

Example 1. The zero A > 1 of the polynomial X3 — X —1 () is the plastic number)
is a Perron number of degree 3, it is also the dominating root of the polynomial
X5—X*—1=(X3-X—-1)(X?—-X+1). It is the Perron eigenvalue of the matrices

10 0 0 1

0 01 10 0 00
U=|1 0 1]andV=|0 1 0 0 0 |, which are both primitive.

01 0 001 0O

0 00 10

2

3+vV5
1 1 2

Example 2. The matrix W = { ] is primitive with Perron value

Now let us explain why we are interested in integer primitive matrices of minimal
order.

Given a labelled directed graph G on h vertices, the adjacency matriz A of G is
the (h, h) matrix where the entry a; ; is the number of labelled edges from vertex %
to vertex j, all entries being nonnegative integers. The eigenvalues of the adjacency
matrix are said to be eigenvalues of the graph.

By a path of length n in a graph G we mean a sequence aq,--- ,a, of labelled
edges such that the terminal vertex of a; is the initial vertex of a;41, 1 < i < n. If
the terminal vertex of a,, is the initial vertex of a1, then the path is a loop of length
n. A loop ay,--- ,a, is minimal unless there exists a loop by, -+, b, with m < n
such that aq,- -+, a, is obtained by concatenating by, - - , by, n/m times. Let w,, be
the number of paths with length n and suppose that the matrix is primitive, then
limy, o0 128%n = In \.

Question 1 becomes: given a Perron number \ of degree d, is it possible to find a
graph on d vertices with eigenvalue A, or an automaton with d states and eigenvalue
A7

Symbolic Dynamical Systems. Let S be a set of r» symbols endowed with the
discrete topology. Then the space S% of sequences (Tn)pez = 1y 21,00, 21,...}
on S endowed with the product topology is a compact set; the shift map o : S% —
SZ is defined by setting (02),cz = (Tny1)nez. HY C S% is compact, nonempty and
o-invariant (i.e., o1 (Y) =Y), then (Y,0) is called a symbolic dynamical system.
A general dynamical system is a space with an invariant transformation. Symbolic
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systems are not anecdotal ones. Hadamard noticed that many dynamical systems
can be viewed as symbolic dynamical systems.

Example 3. Let « be an irrational rotation of the the unit circle [0, 27[; given a
point y, and n € Z let =, = a if a"(y) = y + na € [0, 7] modulo 27 and z,, = b if
a™(y) is in [, 27[; if we know the sequence (z,,),,c5, We know the point y, so the
rotation can be seen as a symbolic system. Such a situation occurs frequently.

The infinite paths (an),c; of a graph G with a matrix A of order d defines a
symbolic dynamical system associated with the graph G; if A is primitive the system
is what we call a mixing Markov Shift with d states and In A denotes its entropy.
So Question 1 becomes: given a Perron number A\ of degree d, does there exist a
symbolic dynamical system with entropy In A associated with a graph with only d
vertices?

Example 4. The dynamical system X = (z,,)necz where z, € {0,1,2} and where
the word 22 never appears is a system with two states and entropy In % related

to the matrix W of Example 2.

We are also interested in substitutions. A substitution of h letters by,--- by
is a map ¢ from the set {by,---,by} into the set of finite words on these letters,
extended by concatenation to finite words (¢ (uv) is the word ¢ (u) ¢ (b)). The ad-
jacency matrix B is the nonnegative matrix whose entry a; ; is the number of letters
b; contained in ¢ (bj); we can easily associate a substitution to each nonnegative
matrix. If for some k all ¥ (b;) contains all b;, the matrix is a primitive matrix
and the substitution is said to be primitive. In this case the number [; of letters
contained in gok (b;) satisfies limg_, o IOil’“ = In A, where )\ is the Perron eigenvalue
of B, so A is said to be an eigenvalue of the substitution. If there is a letter b; such
that ¢ (b;) begins with b; then the word ¢¥ (b;) is the beginning of ©**1 (b;) and
the substitution admits a fixed point > (b;) (such a letter exists if the trace of B
is positive).

Question 1 becomes: given a Perron number A of degree d, can we find a primitive
substitution on d letters with eigenvalue A7 And what about a fized point?

If B is a Pisot number of degree d, does B admits a substitution on d letters with
eigenvalue 87 (such a substitution is called a Pisot substitution).

Remark. The answer to the last question is no for the general case, since there
are Pisot numbers with negative trace [10,11].

Example 5. The substitution a — ab, b - ¢, ¢c = d, d — e, e — a is a primitive
substitution with a fixed point abcdeaab - - - with the matrix V' of Example 1.
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2. Boyle-Handelman’s Spectral Conjecture

We say that a k—tuple A = (dy, - -+ , dg) of nonzero complex numbers is the nonzero
spectrum of a matrix A if for some m > 0, the characteristic polynomial of A is
Xp(t)=tm Hle (t — d;). The eigenvalues of A are dy,--- ,dj and m zeroes when
m is positive. We set A" := (df,---,d}). We denote trace of /A, denoted by
tr A, the sum of the entries of A. If a matrix A has nonzero spectrum A, then tr
A™ = tr (A"). We say that A has a Perron value (denoted by Aa) if there exists
an index 4 such that d; > |d;| for j # i, and we set A = d;.

Consider a nonnegative adjacency matrix A of a graph G. The number of loops
of length n is the sum of the numbers of minimal loops of length m where m runs
through the set of divisors of n (including 1 and n). Suppose that the decomposition
into prime factors of n is n = p’fl ---plr. Then the number of minimal loops of
length n is equal to the following expression called the nth trace of A in [6]:

trpA = Z 1 (d) tr AV
d|n

where d belongs to [1,2,--- ,n], and where p denotes the Mobius function: p(d) =
(—1)* if d is square-free and has k distinct prime divisors and p (d) = 0 if d has a
square divisor.

If A is the nonzero spectrum of a nonnegative integer matrix A, then for each n
the tr,, A has to be nonnegative.

The following conjecture is due to Boyle and Handelman.

Boyle-Handelman Spectral Conjecture (Integers Case) [6]: a k-tuple A\ =
(d1,--- ,dg) is the nonzero spectrum of some primitive nonnegative matriz with
entries in N if and only if /\ has a Perron value, the coefficients of Hle (t—d;)
are in Z, and tr,/\ > 0 for every positive integer n.

Kim, Ormes and Roush [8] proved this case of the conjecture. The order of the
matrix that they furnish is not always equal to the number of entries d in A. So
a Perron number \ with nonnegative n*" net traces is the eigenvalue of an integer
nonnegative matrix whose spectrum contains J, its algebraic conjugates and perhaps
some zeroes.

We want to get rid of these zeroes; we shall also reformulate this conjecture:
given an algebraic number \ of degree d with conjugates A = uq, pi2,- -+ , ftqg, we set
A ={M\, o, ,puq}; forn = pi“ ---phr as above let tr, A denote the n'* net trace
of the set A = {1, 2, -+, d} :

trpA = i: Z (—1)’~C tr ()\pil‘T'L’pik ) =tr | A" H (1 - /\}’i>
=1,

k=011 <-<ig i=1,
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Conjecture. A Perron number \ of degree d is the eigenvalue of some positive
matrix of order d with entries in N if and only if tr, A > 0 for all positive integer n.

We shall prove Theorem 3 which trivially implies Theorem 2.

Theorem 3.Let /A be a d—tuple of nonzero complex numbers admitting a Perron
value; then there exists hg such that for each h > hy, A" is the spectrum of some
primitive integer matriz B of order d. The matriz can be chosen from the two

b 0 0 SN Qq
00 .. ald 1 0 0 ... ag.
oo 1 0 ... :
possibilities: B = orB=10 1 0
0 1w 00 0 1 a

3. Proof of Theorem 3

Lemma 1 [3]. (Companion matrix of certain finite or infinite sequence) Let

ai, -+ ,ar be integers with all a; > 0 and ap > 0; then the companion matriz
0 0 cee Qg
1 0 ... : I o1

B((a1---ag)) = of the polynomial X* —a; X" — - —qy
0 ... 1 ai

is primitive and X* — ay X*~1 — ... —qay, is its characteristic polynomial.

Let b be a number greater than 0 and let ay,--- ,ap_1, ay, be a sequence of positive
numbers such that ap > 0; let (an),,>; = @1, , Ak—1, Gk, aib, apb?, apb3, -+ be the
infinite sequence with all a; > 0, axb > 0 and for r > 0 agq, = b ax. Then

b 0 0 e Qap
1 0 0 R 0 P |
the “companion matriz” B ((ap)n>1,0) = | 0 1 0 ... : of the pair

0 0 O 1 ay

(an)p>1 ,b) is primitive and if a number \ satisfies

ai ap—1 Qg arb apb? apb®
1:7+"'+)\k—1+ﬁ+)\k+1 Ntz T ks T

then X\ is a zero of the polynomial

XF (X b ap X Fag) WX — (X ).
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which is also the characteristic polynomial of B.
The proof is straightforward and can be found in [3].
Lemma 2. If a real number A > 1 satisfies an equation of the form
A= al)\kfl + ag)\k*Q + -+ ay,

or
aq Af—1 Qg akb akb2 akbs
127'*‘""" ! +V+)\k+1 + \kt2 + \kt3

where the a; are nonnegative integers, ay is greater than 0 and b is greater than 0,
then X\ is the eigenvalue of a primitive matriz of order k with entries in N.

_|_...7

Proof. Immediate from Lemma 1. O

The following lemma is inspired by Soittola [5].

Lemma 3. Let ¢1,¢a, - , ¢, and b be real numbers (b # 0) and let A > |b| satisfies
Mo = NP1 o \E=2 oy (1) 5 then A satisfies

ap—1 akb aka akb?’

I L AL
A Ak—1 A A2 A3

ay Ak—1 b b2 63
:T—F"'—FW—FC%(X—F?—FF—F'“),

where a; and b; satisfy conditions (2):
a; = C1 — b,
ag = b(Cl - b) + Co,
az = b*(c1 — b) + beg + c3,

ap—1 =b""2(cy —b) + b*Beg + 0¥ 4e3 + -+ beg_o + cp1,
ap = b""1(ep —b) + 0" 2cy + -+ bep_1 + e,
Ayr = DT (€1 — b) + 0P 2cy + - + b,

(for h > k we have apy1 = bay, so that ap4, = b"ay.)

Proof. Replacing in (1) c; AF~! by (¢; — b)AF~1 + bA*~1 then bA*~! by

b (cy\’“*2 + e 3 %) ,

we obtain A¥ = (c; — b)AF "L 4 NP2 4 g DAL
=(c1 =D)AL f X2 4 gy
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+ber AP T2 £ bep AT 4 b
Then replace bey \*=2 by b(e; — b)AF~2 + b2\E=2 to obtain
M= (c1 =N f A2 b +
+b(c1 — D)AT2 4 bep AR T3 4 4 b 4 DR,
Now replace b2AF=2 by b?((c; — b)AF =3 + -+ 4 £5) + b3AF 73, s0 that
AP = (c1 — B)NTL 4 oA =2 e =3 o ot
+ b(Cl - b))\k_2 + bCQ)\k_S + ..+ bCTk
+b%(c1 = DA+ PN T 4 1 D2 DA
Iterating the process, we obtain

Ak+1 Af+2
+

)\k:: )\k—l )\k:—2 A
ay + a2 +--Fag1A+ag + h\ 2

+...’

where the numbers a; satisfy (2). O

Lemma 4. Let A = (dy, -+ ,di) be a Perron k—tuple, A = Aa = dy its Perron
value, and let A™ denote the k—tuple A™ = (d*,--- ,d}").
Then there exists an integer hg such that for h > hg we can find nonnegative

integers ay, - -+ ,ak, b satisfying axb # 0, and
_m as ap_1 ak arb aib? aib®
L=t en vt 3mon T 3wn T Nty T gen TG T
Proof. Let A = (dy,- - ,di) be a Perron k—tuple. The symmetric functions o1, -+ ,

oy of A\ are the k numbers o; = Zl<l1<lg<--~<li<k di,dy, -+ dy,, i =1,--- k. If the
coefficients of Hle (t — d;) are in Z, all the symmetric functions are in Z and the
d; are the zeroes of the polynomial

XF o X oy XF2 4 (—l)kak.

Let aﬁ’”, e ,O't(ih) denote the symmetric functions of A" = (d{‘, e ,dZ). Define
1 = A": then p is a zero of the polynomial

h) k- h) yrk— k(b
xF— oMkt g oM xh=2 g (—1)k e,

Take (¢, ,cx) = (O‘§h), e ,U((ih)) in Lemma 3 and take for b the integer part of
(n)

012 ; b is about )‘—; and if h is large enough, then b is strictly positive.
The symmetric function O'J(»h) is the sum of the term )\hAj, where A; is the sum

of at most k! terms which are each products of j — 1 factors d?’ - - - d?j _,» and of at

most k! terms which are each products of j factors dfl e dfj , all d;. being smaller
than . As d; < A fori > 1, limy_, i—: =0.
(h)
The term a; obtained in Lemma 3 is equal to agh) —-b= agh) - {%J (here |y]

2
denotes the integer part of y). Hence, if h is large enough, a1 = JYL) —b is a positive
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. _ (h) w_ [ () oM oM [ .
integer. For u =1,--- k=1, (o7 —=b)b* = (07’ — | %~ 5 is equivalent

h(1+u) . dar . e
to 2 —. Asd; < A, limp_oo &= =0, for i > 1, 80 as, -+ , ar_1 are also positive
2 ) >\ b b ) )

integers for h large enough. Then all the als and b's in condition (2) of Lemma 3

are positive. Furthermore,

_ap | ap ap—1 Qg aib apb? aib®
l=—+"35+ -+ Gt R o T e T )

As p = A", this shows Lemma 4.
O]

Proof of Theorem 8 and Theorem 2. Given a d—tuple A\ of nonzero complex numbers
admitting a Perron value A = dy, apply Lemma 4 and Lemma 2 to obtain Theorem
3. Theorem 2 is an immediate consequence of Theorem 3.

4. Proof of Proposition 1

Proof of Assertion (1) (see also[6]). Let A be a Perron number of degree 2; then
A > 1 is the largest root of an integer polynomial, X2 — sX + p, so k = 52 — 4p

) . h 1
is > 0. If s = 2h the matrix ( W—p h

eigenvalue. If s = 2h+1 then 4p < (h+1/2)?sop < h2+h+1/4. If p= h? + h, the
eigenvalues are A = (h + 1) and \' = h whose degree is 1 and not 2; so p < h2 + h

h+1, 1y, .
W24 h—p h > is suitable.

) is a primitive matrix of which X is an

and the matrix <

Proof of Assertion (2). We have to examine many cases. We recall that all sym-
metric functions of A belong to Z. Let 8 be a Pisot number of degree 3 (the case
d = 2 is included in the Perron case). The numbers 01,09, 03 are all integers.

1. Case p < %: the list of small Pisot numbers has only four entries of degree
2,30r4,roots of 22 —x—1, 23 —x —1, 23 — 22 — 1 and z* — 23 — 1, and the result
is true since the companion matrices of theses minimal polynomials are primitive.

2. Case B > HT‘E Let x1, 2 be the conjugates of # with modulus less than 1.
The minimal polynomial of 3 is X3 —01 X% +02X —03 where 01 = tr 8 = 421 + 22,
o9 = B (x1 + x2) + 122, 03 = T1220. Of course |x125] < 1 and || + |z2| < 2.

We shall examine different cases concerning the integer tr 3.

2.1. Case tr 8 < 0: this is impossible. If tr § = 1 + z2 + 8 < 0, as it belongs to Z,
1+ 22 + B < —1 and we should have z1 + 2o < -1 — 8 < —2.

2.2. Case tr = 0: if tr3 = 0 then z; + zo = —8 < —1, so x1 and x5 are both
negative or complex conjugates with negative real parts and |z1| + |z2| < 2 so 8
is less than 2. Then o3 = zi2z9f is positive and o3 < f < 2, s0 03 = 1. As
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B(ry+1x3) = =82 < —1 and z122 < 1, 09 is less than 0. Then 8 is a root of
00 1

equation X3 = |o3|X + 1, and the companion matrix | 1 0 |og| | is primitive.
01 0

2.3. Case tr8 = 1: x; and x5 cannot both be positive or have positive real parts
since tr # would be greater than 1.

2.3.1. Case tr 8 = 1 and x1 and xo are negative or have negative real parts: os is
positive and as 5 > 1+T\/57 B(B—1) > 1, then oo = f(1—5)+xz1290 < —14+1 < 0. So
the equation 3% = 3% + |o3|x + 03 gives a nonnegative primitive companion matrix.
2.3.2. Case tr 8 = 1 and x1 is negative and xo positive: as 1 = x1 + x2 + B, x1 + T2
is negative and 8 < 2; o2 is the sum of two strictly negative terms so it is strictly

negative, and |oa| > 1; o3 is also negative, 5 is at most 2 so o5 = —1. We have
8% =B +o2lB - 1.
Apply Lemma 3 with b =1 to this equation to obtain
0 |0‘2| |0‘2|—1 ‘0’2|—1
l=—-+—+
B p? B3 p
This series with a; = 0,as = |o3], a = |o2| —1 and b = 1 give us a primitive matrix
10 (ool — 1)
withorder3 | 1 0 |oa| (Lemma 1). Note that o9 —1 # 0, otherwise the
0 1 0

degree of 8 would not be 3 .

2.4. Case tr 3 > 2.

2.4.1. Case tr3 > 2 and tr 8 < f: then 1 + 2 = (02 — 3) < 0, 1 and z2 cannot
both be positive or have positive real parts.

2.4.1.1. Case trf3 > 2, trB < B and both x; are less than 0 or have negative real
part: og is greater than 0; oo = S (x1 + z2) + 2122 is an integer and is the sum
of a positive term z1x2 < 1 and a negative term: o5 is less than or equal to 0 so
B2 = 015% + |02|B + 03. All coefficients are positive and we can apply Lemma 2 to
obtain the result.

2.4.12CasetrfB>2,tr8 < f and x1 <0, x5 > 0: then z122 < 0 and z1 + z2 < 0;
hence o9 < 0 and o3 < 0. Apply the method of Lemma 3 with b =1, ¢; = 01, ¢o =
|oal, ¢3 = 03: we need only to prove that a; = 01 — 1, as = |o2| + 01 — 1, ag =
03+ |oa| + 01 — 1 are all greater than or equal to 0 and that ag is greater than 0. Tt
is clear that aj, as are nonnegative; as = 125 + S|z1 + 22| + B — 21 — x2; as the
x; have modulus less than 1, fx12z9 4 (8 is greater than 0 and S|z; + xo| — 21 — 22
is positive since § > 1so ag > 0.

2.4.2. Case trB > 2 and tr 8 > (: the z; are not both less than 0.

2.4.2.1. Case tr3 > 2, tr8 > 3, 1 > 0 and x5 < 0: then o3 < 0 and |o3| < §; the
function f (z) = 23 —012%+022—03 has to be negative for z = 1, s0 1—01+03—03 <
0 and 1+ o9 + |o3] < o1: apply Lemma 2 with b = o2 + 03 to the equation

23 = 0122 — 09z + 03 to obtain positive a; and conclude using Lemma 1.
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2.4.2.2. Case tr3 > 2, tr 3 > B and the x; are both greater than 0 : then o3 > 0. We
are looking for an integer b > 0 such that a; =01 —b > 0, and ag = b (01 — b)—09 >
0 (so necessarily az = b2 (01 —b)) — boa + 03 > 0. We shall examine the two
possibilities: 1 + 22 < 1 and 1 + x5 > 1.

24.221. H0 < z14x2 < 1,01 = |B]+1, 03 is positive and oo = B (1 + x2) + 122
is the sum of a term smaller than 8 and a term smaller than 1, so oo < |8|+1 = 07.

If 0, > 05 + 1 apply Lemma 2 to the equation A3 = 01A\2 — o9\ + 03 with b =1
to obtain the result.

If o1 =09, 00 = B (21 + 22) +x122 = B+x1+22. As x1+25 < 1 this means that
1T > 1 +x2; if 21 and x4y are real, setting a = x1 + x2 we obtain z1(a — 1) > a,
which is impossible with ¢ > 1 and positive x;. If they are complex numbers the
discriminant of the derivative gives 01 < 3 so o1 = 1 (impossible since o1 > ) or
o1 = 2, hence 03 = 1. But 1 is a root of the polynomial X3 —2X?2 +2X — 1, which
is not the irreducible polynomial of a Pisot number of degree 3.
2.4.2.2.2 Case x1 + 2 > 1: as we suppose that § > 1+2\/g7 if x1 + 22 > 1, then
B+1>2ando; > 3.

Case 01 = 3: 8 € [H‘/g,Q}7 T+ Ty < 3 — HT\/E which is at most 1.4; then

2
(o) S 5(14) + 2122 é 3.8 and 02 S 3, but 09 = ﬁ(l’l + 1'2) + X122 2 2.

As 8 < 2, g3 is less than 2, it is equal to 1.

If 05 = 3 the equation is X® — 3X? + 3X — 1; this is impossible because the
polynomial is not irreducible.

If o5 = 3 the equation becomes X —3X2 +2X — 1, and we apply Lemma 3 with
b=1.

Ifoy >4, 8 >2and 21 +29 = 14+ a where a < 1; 07y = S+ 1+ a and
oo = B(14+a) + x129; 2(01 —2) = 28+ 2a—2; 2(61 —2) —09 = (1l —a) —
2(1—a) —z1z2. As B > 2, B(l—a)—2(1—a) is positive, the other term is
negative, so 2(oq — 2) > 09, and we apply Lemma 3 with b = 2.

Proof of Assertion (3). All powers of a Pisot number of degree d are Pisot numbers
of the same degree d and for each d > 2 there exists a Pisot number ¢ of degree d [2].
Let d > 2 € N; consider a power ¢™ of ¢ and an integer a such that ¢" —a > a+1
and " —da+d < 0 (a € J¢"/d—1,0"/2+1]). Then the d — 1 conjugates «;
of ¢™ have modulus < 1, so the trace ¢™ 4+ > a; — ad of ™ — a is negative and
©"—a > |a; —al, hence p™ —a is a Perron number with negative trace and degree d.

Example 6. The Tribonacci number ¢, root of X3 — X? — X — 1, is approximately
1.8393 and has degree 3; ¢° is almost 38.7 and has two conjugates a and 3 of
modulus less than 1, hence a — 14 and 8 — 14 have modulus less than 15 and since
|varphi® — 14| > 15, € = ¢® — 14 is a Perron number, its trace is £ + a + 3 — 3.14
which is < 38.7 4+ 2 — 42, and is negative.
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5. About Parry numbers

Given a real number § > 1, we know that 1 admits a so-called S—expansion:
1= Zk21 g—’; where dj, < |B] for all k, all the dj are nonnegative integers and
for every h > 1 we have 4 + Zﬁﬂ 4+ < ﬁ; in all cases dy = |B] [14]. If
the sequence (dy) k>1 is ultimately periodic B is called a Parry number, and if the
sequence ends by some zeroes 3 is a simple Parry number and we say that the

expansion of 1 is finite. The Parry numbers are Perron numbers.

Example 7. The expansion of 3+2\/5 is 21111 - - -, ‘”2—‘/5 is a Parry number. The
plastic number v (i.e., the greatest zero of X3 — X — 1 and smallest Pisot number)

admits the expansion 10001 and is a simple Parry number.

We define the Parry polynomial of a simple Parry number with finite expansion
dy-++dyas X"—dy X" '—---—d,. Given a Parry number 8 with expansion (dj);~, =
dy---dgby---biby -+ - by, let s be the length of the preperiod, and let ¢ be the leﬁgth
of the period. The polynomial X5+t —d; X5t¢-1 —... —d Xt —p X? 1 — ... — b, —
(Xs —dy X5 - = ds) is called the Parry polynomial of §; 3 is a zero of the
Parry polynomial. If the minimal polynomial of  is equal to the Parry polynomial,
we say that 8 has no complementary (or pirate) value, if the degree of the Parry
polynomial is greater than the degree of the minimal polynomial we say that 8 has
pirate values (or complementary values).

Example 8. The plastic number has the expansion 10001, » = 5 and its minimal
polynomial is (X? — X — 1), its Parry polynomial is X° — X4 -1 = (X3 - X —
1)(X? — X + 1), the roots of (X? — X + 1) are pirate values. If 3 = 3+T\/3 the
expansion is 211111--- (s =t = 1), the Parry polynomial is equal to the minimal
polynomial, there are no pirate values.

Given a Parry number /3 the S-expansion (dj),~, of 1 provides a primitive integer
matrix Mg whose spectrum contains 3, its conjugates and the pirate values if there
are any (see [3]).

Looking at the second term of the Parry polynomial and using the equality
dy = | 8] we obtain the following result.

Lemma 5. Let § be a Parry number, (di),~, the B—ezpansion of 1, P(X) =
Xt —m X' — ... —my the Parry polynomial of 3. Suppose that the f—expansion
1s finite or admits a period of length t > 1; then the term my of the Parry polynomial
is equal to dy, i.e., to |B].

Suppose that the expansion admits a period of length t = 1; then m; =d; +1 =
|B] + 1 (in this case the B expansion of 1 take the form dy -- - dsbbbbb- - - ).

Looking at the roots of the Parry polynomial we obtain the following result.
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Lemma 6. Let 8 a Parry number of degree d, let aso,--- ,aq be its algebraic con-
jugates and let vy, --- , v, be the pirate conjugates if there are any. Then B+ as +
ot agt+y+ o+ = | 8] except in the case t = 1 where it is equal to |8 + 1.

Lemmas 5 and 6 immediately imply Proposition 2.

Proposition 2. Let 3 be a Parry number, let (dy),~, = dy---dgby---biby---by---
be his expansion, aw, - - - , ag be its algebraic conjugates and v, - - - , 7, be its pirate
values if there are some.

(1) If B is a simple Parry number without pirate values, then tr 5 = |3] < 5,
and ag + - -+ + aq4 is negative and belongs to |—1,0].

If 8 is simple and if there are pirate values then ag+- - -+ag+7y1+- - -+7 € ]-1,0[.

(2) If B is a nonsimple Parry number without pirate values, and if the period ¢
is at least 2, then tr 3 = |8] < 8 and as + -+ + ag € |—1,0]; if the period ¢ is 1,
trf=|B8]+1>0 and as + -+ aq €]0,1].

If B is a nonsimple Parry number with some pirate values and if the period
ist >2then ag +---+ag+v + -+ € ]-1,0[], if the period is 1 then
apt - Fag+ o+ €10, 1]

(3) A Parry number such that |ag + - - - + ag| > 1 has always pirate values.

Proposition 3. Let 8 be a Parry number and let as,---, a4 be its algebraic
conjugates.

(1) If 8 is not a Pisot number, the set of integers n such that 8™ has pirate values
has positive density.

(2) Let 8 be a Pisot number of degree d, and let H be the set of integers n such
that a4 +---+afj €]0,1[ . Then the set H has a positive density.

If n € H and if 8™ does not have pirate value, then 8™ is not simple. The period
t is equal to 1 and the 5™ expansion of 1 looks like dy - - - dg_1bbbbb - - - .

If n € H and if 5™ has pirate values and is simple, then the sum of the pirate
values is equal to —1.

If n € H and if 8™ has pirate values and is not simple, then the sum of the pirate
values is 0 if the period is ¢ = 1 and —1 if the period is ¢t > 2.

In [3] one can find more details concerning totally real Pisot numbers.

Proof of Assertion (1). Let [ be a Perron number of degree d, let ag,- - ,aq
be its conjugates, 6s,--- , 60, their arguments, and Gén), e ,0&") the arguments of
af, -+, al, all represented by numbers in [—m, 7[. For € > 0, the set H. such that
9§n), e ,QEI") all belong to the interval [—¢,¢] has positive density ([7], Th.201).
Choosing a small ¢, all a7, --- , o/} shall have positive real parts. If one of the |a;,|
is greater than or equal to 1, taking a small €, there are arbitrarily large n € H.
such that tr " = B" + aj; + >, 4, o > [6"] + 1; because of Assertion (3) of
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Proposition 2, " admits pirate values. If all the |a;| are less than or equal to 1,
either § is a Pisot number, or it is a Salem number (that is, one of the «; is 1 and
the others conjugates are complex numbers of modulus exactly one). But if 3 is a
Salem number for large enough n belonging to H., tr ™ > [#"] + 1. As H. has
positive density Assertion (1) is true.

Proof of Assertion (2). Take for H the set {n € H.;af, - ,al < 1}; then H and
H. have the same density. Now use Proposition 2: suppose that n € H, the sum
ay + .-+ + «f is positive and smaller than 1 so we have tr " > 3", hence tr
g™ = |B™] + 1 and (2.1) implies that 5" cannot be simple without pirate values.
If g™ is simple with pirate values let ’y%n), e ,mén) denote the pirate values of 8";
from 2.1 we know that of + -+ af} + 'yln) + -+ 4™ belongs to ]—1,0[ hence as
%n) ++ -+ is an integer and a8 +- - -+a is smaller than 1, 'yin)+~ ey = .
If 8™ is not simple and do not admit pirate values 2.2 gives the period t = 1, the
expansion of 1 in the base 8" looks like dy - - - dgy_1bbbbb - - -. If 8™ is not simple and

admits pirate values, in the case where t = 1, we get aj +---+aj} +7§n) +-- ~+’7§n)

€10,1[; as %n) + -+ 7&") is an integer and af + --- + «f is smaller than 1, we
get 7\ 4+ 4™ = 0. In the case where ¢ > 2, ag—l—---—i—ag—i—'yl") Fog )

belongs to |—1,0[ and 'yin) +- 4 ’yﬁn) =-1
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