
#A50 INTEGERS 21 (2021)

PERRON NUMBERS AND POSITIVE MATRICES
OF MINIMAL ORDER

Anne Bertrand-Mathis1
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Abstract

A Perron number is an algebraic integer λ > 1 whose conjugates µi satisfy |µi| < λ.
We prove that given a Perron number λ, there is an integer h0 such that for h ≥ h0
there exists a primitive integer matrix Bh whose spectrum includes only λh and its
conjugates, and whose order is equal to the degree of λ. We also prove that if λ
is a Pisot number of degree 2 or 3, then there exists an integer primitive matrix of
order 2 or 3 whose Perron eigenvalue is λ, and that if a Perron number λ is a Parry
number without pirate value, then the trace of λ is equal to [λ] or [λ] + 1.

1. Introduction

A real matrix B is primitive if it is nonnegative and if there exists an integer k

such that all entries of Bk are strictly positive (hence for h ≥ k, Bh is also strictly

positive).

Perron’s theorem asserts that a primitive matrix B admits a real eigenvalue

λ > 0 such that every other eigenvalue µ satisfies |µ| < λ; λ is said to be the Perron

eigenvalue or strictly dominant eigenvalue of B. In this paper, we are interested in

matrices with coefficients in N (integer matrices).

Lind [9] defines a Perron number of degree d to be any algebraic integer λ > 0,

that is a root of an irreducible polynomial P = Xd+ c1X
d−1 + · · ·+ cd, where all ci

belong to Z, and where all other zeroes µ2, · · · , µd of P satisfy |µi| < λ. The zeroes

of P are the algebraic conjugates of λ. He proved the following theorem.
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Theorem 1 (Lind [9]). Given a Perron number λ, there is a primitive integer

matrix B whose Perron eigenvalue is λ. It is also possible to find such a matrix with

entries 0 or 1.

See also [4] for a proof via language theory. Of course the order of B cannot be

strictly smaller than d, but in Lind’s construction the order of B is often greater

than the degree of λ and B admits eigenvalues which are hence not conjugates of

λ. In this case the irreducible polynomial of the Perron eigenvalue λ divides the

characteristic polynomial of B and the algebraic degree d of λ is smaller than the

order of B, so the following question arises.

Question 1. Given a Perron number of degree d, can we find a primitive matrix

B of order d, with entries in N, for which λ is an eigenvalue?

Of course, λ is the Perron eigenvalue of B. This is not always the case, and

following Boyle and Handelman [6] and the work of Kim, Ormes and Roush [8],

we recall necessary conditions for the existence of such a matrix. The following

question also arises.

Question 2. Given a Perron number λ, if there is no such matrix, let C and D be

two positive integer matrices of minimal order having λ as eigenvalue; do they have

the same spectrum?

In what follows, we shall prove Theorem 2 and Propositions 3 and 4. Recall that

Lind [9] proved that given a Perron number λ and an integer k, λ and λk have the

same degree. (Proposition 5 in [9] asserts that λ belongs to Q
(
λk
)

so λ and λk

have the same degree.)

Theorem 2. Let λ be a Perron number and let d be the common degree of λ and its

powers λk. Then there exists an integer k and a primitive integer matrix B of order

d whose spectrum consists of λk and its conjugates (so λk is the Perron eigenvalue

of B). We can choose k such that, for each h ≥ k, λh is the eigenvalue of some

primitive integer matrix of order d.

The trace trλ of an algebraic integer λ is the sum of its conjugates (including λ

itself); it is equal to −c1, the coefficient of Xd−1 of the minimal polynomial. If λ is

the eigenvalue of a nonnegative integer matrix of order d the trace of this matrix is

the trace of λ and has to be nonnegative. A Pisot number is an algebraic integer

β > 1 whose conjugates µi satisfy |µi| < 1.

Proposition 1.

(1) A Perron number of degree 2 is the Perron eigenvalue of some primitive integer

matrix of order 2.

(2) A Pisot number of degree 2 (resp. 3) is the Perron value of some primitive
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integer matrix of order 2 (resp. 3).

(3) For each d ≥ 3 there exist Perron numbers of degree d whose traces are negative

and which are not eigenvalues of a primitive integer matrix of order d.

McKee, Rowlinson, and Smyth [12] proved the existence of Pisot numbers of any

desired traces (even negative). McKee and Smyth [11] found a Pisot number with

negative trace of degree d = 16.

Example 1. The zero λ > 1 of the polynomial X3−X−1 (λ is the plastic number)

is a Perron number of degree 3, it is also the dominating root of the polynomial

X5−X4−1 = (X3−X−1)(X2−X+1). It is the Perron eigenvalue of the matrices

U =

 0 0 1
1 0 1
0 1 0

 and V =


1 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

, which are both primitive.

Example 2. The matrix W =

[
2 1
1 1

]
is primitive with Perron value 3+

√
5

2 .

Now let us explain why we are interested in integer primitive matrices of minimal

order.

Given a labelled directed graph G on h vertices, the adjacency matrix A of G is

the (h, h) matrix where the entry ai,j is the number of labelled edges from vertex i

to vertex j, all entries being nonnegative integers. The eigenvalues of the adjacency

matrix are said to be eigenvalues of the graph.

By a path of length n in a graph G we mean a sequence a1, · · · , an of labelled

edges such that the terminal vertex of ai is the initial vertex of ai+1, 1 ≤ i < n. If

the terminal vertex of an is the initial vertex of a1, then the path is a loop of length

n. A loop a1, · · · , an is minimal unless there exists a loop b1, · · · , bm with m < n

such that a1, · · · , an is obtained by concatenating b1, · · · , bm n/m times. Let wn be

the number of paths with length n and suppose that the matrix is primitive, then

limn→∞
logwn

n = lnλ.

Question 1 becomes: given a Perron number λ of degree d, is it possible to find a

graph on d vertices with eigenvalue λ, or an automaton with d states and eigenvalue

λ?

Symbolic Dynamical Systems. Let S be a set of r symbols endowed with the

discrete topology. Then the space SZ of sequences (xn)n∈Z = {. . . , x−1, x0, x1, . . .}
on S endowed with the product topology is a compact set; the shift map σ : SZ →
SZ is defined by setting (σx)n∈Z = (xn+1)n∈Z. If Y ⊆ SZ is compact, nonempty and

σ-invariant (i.e., σ−1 (Y ) = Y ), then (Y, σ) is called a symbolic dynamical system.

A general dynamical system is a space with an invariant transformation. Symbolic
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systems are not anecdotal ones. Hadamard noticed that many dynamical systems

can be viewed as symbolic dynamical systems.

Example 3. Let α be an irrational rotation of the the unit circle [0, 2π[; given a

point y, and n ∈ Z let xn = a if αn(y) = y + nα ∈ [0, π[ modulo 2π and xn = b if

αn(y) is in [π, 2π[ ; if we know the sequence (xn)n∈Z, we know the point y, so the

rotation can be seen as a symbolic system. Such a situation occurs frequently.

The infinite paths (an)n∈Z of a graph G with a matrix A of order d defines a

symbolic dynamical system associated with the graph G; if A is primitive the system

is what we call a mixing Markov Shift with d states and lnλ denotes its entropy.

So Question 1 becomes: given a Perron number λ of degree d, does there exist a

symbolic dynamical system with entropy lnλ associated with a graph with only d

vertices?

Example 4. The dynamical system X = (xn)n∈Z where xn ∈ {0, 1, 2} and where

the word 22 never appears is a system with two states and entropy ln 3+
√
5

2 related

to the matrix W of Example 2.

We are also interested in substitutions. A substitution of h letters b1, · · · , bh
is a map ϕ from the set {b1, · · · , bh} into the set of finite words on these letters,

extended by concatenation to finite words (ϕ (uv) is the word ϕ (u)ϕ (b)). The ad-

jacency matrix B is the nonnegative matrix whose entry ai,j is the number of letters

bi contained in ϕ (bj); we can easily associate a substitution to each nonnegative

matrix. If for some k all ϕk (bi) contains all bj , the matrix is a primitive matrix

and the substitution is said to be primitive. In this case the number lk of letters

contained in ϕk (bi) satisfies limk→∞
log lk
k = lnλ, where λ is the Perron eigenvalue

of B, so λ is said to be an eigenvalue of the substitution. If there is a letter bi such

that ϕ (bi) begins with bi then the word ϕk (bi) is the beginning of ϕk+1 (bi) and

the substitution admits a fixed point ϕ∞ (bi) (such a letter exists if the trace of B

is positive).

Question 1 becomes: given a Perron number λ of degree d, can we find a primitive

substitution on d letters with eigenvalue λ? And what about a fixed point?

If β is a Pisot number of degree d, does β admits a substitution on d letters with

eigenvalue β? (such a substitution is called a Pisot substitution).

Remark. The answer to the last question is no for the general case, since there

are Pisot numbers with negative trace [10, 11] .

Example 5. The substitution a→ ab, b→ c, c→ d, d→ e, e→ a is a primitive

substitution with a fixed point abcdeaab · · · with the matrix V of Example 1.
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2. Boyle-Handelman’s Spectral Conjecture

We say that a k−tuple4 = (d1, · · · , dk) of nonzero complex numbers is the nonzero

spectrum of a matrix A if for some m ≥ 0, the characteristic polynomial of A is

XB (t) = tm
∏k
i=1 (t− di). The eigenvalues of A are d1, · · · , dk and m zeroes when

m is positive. We set 4n := (dn1 , · · · , dnk ) . We denote trace of 4, denoted by

tr4, the sum of the entries of 4. If a matrix A has nonzero spectrum 4, then tr

An = tr (4n). We say that 4 has a Perron value (denoted by λ4) if there exists

an index i such that di > |dj | for j 6= i, and we set λ4 = di.

Consider a nonnegative adjacency matrix A of a graph G. The number of loops

of length n is the sum of the numbers of minimal loops of length m where m runs

through the set of divisors of n (including 1 and n). Suppose that the decomposition

into prime factors of n is n = ph1
1 · · · phr

r . Then the number of minimal loops of

length n is equal to the following expression called the nth trace of A in [6]:

trnA :=
∑
d|n

µ (d) trAn/d,

where d belongs to [1, 2, · · · , n], and where µ denotes the Mobius function: µ(d) =

(−1)k if d is square-free and has k distinct prime divisors and µ (d) = 0 if d has a

square divisor.

If 4 is the nonzero spectrum of a nonnegative integer matrix A, then for each n

the trnA has to be nonnegative.

The following conjecture is due to Boyle and Handelman.

Boyle-Handelman Spectral Conjecture (Integers Case) [6]: a k-tuple 4 =

(d1, · · · , dk) is the nonzero spectrum of some primitive nonnegative matrix with

entries in N if and only if 4 has a Perron value, the coefficients of
∏k
i=1 (t− di)

are in Z, and trn4 ≥ 0 for every positive integer n.

Kim, Ormes and Roush [8] proved this case of the conjecture. The order of the

matrix that they furnish is not always equal to the number of entries d in 4. So

a Perron number λ with nonnegative nth net traces is the eigenvalue of an integer

nonnegative matrix whose spectrum contains λ, its algebraic conjugates and perhaps

some zeroes.

We want to get rid of these zeroes; we shall also reformulate this conjecture:

given an algebraic number λ of degree d with conjugates λ = µ1, µ2, · · · , µd, we set

4 = {λ1, µ2, · · · , µd} ; for n = ph1
1 · · · phr

r as above let trnλ denote the nth net trace

of the set 4 = {λ1, µ2, · · · , µd} :

trnλ :=

r∑
k=0

∑
i1<···<ik

(−1)
k

tr
(
λ

n
pi1

···pik

)
= tr

λn ∏
i=1,··· ,r

(
1− 1

λpi

) .
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Conjecture. A Perron number λ of degree d is the eigenvalue of some positive

matrix of order d with entries in N if and only if trnλ ≥ 0 for all positive integer n.

We shall prove Theorem 3 which trivially implies Theorem 2.

Theorem 3.Let 4 be a d−tuple of nonzero complex numbers admitting a Perron

value; then there exists h0 such that for each h ≥ h0, 4h is the spectrum of some

primitive integer matrix B of order d. The matrix can be chosen from the two

possibilities: B =


0 0 . . . ad

1 0 . . .
...

...
. . . . . .

...
0 . . . 1 a1

 or B =



b 0 0 . . . ad
1 0 0 . . . ad−1

0 1 0 . . .
...

... . . .
. . . . . .

...
0 0 0 1 a1

 .

3. Proof of Theorem 3

Lemma 1 [3]. (Companion matrix of certain finite or infinite sequence) Let

a1, · · · , ak be integers with all ai ≥ 0 and ak > 0; then the companion matrix

B ((a1 · · · ak)) :=


0 0 . . . ak

1 0 . . .
...

...
. . . . . .

...
0 . . . 1 a1

 of the polynomial Xk − a1Xk−1 − · · · − ak

is primitive and Xk − a1Xk−1 − · · · − ak is its characteristic polynomial.

Let b be a number greater than 0 and let a1, · · · , ak−1, ak, be a sequence of positive

numbers such that ak > 0; let (an)n≥1 = a1, · · · , ak−1, ak, akb, akb2, akb3, · · · be the

infinite sequence with all ai ≥ 0, akb > 0 and for r ≥ 0 ak+r = brak. Then

the “companion matrix” B ((an)n≥1, b) :=



b 0 0 . . . ak
1 0 0 . . . ak−1

0 1 0 . . .
...

... . . .
. . . . . .

...
0 0 0 1 a1

 of the pair

(
(an)n≥1 , b

)
is primitive and if a number λ satisfies

1 =
a1
λ

+ · · ·+ ak−1
λk−1

+
ak
λk

+
akb

λk+1
+
akb

2

λk+2
+
akb

3

λk+3
+ · · · ,

then λ is a zero of the polynomial

Xk − (a1X
k−1 + · · ·+ ak−1X + ak)− b(Xk−1 − (a1X

k−2 + · · ·+ ak−1)).
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which is also the characteristic polynomial of B.

The proof is straightforward and can be found in [3].

Lemma 2. If a real number λ > 1 satisfies an equation of the form

λk = a1λ
k−1 + a2λ

k−2 + · · ·+ ak,

or

1 =
a1
λ

+ · · ·+ ak−1
λk−1

+
ak
λk

+
akb

λk+1
+
akb

2

λk+2
+
akb

3

λk+3
+ · · · ,

where the ai are nonnegative integers, ak is greater than 0 and b is greater than 0,

then λ is the eigenvalue of a primitive matrix of order k with entries in N.

Proof. Immediate from Lemma 1.

The following lemma is inspired by Soittola [5].

Lemma 3. Let c1, c2, · · · , ck and b be real numbers (b 6= 0) and let λ > |b| satisfies

λk = c1λ
k−1 + c2λ

k−2 + · · ·+ ck (1) ; then λ satisfies

1 =
a1
λ

+ · · ·+ ak−1
λk−1

+
akb

λ
+
akb

2

λ2
+
akb

3

λ3
+ · · ·

=
a1
λ

+ · · ·+ ak−1
λk−1

+ ak(
b

λ
+
b2

λ2
+
b3

λ3
+ · · · ),

where ai and bi satisfy conditions (2):

a1 = c1 − b,
a2 = b(c1 − b) + c2,

a3 = b2(c1 − b) + bc2 + c3,
...

ak−1 = bk−2(c1 − b) + bk−3c2 + bk−4c3 + · · ·+ bck−2 + ck−1,

ak = bk−1(c1 − b) + bk−2c2 + · · ·+ bck−1 + ck,

ak+r = bk+r−1 (c1 − b) + bk+r−2c2 + · · ·+ brck,

(for h ≥ k we have ah+1 = bah, so that ak+r = brak.)

Proof. Replacing in (1) c1λ
k−1 by (c1 − b)λk−1 + bλk−1, then bλk−1 by

b
(
c1λ

k−2 + c2λ
k−3 + · · ·+ ck

λ

)
,

we obtain λk = (c1 − b)λk−1 + c2λ
k−2 + · · ·+ ck + bλk−1

= (c1 − b)λk−1 + c2λ
k−2 + · · ·+ ck
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+bc1λ
k−2 + bc2λ

k−3 + · · ·+ b ckλ .

Then replace bc1λ
k−2 by b(c1 − b)λk−2 + b2λk−2 to obtain

λk = (c1 − b)λk−1 + c2λ
k−2 + · · ·+ ck +

+ b(c1 − b)λk−2 + bc2λ
k−3 + · · ·+ b ckλ + b2λk−2.

Now replace b2λk−2 by b2((c1 − b)λk−3 + · · ·+ ck
λ2 ) + b3λk−3, so that

λk = (c1 − b)λk−1 + c2λ
k−2 + c3λ

k−3 + · · ·+ ck+

+ b(c1 − b)λk−2 + bc2λ
k−3 + ..+ b ckλ

+ b2(c1 − b)λk−3 + +b2c2λ
k−4 + · · ·+ b2 ckλ2 + b3λk−3.

Iterating the process, we obtain

λk = a1λ
k−1 + a2λ

k−2 + · · ·+ ak−1λ+ ak +
ak+1

λ
+
ak+2

λ2
+ · · · ,

where the numbers ai satisfy (2).

Lemma 4. Let 4 = (d1, · · · , dk) be a Perron k−tuple, λ = λ4 = d1 its Perron

value, and let 4m denote the k−tuple 4m = (dm1 , · · · , dmk ).

Then there exists an integer h0 such that for h ≥ h0 we can find nonnegative

integers a1, · · · , ak, b satisfying akb 6= 0, and

1 =
a1
λh

+
a2
λ2h

+ · · ·+ ak−1
λ(k−)h

+
ak
λkh

+
akb

λ(k+1h)
+

akb
2

λ(k+2)h
+

akb
3

λ(k+3)h
+ · · · .

Proof. Let4 = (d1, · · · , dk) be a Perron k−tuple. The symmetric functions σ1, · · · ,
σk of 4 are the k numbers σi =

∑
1≤l1<l2<···<li≤k dl1dl2 · · · dli , i = 1, · · · , k. If the

coefficients of
∏k
i=1 (t− di) are in Z, all the symmetric functions are in Z and the

di are the zeroes of the polynomial

Xk − σ1Xk−1 + σ2X
k−2 − · · ·+ (−1)

k
σk.

Let σ
(h)
1 , · · · , σ(h)

d denote the symmetric functions of 4h =
(
dh1 , · · · , dhk

)
. Define

µ = λh; then µ is a zero of the polynomial

Xk − σ(h)
1 Xk−1 + σ

(h)
2 Xk−2 − · · ·+ (−1)

k
σ
(h)
k .

Take (c1, · · · , ck) = (σ
(h)
1 , · · · , σ(h)

d ) in Lemma 3 and take for b the integer part of
σ
(h)
1

2 ; b is about λh

2 and if h is large enough, then b is strictly positive.

The symmetric function σ
(h)
j is the sum of the term λhAj , where Aj is the sum

of at most k! terms which are each products of j − 1 factors dhi1 · · · d
h
ij−1

, and of at

most k! terms which are each products of j factors dhi1 · · · d
h
ij
, all dir being smaller

than λ. As di < λ for i > 1, limh→∞
dhi
λh = 0.

The term a1 obtained in Lemma 3 is equal to σ
(h)
1 − b = σ

(h)
1 −

⌊
σ
(h)
1

2

⌋
(here byc

denotes the integer part of y). Hence, if h is large enough, a1 = σ
(h)
1 −b is a positive
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integer. For u = 1, · · · , k− 1, (σ
(h)
1 − b)bu =

(
σ
(h)
1 −

⌊
σ
(h)
1

2

⌋)⌊
σ
(h)
1

2

⌋u
is equivalent

to λh(1+u)

2h
. As di < λ, limh→∞

dhi
λh = 0, for i > 1, so a2, · · · , ak−1 are also positive

integers for h large enough. Then all the a′is and b′s in condition (2) of Lemma 3

are positive. Furthermore,

1 =
a1
µ

+
a2
µ2

+ · · ·+ ak−1
µk−1

+
ak
µk

+
akb

µk+1
+

akb
2

µ(k+2)
+

akb
3

µ(k+3)
+ · · · .

As µ = λh, this shows Lemma 4.

Proof of Theorem 3 and Theorem 2. Given a d−tuple4 of nonzero complex numbers

admitting a Perron value λ = d1, apply Lemma 4 and Lemma 2 to obtain Theorem

3. Theorem 2 is an immediate consequence of Theorem 3.

4. Proof of Proposition 1

Proof of Assertion (1) (see also[6]). Let λ be a Perron number of degree 2; then

λ > 1 is the largest root of an integer polynomial, X2 − sX + p, so k = s2 − 4p

is > 0. If s = 2h the matrix

(
h 1

h2 − p h

)
is a primitive matrix of which λ is an

eigenvalue. If s = 2h+1 then 4p < (h+1/2)2 so p ≤ h2 +h+1/4. If p = h2 +h, the

eigenvalues are λ = (h+ 1) and λ′ = h whose degree is 1 and not 2; so p < h2 + h

and the matrix

(
h+ 1, 1

h2 + h− p, h

)
is suitable.

Proof of Assertion (2). We have to examine many cases. We recall that all sym-

metric functions of λ belong to Z. Let β be a Pisot number of degree 3 (the case

d = 2 is included in the Perron case). The numbers σ1, σ2, σ3 are all integers.

1. Case β ≤ 1+
√
5

2 : the list of small Pisot numbers has only four entries of degree

2, 3 or 4, roots of x2− x− 1, x3− x− 1, x3− x2− 1 and x4− x3− 1, and the result

is true since the companion matrices of theses minimal polynomials are primitive.

2. Case β > 1+
√
5

2 . Let x1, x2 be the conjugates of β with modulus less than 1.

The minimal polynomial of β is X3−σ1X2+σ2X−σ3 where σ1 = trβ = β+x1+x2,

σ2 = β (x1 + x2) + x1x2, σ3 = x1x2β. Of course |x1x2| < 1 and |x1|+ |x2| < 2.

We shall examine different cases concerning the integer trβ.

2.1. Case trβ < 0: this is impossible. If trβ = x1 + x2 + β < 0, as it belongs to Z,
x1 + x2 + β ≤ −1 and we should have x1 + x2 ≤ −1− β < −2.

2.2. Case trβ = 0: if trβ = 0 then x1 + x2 = −β < −1, so x1 and x2 are both

negative or complex conjugates with negative real parts and |x1| + |x2| < 2 so β

is less than 2. Then σ3 = x1x2β is positive and σ3 ≤ β < 2, so σ3 = 1. As
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β (x1 + x2) = −β2 < −1 and x1x2 ≤ 1, σ2 is less than 0. Then β is a root of

equation X3 = |σ2|X + 1, and the companion matrix

 0 0 1
1 0 |σ2|
0 1 0

 is primitive.

2.3. Case trβ = 1: x1 and x2 cannot both be positive or have positive real parts

since trβ would be greater than 1.

2.3.1. Case trβ = 1 and x1 and x2 are negative or have negative real parts: σ3 is

positive and as β > 1+
√
5

2 , β(β−1) > 1, then σ2 = β(1−β)+x1x2 < −1+1 < 0. So

the equation β3 = β2 + |σ2|x+σ3 gives a nonnegative primitive companion matrix.

2.3.2. Case trβ = 1 and x1 is negative and x2 positive: as 1 = x1 + x2 + β, x1 + x2
is negative and β < 2; σ2 is the sum of two strictly negative terms so it is strictly

negative, and |σ2| ≥ 1; σ3 is also negative, β is at most 2 so σ3 = −1. We have

β3 = β2 + |σ2|β − 1.

Apply Lemma 3 with b = 1 to this equation to obtain

1 =
0

β
+
|σ2|
β2

+
|σ2| − 1

β3
+
|σ2| − 1

β4
+ · · · .

This series with a1 = 0, a2 = |σ2|, a = |σ2| − 1 and b = 1 give us a primitive matrix

with order 3

 1 0 (|σ2| − 1)
1 0 |σ2|
0 1 0

 (Lemma 1). Note that σ2−1 6= 0, otherwise the

degree of β would not be 3 .

2.4. Case trβ ≥ 2.

2.4.1. Case trβ ≥ 2 and trβ < β: then x1 + x2 = (σ2 − β) < 0, x1 and x2 cannot

both be positive or have positive real parts.

2.4.1.1. Case trβ ≥ 2, trβ < β and both xi are less than 0 or have negative real

part : σ3 is greater than 0; σ2 = β (x1 + x2) + x1x2 is an integer and is the sum

of a positive term x1x2 < 1 and a negative term: σ2 is less than or equal to 0 so

β3 = σ1β
2 + |σ2|β + σ3. All coefficients are positive and we can apply Lemma 2 to

obtain the result.

2.4.1.2 Case trβ ≥ 2, trβ < β and x1 < 0, x2 > 0: then x1x2 < 0 and x1 + x2 < 0;

hence σ2 < 0 and σ3 < 0. Apply the method of Lemma 3 with b = 1, c1 = σ1, c2 =

|σ2|, c3 = σ3: we need only to prove that a1 = σ1 − 1, a2 = |σ2| + σ1 − 1, a3 =

σ3 + |σ2|+σ1− 1 are all greater than or equal to 0 and that a3 is greater than 0. It

is clear that a1, a2 are nonnegative; a3 = βx1x2 + β|x1 + x2|+ β − x1 − x2; as the

xi have modulus less than 1, βx1x2 + β is greater than 0 and β|x1 + x2| − x1 − x2
is positive since β > 1 so a3 > 0 .

2.4.2. Case trβ ≥ 2 and trβ > β: the xi are not both less than 0.

2.4.2.1. Case trβ ≥ 2, trβ > β, x1 > 0 and x2 < 0: then σ3 < 0 and |σ3| < β; the

function f (x) = x3−σ1x2+σ2x−σ3 has to be negative for x = 1, so 1−σ1+σ2−σ3 <
0 and 1 + σ2 + |σ3| < σ1: apply Lemma 2 with b = σ2 + σ3 to the equation

x3 = σ1x
2 − σ2x+ σ3 to obtain positive ai and conclude using Lemma 1.
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2.4.2.2. Case trβ ≥ 2, trβ > β and the xi are both greater than 0 : then σ3 > 0. We

are looking for an integer b > 0 such that a1 = σ1−b > 0, and a2 = b (σ1 − b)−σ2 ≥
0 (so necessarily a3 = b2 (σ1 − b)) − bσ2 + σ3 > 0. We shall examine the two

possibilities: x1 + x2 < 1 and x1 + x2 > 1.

2.4.2.2.1. If 0 < x1+x2 < 1, σ1 = bβc+1, σ3 is positive and σ2 = β (x1 + x2)+x1x2
is the sum of a term smaller than β and a term smaller than 1, so σ2 ≤ bβc+1 = σ1.

If σ1 ≥ σ2 + 1 apply Lemma 2 to the equation λ3 = σ1λ
2 − σ2λ+ σ3 with b = 1

to obtain the result.

If σ1 = σ2, σ2 = β (x1 + x2)+x1x2 = β+x1+x2. As x1+x2 < 1 this means that

x1x2 > x1 +x2; if x1 and x2 are real, setting a = x1 +x2 we obtain x1(a−x1) > a,

which is impossible with a > 1 and positive xi. If they are complex numbers the

discriminant of the derivative gives σ1 < 3 so σ1 = 1 (impossible since σ1 > β) or

σ1 = 2, hence σ3 = 1. But 1 is a root of the polynomial X3 − 2X2 + 2X − 1, which

is not the irreducible polynomial of a Pisot number of degree 3.

2.4.2.2.2 Case x1 + x2 > 1: as we suppose that β > 1+
√
5

2 , if x1 + x2 > 1, then

β + 1 > 2 and σ1 ≥ 3.

Case σ1 = 3: β ∈
[
1+
√
5

2 , 2
]
, x1 + x2 < 3 − 1+

√
5

2 which is at most 1.4; then

σ2 ≤ β(1.4) + x1x2 ≤ 3.8 and σ2 ≤ 3; but σ2 = β(x1 + x2) + x1x2 ≥ 2.

As β < 2, σ3 is less than 2, it is equal to 1.

If σ2 = 3 the equation is X3 − 3X2 + 3X − 1; this is impossible because the

polynomial is not irreducible.

If σ2 = 3 the equation becomes X3−3X2 + 2X−1, and we apply Lemma 3 with

b = 1.

If σ1 ≥ 4, β > 2 and x1 + x2 = 1 + a where a < 1; σ1 = β + 1 + a and

σ2 = β (1 + a) + x1x2; 2(σ1 − 2) = 2β + 2a − 2; 2(σ1 − 2) − σ2 = β (1− a) −
2 (1− a) − x1x2. As β > 2, β (1− a) − 2 (1− a) is positive, the other term is

negative, so 2(σ1 − 2) > σ2, and we apply Lemma 3 with b = 2.

Proof of Assertion (3). All powers of a Pisot number of degree d are Pisot numbers

of the same degree d and for each d ≥ 2 there exists a Pisot number ϕ of degree d [2].

Let d > 2 ∈ N; consider a power ϕn of ϕ and an integer a such that ϕn − a > a+ 1

and ϕn − da + d < 0 (a ∈ ]ϕn/d− 1, ϕn/2 + 1[). Then the d − 1 conjugates αi
of ϕn have modulus < 1, so the trace ϕn +

∑
αi − ad of ϕn − a is negative and

ϕn−a > |αi−a|, hence ϕn−a is a Perron number with negative trace and degree d.

Example 6. The Tribonacci number ϕ, root of X3−X2−X−1, is approximately

1.8393 and has degree 3; ϕ5 is almost 38.7 and has two conjugates α and β of

modulus less than 1, hence α− 14 and β − 14 have modulus less than 15 and since

|varphi5 − 14| > 15, ξ = ϕ5 − 14 is a Perron number, its trace is ξ + α + β − 3.14

which is < 38.7 + 2− 42, and is negative.
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5. About Parry numbers

Given a real number β > 1, we know that 1 admits a so-called β−expansion:

1 =
∑
k≥1

dk
βk where dk ≤ bβc for all k, all the dk are nonnegative integers and

for every h ≥ 1 we have dh
βh + dh+1

βh+1 + · · · < 1
βh−1 ; in all cases d1 = bβc [14]. If

the sequence (dk)k≥1 is ultimately periodic β is called a Parry number, and if the

sequence ends by some zeroes β is a simple Parry number and we say that the

expansion of 1 is finite. The Parry numbers are Perron numbers.

Example 7. The expansion of 3+
√
5

2 is 21111 · · · , 3+
√
5

2 is a Parry number. The

plastic number γ (i.e., the greatest zero of X3 −X − 1 and smallest Pisot number)

admits the expansion 10001 and is a simple Parry number.

We define the Parry polynomial of a simple Parry number with finite expansion

d1 · · · dr asXr−d1Xr−1−· · ·−dr.Given a Parry number β with expansion (dk)k≥1 =

d1 · · · dsb1 · · · btb1 · · · bt, let s be the length of the preperiod, and let t be the length

of the period. The polynomial Xs+t− d1Xs+t−1− · · · − dsXt− b1Xt−1− · · · − bt−(
Xs − d1Xs−1 − · · · − ds

)
is called the Parry polynomial of β; β is a zero of the

Parry polynomial. If the minimal polynomial of β is equal to the Parry polynomial,

we say that β has no complementary (or pirate) value, if the degree of the Parry

polynomial is greater than the degree of the minimal polynomial we say that β has

pirate values (or complementary values).

Example 8. The plastic number has the expansion 10001, r = 5 and its minimal

polynomial is (X3 − X − 1), its Parry polynomial is X5 − X4 − 1 = (X3 − X −
1)(X2 − X + 1), the roots of (X2 − X + 1) are pirate values. If β = 3+

√
5

2 the

expansion is 211111 · · · (s = t = 1), the Parry polynomial is equal to the minimal

polynomial, there are no pirate values.

Given a Parry number β the β-expansion (dk)k≥0 of 1 provides a primitive integer

matrix Mβ whose spectrum contains β, its conjugates and the pirate values if there

are any (see [3]).

Looking at the second term of the Parry polynomial and using the equality

d1 = bβc we obtain the following result.

Lemma 5. Let β be a Parry number, (dk)k≥1 the β−expansion of 1, P (X) =

X l −m1X
l−1 − · · · −ml the Parry polynomial of β. Suppose that the β−expansion

is finite or admits a period of length t > 1; then the term m1 of the Parry polynomial

is equal to d1, i.e., to bβc .
Suppose that the expansion admits a period of length t = 1; then m1 = d1 + 1 =

bβc+ 1 (in this case the β expansion of 1 take the form d1 · · · dsbbbbb · · · ).

Looking at the roots of the Parry polynomial we obtain the following result.
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Lemma 6. Let β a Parry number of degree d, let α2, · · · , αd be its algebraic con-

jugates and let γ1, · · · , γn be the pirate conjugates if there are any. Then β + α2 +

· · ·+ αd + γ1 + · · ·+ γn = bβc except in the case t = 1 where it is equal to bβc+ 1.

Lemmas 5 and 6 immediately imply Proposition 2.

Proposition 2. Let β be a Parry number, let (dk)k≥1 = d1 · · · dsb1 · · · btb1 · · · bt · · ·
be his expansion, α2, · · · , αd be its algebraic conjugates and γ1, · · · , γr be its pirate

values if there are some.

(1) If β is a simple Parry number without pirate values, then trβ = bβc < β,

and α2 + · · ·+ αd is negative and belongs to ]−1, 0[ .

If β is simple and if there are pirate values then α2+· · ·+αd+γ1+· · ·+γr ∈ ]−1, 0[ .

(2) If β is a nonsimple Parry number without pirate values, and if the period t

is at least 2, then trβ = bβc < β and α2 + · · · + αd ∈ ]−1, 0[ ; if the period t is 1,

trβ = bβc+ 1 > β, and α2 + · · ·+ αd ∈ ]0, 1[ .

If β is a nonsimple Parry number with some pirate values and if the period

is t ≥ 2 then α2 + · · · + αd + γ1 + · · · + γr ∈ ]−1, 0[ , if the period is 1 then

α2 + · · ·+ αd + γ1 + · · ·+ γr ∈ ]0, 1[ .

(3) A Parry number such that |α2 + · · ·+ αd| > 1 has always pirate values.

Proposition 3. Let β be a Parry number and let α2, · · · , αd be its algebraic

conjugates.

(1) If β is not a Pisot number, the set of integers n such that βn has pirate values

has positive density.

(2) Let β be a Pisot number of degree d, and let H be the set of integers n such

that αn2 + · · ·+ αnd ∈ ]0, 1[ . Then the set H has a positive density.

If n ∈ H and if βn does not have pirate value, then βn is not simple. The period

t is equal to 1 and the βn expansion of 1 looks like d1 · · · dd−1bbbbb · · · .
If n ∈ H and if βn has pirate values and is simple, then the sum of the pirate

values is equal to −1.

If n ∈ H and if βn has pirate values and is not simple, then the sum of the pirate

values is 0 if the period is t = 1 and −1 if the period is t ≥ 2.

In [3] one can find more details concerning totally real Pisot numbers.

Proof of Assertion (1). Let β be a Perron number of degree d, let α2, · · · , αd
be its conjugates, θ2, · · · , θd their arguments, and θ

(n)
2 , · · · , θ(n)d the arguments of

αn2 , · · · , αnd , all represented by numbers in [−π, π[ . For ε > 0, the set Hε such that

θ
(n)
2 , · · · , θ(n)d all belong to the interval [−ε, ε] has positive density ([7], Th.201).

Choosing a small ε, all αn2 , · · · , αnd shall have positive real parts. If one of the |αi0 |
is greater than or equal to 1, taking a small ε, there are arbitrarily large n ∈ Hε

such that tr βn = βn + αni0 +
∑
i6=i0 α

n
i > [βn] + 1; because of Assertion (3) of
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Proposition 2, βn admits pirate values. If all the |αi| are less than or equal to 1,

either β is a Pisot number, or it is a Salem number (that is, one of the αi is 1
β and

the others conjugates are complex numbers of modulus exactly one). But if β is a

Salem number for large enough n belonging to Hε, tr βn > [βn] + 1. As Hε has

positive density Assertion (1) is true.

Proof of Assertion (2). Take for H the set {n ∈ Hε;α
n
2 , · · · , αnd < 1} ; then H and

Hε have the same density. Now use Proposition 2: suppose that n ∈ H, the sum

αn2 + · · · + αnd is positive and smaller than 1 so we have tr βn > βn, hence tr

βn = bβnc + 1 and (2.1) implies that βn cannot be simple without pirate values.

If βn is simple with pirate values let γ
(n)
1 , · · · , γ(n)r denote the pirate values of βn;

from 2.1 we know that αn2 + · · ·+ αnd + γ
(n)
1 + · · ·+ γ

(n)
r belongs to ]−1, 0[ hence as

γ
(n)
1 +· · ·+γ(n)r is an integer and αn2 +· · ·+αnd is smaller than 1, γ

(n)
1 +· · ·+γ(n)r = −1.

If βn is not simple and do not admit pirate values 2.2 gives the period t = 1, the

expansion of 1 in the base βn looks like d1 · · · dd−1bbbbb · · · . If βn is not simple and

admits pirate values, in the case where t = 1, we get αn2 + · · ·+αnd +γ
(n)
1 + · · ·+γ

(n)
r

∈ ]0, 1[; as γ
(n)
1 + · · · + γ

(n)
d is an integer and αn2 + · · · + αnd is smaller than 1, we

get γ
(n)
1 + · · ·+ γ

(n)
r = 0. In the case where t ≥ 2, αn2 + · · ·+ αnd + γ

(n)
1 + · · ·+ γ

(n)
r

belongs to ]−1, 0[ and γ
(n)
1 + · · ·+ γ

(n)
r = −1.
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