

PERRON NUMBERS AND POSITIVE MATRICES OF MINIMAL ORDER

Anne Bertrand-Mathis¹

Laboratoire de mathématiques et applications, Université de Poitiers, Site du Futuroscope - Téléport 2, Poitiers, France anne.bertrand@math.univ-poitiers.fr

Florent Nguema Ndong

Département de Mathématiques et Informatique, Université des Sciences et Techniques de Masuku, Franceville, Gabon florentnn@yahoo.fr

Received: 2/26/18, Revised: 2/27/20, Accepted: 4/20/21, Published: 5/4/21

Abstract

A Perron number is an algebraic integer $\lambda > 1$ whose conjugates μ_i satisfy $|\mu_i| < \lambda$. We prove that given a Perron number λ , there is an integer h_0 such that for $h \ge h_0$ there exists a primitive integer matrix B_h whose spectrum includes only λ^h and its conjugates, and whose order is equal to the degree of λ . We also prove that if λ is a Pisot number of degree 2 or 3, then there exists an integer primitive matrix of order 2 or 3 whose Perron eigenvalue is λ , and that if a Perron number λ is a Parry number without pirate value, then the trace of λ is equal to $[\lambda]$ or $[\lambda] + 1$.

1. Introduction

A real matrix B is *primitive* if it is nonnegative and if there exists an integer k such that all entries of B^k are strictly positive (hence for $h \ge k$, B^h is also strictly positive).

Perron's theorem asserts that a primitive matrix B admits a real eigenvalue $\lambda > 0$ such that every other eigenvalue μ satisfies $|\mu| < \lambda$; λ is said to be the *Perron* eigenvalue or strictly dominant eigenvalue of B. In this paper, we are interested in matrices with coefficients in \mathbb{N} (integer matrices).

Lind [9] defines a *Perron number of degree* d to be any algebraic integer $\lambda > 0$, that is a root of an irreducible polynomial $P = X^d + c_1 X^{d-1} + \cdots + c_d$, where all c_i belong to \mathbb{Z} , and where all other zeroes μ_2, \cdots, μ_d of P satisfy $|\mu_i| < \lambda$. The zeroes of P are the algebraic conjugates of λ . He proved the following theorem.

¹Corresponding author

Theorem 1 (Lind [9]). Given a Perron number λ , there is a primitive integer matrix *B* whose Perron eigenvalue is λ . It is also possible to find such a matrix with entries 0 or 1.

See also [4] for a proof via language theory. Of course the order of B cannot be strictly smaller than d, but in Lind's construction the order of B is often greater than the degree of λ and B admits eigenvalues which are hence not conjugates of λ . In this case the irreducible polynomial of the Perron eigenvalue λ divides the characteristic polynomial of B and the algebraic degree d of λ is smaller than the order of B, so the following question arises.

Question 1. Given a Perron number of degree d, can we find a primitive matrix B of order d, with entries in \mathbb{N} , for which λ is an eigenvalue?

Of course, λ is the Perron eigenvalue of *B*. This is not always the case, and following Boyle and Handelman [6] and the work of Kim, Ormes and Roush [8], we recall necessary conditions for the existence of such a matrix. The following question also arises.

Question 2. Given a Perron number λ , if there is no such matrix, let *C* and *D* be two positive integer matrices of minimal order having λ as eigenvalue; do they have the same spectrum?

In what follows, we shall prove Theorem 2 and Propositions 3 and 4. Recall that Lind [9] proved that given a Perron number λ and an integer k, λ and λ^k have the same degree. (Proposition 5 in [9] asserts that λ belongs to $\mathbb{Q}(\lambda^k)$ so λ and λ^k have the same degree.)

Theorem 2. Let λ be a Perron number and let d be the common degree of λ and its powers λ^k . Then there exists an integer k and a primitive integer matrix B of order d whose spectrum consists of λ^k and its conjugates (so λ^k is the Perron eigenvalue of B). We can choose k such that, for each $h \geq k$, λ^h is the eigenvalue of some primitive integer matrix of order d.

The trace tr λ of an algebraic integer λ is the sum of its conjugates (including λ itself); it is equal to $-c_1$, the coefficient of X^{d-1} of the minimal polynomial. If λ is the eigenvalue of a nonnegative integer matrix of order d the trace of this matrix is the trace of λ and has to be nonnegative. A *Pisot number* is an algebraic integer $\beta > 1$ whose conjugates μ_i satisfy $|\mu_i| < 1$.

Proposition 1.

(1) A Perron number of degree 2 is the Perron eigenvalue of some primitive integer matrix of order 2.

(2) A Pisot number of degree 2 (resp. 3) is the Perron value of some primitive

integer matrix of order 2 (resp. 3).

(3) For each $d \ge 3$ there exist Perron numbers of degree d whose traces are negative and which are not eigenvalues of a primitive integer matrix of order d.

McKee, Rowlinson, and Smyth [12] proved the existence of Pisot numbers of any desired traces (even negative). McKee and Smyth [11] found a Pisot number with negative trace of degree d = 16.

Example 1. The zero $\lambda > 1$ of the polynomial $X^3 - X - 1$ (λ is the plastic number) is a Perron number of degree 3, it is also the dominating root of the polynomial $X^5 - X^4 - 1 = (X^3 - X - 1)(X^2 - X + 1)$. It is the Perron eigenvalue of the matrices $\begin{bmatrix} 1 & 0 & 0 & 0 & 1 \end{bmatrix}$

$$U = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } V = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \text{ which are both primitive.}$$

Example 2. The matrix $W = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ is primitive with Perron value $\frac{3+\sqrt{5}}{2}$.

Now let us explain why we are interested in integer primitive matrices of minimal order.

Given a labelled directed graph G on h vertices, the *adjacency matrix* A of G is the (h, h) matrix where the entry $a_{i,j}$ is the number of labelled edges from vertex i to vertex j, all entries being nonnegative integers. The eigenvalues of the adjacency matrix are said to be *eigenvalues of the graph*.

By a path of length n in a graph G we mean a sequence a_1, \dots, a_n of labelled edges such that the terminal vertex of a_i is the initial vertex of a_{i+1} , $1 \leq i < n$. If the terminal vertex of a_n is the initial vertex of a_1 , then the path is a loop of length n. A loop a_1, \dots, a_n is minimal unless there exists a loop b_1, \dots, b_m with m < nsuch that a_1, \dots, a_n is obtained by concatenating $b_1, \dots, b_m n/m$ times. Let w_n be the number of paths with length n and suppose that the matrix is primitive, then $\lim_{n\to\infty} \frac{\log w_n}{n} = \ln \lambda$.

Question 1 becomes: given a Perron number λ of degree d, is it possible to find a graph on d vertices with eigenvalue λ , or an automaton with d states and eigenvalue λ ?

Symbolic Dynamical Systems. Let S be a set of r symbols endowed with the discrete topology. Then the space $S^{\mathbb{Z}}$ of sequences $(x_n)_{n\in\mathbb{Z}} = \{\dots, x_{-1}, x_0, x_1, \dots\}$ on S endowed with the product topology is a compact set; the shift map $\sigma : S^{\mathbb{Z}} \to S^{\mathbb{Z}}$ is defined by setting $(\sigma x)_{n\in\mathbb{Z}} = (x_{n+1})_{n\in\mathbb{Z}}$. If $Y \subseteq S^{\mathbb{Z}}$ is compact, nonempty and σ -invariant (*i.e.*, $\sigma^{-1}(Y) = Y$), then (Y, σ) is called a symbolic dynamical system. A general dynamical system is a space with an invariant transformation. Symbolic

systems are not anecdotal ones. Hadamard noticed that many dynamical systems can be viewed as symbolic dynamical systems.

Example 3. Let α be an irrational rotation of the the unit circle $[0, 2\pi]$; given a point y, and $n \in \mathbb{Z}$ let $x_n = a$ if $\alpha^n(y) = y + n\alpha \in [0, \pi]$ modulo 2π and $x_n = b$ if $\alpha^n(y)$ is in $[\pi, 2\pi]$; if we know the sequence $(x_n)_{n \in \mathbb{Z}}$, we know the point y, so the rotation can be seen as a symbolic system. Such a situation occurs frequently.

The infinite paths $(a_n)_{n\in\mathbb{Z}}$ of a graph G with a matrix A of order d defines a symbolic dynamical system associated with the graph G; if A is primitive the system is what we call a mixing Markov Shift with d states and $\ln \lambda$ denotes its entropy. So Question 1 becomes: given a Perron number λ of degree d, does there exist a symbolic dynamical system with entropy $\ln \lambda$ associated with a graph with only d vertices?

Example 4. The dynamical system $X = (x_n)_{n \in \mathbb{Z}}$ where $x_n \in \{0, 1, 2\}$ and where the word 22 never appears is a system with two states and entropy $\ln \frac{3+\sqrt{5}}{2}$ related to the matrix W of Example 2.

We are also interested in substitutions. A substitution of h letters b_1, \dots, b_h is a map φ from the set $\{b_1, \dots, b_h\}$ into the set of finite words on these letters, extended by concatenation to finite words ($\varphi(uv)$ is the word $\varphi(u) \varphi(b)$). The adjacency matrix B is the nonnegative matrix whose entry $a_{i,j}$ is the number of letters b_i contained in $\varphi(b_j)$; we can easily associate a substitution to each nonnegative matrix. If for some k all $\varphi^k(b_i)$ contains all b_j , the matrix is a primitive matrix and the substitution is said to be primitive. In this case the number l_k of letters contained in $\varphi^k(b_i)$ satisfies $\lim_{k\to\infty} \frac{\log l_k}{k} = \ln \lambda$, where λ is the Perron eigenvalue of B, so λ is said to be an eigenvalue of the substitution. If there is a letter b_i such that $\varphi(b_i)$ begins with b_i then the word $\varphi^k(b_i)$ is the beginning of $\varphi^{k+1}(b_i)$ and the substitution admits a fixed point $\varphi^{\infty}(b_i)$ (such a letter exists if the trace of Bis positive).

Question 1 becomes: given a Perron number λ of degree d, can we find a primitive substitution on d letters with eigenvalue λ ? And what about a fixed point?

If β is a Pisot number of degree d, does β admits a substitution on d letters with eigenvalue β ? (such a substitution is called a Pisot substitution).

Remark. The answer to the last question is no for the general case, since there are Pisot numbers with negative trace [10, 11].

Example 5. The substitution $a \to ab$, $b \to c$, $c \to d$, $d \to e$, $e \to a$ is a primitive substitution with a fixed point $abcdeaab \cdots$ with the matrix V of Example 1.

2. Boyle-Handelman's Spectral Conjecture

We say that a k-tuple $\triangle = (d_1, \dots, d_k)$ of nonzero complex numbers is the *nonzero* spectrum of a matrix A if for some $m \ge 0$, the characteristic polynomial of A is $X_B(t) = t^m \prod_{i=1}^k (t - d_i)$. The eigenvalues of A are d_1, \dots, d_k and m zeroes when m is positive. We set $\triangle^n := (d_1^n, \dots, d_k^n)$. We denote trace of \triangle , denoted by $\operatorname{tr} \triangle$, the sum of the entries of \triangle . If a matrix A has nonzero spectrum \triangle , then tr $A^n = \operatorname{tr} (\triangle^n)$. We say that \triangle has a *Perron value* (denoted by λ_{\triangle}) if there exists an index i such that $d_i > |d_j|$ for $j \neq i$, and we set $\lambda_{\triangle} = d_i$.

Consider a nonnegative adjacency matrix A of a graph G. The number of loops of length n is the sum of the numbers of minimal loops of length m where m runs through the set of divisors of n (including 1 and n). Suppose that the decomposition into prime factors of n is $n = p_1^{h_1} \cdots p_r^{h_r}$. Then the number of minimal loops of length n is equal to the following expression called the *nth trace of* A in [6]:

$$\operatorname{tr}_{n}A := \sum_{d|n} \mu\left(d\right) \operatorname{tr} A^{n/d},$$

where d belongs to $[1, 2, \dots, n]$, and where μ denotes the Mobius function: $\mu(d) = (-1)^k$ if d is square-free and has k distinct prime divisors and $\mu(d) = 0$ if d has a square divisor.

If \triangle is the nonzero spectrum of a nonnegative integer matrix A, then for each n the tr_nA has to be nonnegative.

The following conjecture is due to Boyle and Handelman.

Boyle-Handelman Spectral Conjecture (Integers Case) [6]: a k-tuple $\triangle = (d_1, \dots, d_k)$ is the nonzero spectrum of some primitive nonnegative matrix with entries in \mathbb{N} if and only if \triangle has a Perron value, the coefficients of $\prod_{i=1}^{k} (t - d_i)$ are in \mathbb{Z} , and $\operatorname{tr}_n \Delta \geq 0$ for every positive integer n.

Kim, Ormes and Roush [8] proved this case of the conjecture. The order of the matrix that they furnish is not always equal to the number of entries d in \triangle . So a Perron number λ with nonnegative n^{th} net traces is the eigenvalue of an integer nonnegative matrix whose spectrum contains λ , its algebraic conjugates and perhaps some zeroes.

We want to get rid of these zeroes; we shall also reformulate this conjecture: given an algebraic number λ of degree d with conjugates $\lambda = \mu_1, \mu_2, \cdots, \mu_d$, we set $\Delta = \{\lambda_1, \mu_2, \cdots, \mu_d\}$; for $n = p_1^{h_1} \cdots p_r^{h_r}$ as above let $\operatorname{tr}_n \lambda$ denote the n^{th} net trace of the set $\Delta = \{\lambda_1, \mu_2, \cdots, \mu_d\}$:

$$\operatorname{tr}_{n}\lambda := \sum_{k=0}^{r} \sum_{i_{1} < \dots < i_{k}} (-1)^{k} \operatorname{tr}\left(\lambda^{\frac{n}{p_{i_{1}} \cdots p_{i_{k}}}}\right) = \operatorname{tr}\left(\lambda^{n} \prod_{i=1,\dots,r} \left(1 - \frac{1}{\lambda^{p_{i}}}\right)\right).$$

Conjecture. A Perron number λ of degree d is the eigenvalue of some positive matrix of order d with entries in \mathbb{N} if and only if $\operatorname{tr}_n \lambda \geq 0$ for all positive integer n.

We shall prove Theorem 3 which trivially implies Theorem 2.

Theorem 3.Let \triangle be a *d*-tuple of nonzero complex numbers admitting a Perron value; then there exists h_0 such that for each $h \ge h_0$, \triangle^h is the spectrum of some primitive integer matrix *B* of order *d*. The matrix can be chosen from the two

$$possibilities: B = \begin{bmatrix} 0 & 0 & \dots & a_d \\ 1 & 0 & \dots & \vdots \\ \vdots & \ddots & \dots & \vdots \\ 0 & \dots & 1 & a_1 \end{bmatrix} or B = \begin{bmatrix} b & 0 & 0 & \dots & a_d \\ 1 & 0 & 0 & \dots & a_{d-1} \\ 0 & 1 & 0 & \dots & \vdots \\ \vdots & \dots & \ddots & \dots & \vdots \\ 0 & 0 & 0 & 1 & a_1 \end{bmatrix}.$$

3. Proof of Theorem 3

Lemma 1 [3]. (Companion matrix of certain finite or infinite sequence) Let a_1, \dots, a_k be integers with all $a_i \ge 0$ and $a_k > 0$; then the companion matrix $\begin{bmatrix} 0 & 0 & \dots & a_k \\ & & & \ddots \end{bmatrix}$

$$B((a_{1}\cdots a_{k})) := \begin{bmatrix} 1 & 0 & \dots & \vdots \\ \vdots & \ddots & \dots & \vdots \\ 0 & \dots & 1 & a_{1} \end{bmatrix} \text{ of the polynomial } X^{k} - a_{1}X^{k-1} - \dots - a_{k}$$

is primitive and $X^k - a_1 X^{k-1} - \cdots - a_k$ is its characteristic polynomial.

Let b be a number greater than 0 and let a_1, \dots, a_{k-1}, a_k , be a sequence of positive numbers such that $a_k > 0$; let $(a_n)_{n \ge 1} = a_1, \dots, a_{k-1}, a_k, a_k b, a_k b^2, a_k b^3, \dots$ be the infinite sequence with all $a_i \ge 0$, $a_k b > 0$ and for $r \ge 0$ $a_{k+r} = b^r a_k$. Then $\begin{bmatrix} b & 0 & 0 & \dots & a_k \end{bmatrix}$

$$the "companion matrix" B((a_n)_{n\geq 1}, b) := \begin{bmatrix} 0 & 0 & 0 & \dots & a_k \\ 1 & 0 & 0 & \dots & a_{k-1} \\ 0 & 1 & 0 & \dots & \vdots \\ \vdots & \dots & \ddots & \dots & \vdots \\ 0 & 0 & 0 & 1 & a_1 \end{bmatrix} of the pair$$

 $((a_n)_{n\geq 1}, b)$ is primitive and if a number λ satisfies

$$1 = \frac{a_1}{\lambda} + \dots + \frac{a_{k-1}}{\lambda^{k-1}} + \frac{a_k}{\lambda^k} + \frac{a_k b}{\lambda^{k+1}} + \frac{a_k b^2}{\lambda^{k+2}} + \frac{a_k b^3}{\lambda^{k+3}} + \dots,$$

then λ is a zero of the polynomial

$$X^{k} - (a_{1}X^{k-1} + \dots + a_{k-1}X + a_{k}) - b(X^{k-1} - (a_{1}X^{k-2} + \dots + a_{k-1})).$$

which is also the characteristic polynomial of B.

The proof is straightforward and can be found in [3].

Lemma 2. If a real number $\lambda > 1$ satisfies an equation of the form

$$\lambda^k = a_1 \lambda^{k-1} + a_2 \lambda^{k-2} + \dots + a_k,$$

or

$$1 = \frac{a_1}{\lambda} + \dots + \frac{a_{k-1}}{\lambda^{k-1}} + \frac{a_k}{\lambda^k} + \frac{a_k b}{\lambda^{k+1}} + \frac{a_k b^2}{\lambda^{k+2}} + \frac{a_k b^3}{\lambda^{k+3}} + \dots$$

where the a_i are nonnegative integers, a_k is greater than 0 and b is greater than 0, then λ is the eigenvalue of a primitive matrix of order k with entries in \mathbb{N} .

Proof. Immediate from Lemma 1.

The following lemma is inspired by Soittola [5].

Lemma 3. Let c_1, c_2, \dots, c_k and b be real numbers $(b \neq 0)$ and let $\lambda > |b|$ satisfies $\lambda^k = c_1 \lambda^{k-1} + c_2 \lambda^{k-2} + \dots + c_k$ (1); then λ satisfies

$$1 = \frac{a_1}{\lambda} + \dots + \frac{a_{k-1}}{\lambda^{k-1}} + \frac{a_k b}{\lambda} + \frac{a_k b^2}{\lambda^2} + \frac{a_k b^3}{\lambda^3} + \dots$$
$$= \frac{a_1}{\lambda} + \dots + \frac{a_{k-1}}{\lambda^{k-1}} + a_k (\frac{b}{\lambda} + \frac{b^2}{\lambda^2} + \frac{b^3}{\lambda^3} + \dots),$$

where a_i and b_i satisfy conditions (2):

$$\begin{aligned} a_1 &= c_1 - b, \\ a_2 &= b(c_1 - b) + c_2, \\ a_3 &= b^2(c_1 - b) + bc_2 + c_3, \\ \vdots \\ a_{k-1} &= b^{k-2}(c_1 - b) + b^{k-3}c_2 + b^{k-4}c_3 + \dots + bc_{k-2} + c_{k-1}, \\ a_k &= b^{k-1}(c_1 - b) + b^{k-2}c_2 + \dots + bc_{k-1} + c_k, \\ a_{k+r} &= b^{k+r-1}(c_1 - b) + b^{k+r-2}c_2 + \dots + b^rc_k, \\ (for \ h \geq k \ we \ have \ a_{h+1} &= ba_h, \ so \ that \ a_{k+r} &= b^ra_k.) \end{aligned}$$

Proof. Replacing in (1) $c_1 \lambda^{k-1}$ by $(c_1 - b)\lambda^{k-1} + b\lambda^{k-1}$, then $b\lambda^{k-1}$ by

$$b\left(c_1\lambda^{k-2}+c_2\lambda^{k-3}+\cdots+\frac{c_k}{\lambda}\right),$$

we obtain $\lambda^k = (c_1 - b)\lambda^{k-1} + c_2\lambda^{k-2} + \dots + c_k + b\lambda^{k-1}$ = $(c_1 - b)\lambda^{k-1} + c_2\lambda^{k-2} + \dots + c_k$ $\begin{aligned} +bc_1\lambda^{k-2}+bc_2\lambda^{k-3}+\cdots+b\frac{c_k}{\lambda}.\\ \text{Then replace } bc_1\lambda^{k-2} \text{ by } b(c_1-b)\lambda^{k-2}+b^2\lambda^{k-2} \text{ to obtain}\\ \lambda^k &= (c_1-b)\lambda^{k-1}+c_2\lambda^{k-2}+\cdots+c_k+\\ &\quad +b(c_1-b)\lambda^{k-2}+bc_2\lambda^{k-3}+\cdots+b\frac{c_k}{\lambda}+b^2\lambda^{k-2}.\\ \text{Now replace } b^2\lambda^{k-2} \text{ by } b^2((c_1-b)\lambda^{k-3}+\cdots+c_k+\\ &\quad +b(c_1-b)\lambda^{k-2}+c_3\lambda^{k-3}+\cdots+c_k+\\ &\quad +b(c_1-b)\lambda^{k-2}+bc_2\lambda^{k-3}+\ldots+b\frac{c_k}{\lambda}\\ &\quad +b^2(c_1-b)\lambda^{k-3}+b^2c_2\lambda^{k-4}+\cdots+b^2\frac{c_k}{\lambda^2}+b^3\lambda^{k-3}. \end{aligned}$

Iterating the process, we obtain

$$\lambda^{k} = a_{1}\lambda^{k-1} + a_{2}\lambda^{k-2} + \dots + a_{k-1}\lambda + a_{k} + \frac{a_{k+1}}{\lambda} + \frac{a_{k+2}}{\lambda^{2}} + \dots,$$

where the numbers a_i satisfy (2).

Lemma 4. Let $\triangle = (d_1, \dots, d_k)$ be a Perron k-tuple, $\lambda = \lambda_{\triangle} = d_1$ its Perron value, and let \triangle^m denote the k-tuple $\triangle^m = (d_1^m, \dots, d_k^m)$.

Then there exists an integer h_0 such that for $h \ge h_0$ we can find nonnegative integers a_1, \dots, a_k, b satisfying $a_k b \ne 0$, and

$$1 = \frac{a_1}{\lambda^h} + \frac{a_2}{\lambda^{2h}} + \dots + \frac{a_{k-1}}{\lambda^{(k-)h}} + \frac{a_k}{\lambda^{kh}} + \frac{a_k b}{\lambda^{(k+1h)}} + \frac{a_k b^2}{\lambda^{(k+2)h}} + \frac{a_k b^3}{\lambda^{(k+3)h}} + \dots$$

Proof. Let $\triangle = (d_1, \dots, d_k)$ be a Perron k-tuple. The symmetric functions $\sigma_1, \dots, \sigma_k$ of \triangle are the k numbers $\sigma_i = \sum_{1 \leq l_1 < l_2 < \dots < l_i \leq k} d_{l_1} d_{l_2} \cdots d_{l_i}, i = 1, \dots, k$. If the coefficients of $\prod_{i=1}^k (t - d_i)$ are in \mathbb{Z} , all the symmetric functions are in \mathbb{Z} and the d_i are the zeroes of the polynomial

$$X^{k} - \sigma_1 X^{k-1} + \sigma_2 X^{k-2} - \dots + (-1)^{k} \sigma_k.$$

Let $\sigma_1^{(h)}, \dots, \sigma_d^{(h)}$ denote the symmetric functions of $\triangle^h = (d_1^h, \dots, d_k^h)$. Define $\mu = \lambda^h$; then μ is a zero of the polynomial

$$X^{k} - \sigma_{1}^{(h)} X^{k-1} + \sigma_{2}^{(h)} X^{k-2} - \dots + (-1)^{k} \sigma_{k}^{(h)}.$$

Take $(c_1, \dots, c_k) = (\sigma_1^{(h)}, \dots, \sigma_d^{(h)})$ in Lemma 3 and take for *b* the integer part of $\frac{\sigma_1^{(h)}}{2}$; *b* is about $\frac{\lambda^h}{2}$ and if *h* is large enough, then *b* is strictly positive.

The symmetric function $\sigma_j^{(h)}$ is the sum of the term $\lambda^h A_j$, where A_j is the sum of at most k! terms which are each products of j-1 factors $d_{i_1}^h \cdots d_{i_{j-1}}^h$, and of at most k! terms which are each products of j factors $d_{i_1}^h \cdots d_{i_j}^h$, all d_{i_r} being smaller than λ . As $d_i < \lambda$ for i > 1, $\lim_{h \to \infty} \frac{d_i^h}{\lambda^h} = 0$.

The term a_1 obtained in Lemma 3 is equal to $\sigma_1^{(h)} - b = \sigma_1^{(h)} - \left\lfloor \frac{\sigma_1^{(h)}}{2} \right\rfloor$ (here $\lfloor y \rfloor$ denotes the integer part of y). Hence, if h is large enough, $a_1 = \sigma_1^{(h)} - b$ is a positive

integer. For $u = 1, \dots, k-1$, $(\sigma_1^{(h)} - b)b^u = \left(\sigma_1^{(h)} - \left\lfloor \frac{\sigma_1^{(h)}}{2} \right\rfloor\right) \left\lfloor \frac{\sigma_1^{(h)}}{2} \right\rfloor^u$ is equivalent to $\frac{\lambda^{h(1+u)}}{2^h}$. As $d_i < \lambda$, $\lim_{h\to\infty} \frac{d_i^h}{\lambda^h} = 0$, for i > 1, so a_2, \dots, a_{k-1} are also positive integers for h large enough. Then all the a_i 's and b's in condition (2) of Lemma 3 are positive. Furthermore,

$$1 = \frac{a_1}{\mu} + \frac{a_2}{\mu^2} + \dots + \frac{a_{k-1}}{\mu^{k-1}} + \frac{a_k}{\mu^k} + \frac{a_k b}{\mu^{k+1}} + \frac{a_k b^2}{\mu^{(k+2)}} + \frac{a_k b^3}{\mu^{(k+3)}} + \dots$$

As $\mu = \lambda^h$, this shows Lemma 4.

Proof of Theorem 3 and Theorem 2. Given a d-tuple \triangle of nonzero complex numbers admitting a Perron value $\lambda = d_1$, apply Lemma 4 and Lemma 2 to obtain Theorem 3. Theorem 2 is an immediate consequence of Theorem 3.

4. Proof of Proposition 1

Proof of Assertion (1) (see also[6]). Let λ be a Perron number of degree 2; then $\lambda > 1$ is the largest root of an integer polynomial, $X^2 - sX + p$, so $k = s^2 - 4p$ is > 0. If s = 2h the matrix $\begin{pmatrix} h & 1 \\ h^2 - p & h \end{pmatrix}$ is a primitive matrix of which λ is an eigenvalue. If s = 2h + 1 then $4p < (h + 1/2)^2$ so $p \le h^2 + h + 1/4$. If $p = h^2 + h$, the eigenvalues are $\lambda = (h + 1)$ and $\lambda' = h$ whose degree is 1 and not 2; so $p < h^2 + h$ and the matrix $\begin{pmatrix} h + 1, & 1 \\ h^2 + h - p, & h \end{pmatrix}$ is suitable.

Proof of Assertion (2). We have to examine many cases. We recall that all symmetric functions of λ belong to \mathbb{Z} . Let β be a Pisot number of degree 3 (the case d = 2 is included in the Perron case). The numbers $\sigma_1, \sigma_2, \sigma_3$ are all integers.

1. Case $\beta \leq \frac{1+\sqrt{5}}{2}$: the list of small Pisot numbers has only four entries of degree 2, 3 or 4, roots of $x^2 - x - 1$, $x^3 - x - 1$, $x^3 - x^2 - 1$ and $x^4 - x^3 - 1$, and the result is true since the companion matrices of theses minimal polynomials are primitive.

2. Case $\beta > \frac{1+\sqrt{5}}{2}$. Let x_1, x_2 be the conjugates of β with modulus less than 1. The minimal polynomial of β is $X^3 - \sigma_1 X^2 + \sigma_2 X - \sigma_3$ where $\sigma_1 = \text{tr } \beta = \beta + x_1 + x_2$, $\sigma_2 = \beta (x_1 + x_2) + x_1 x_2, \sigma_3 = x_1 x_2 \beta$. Of course $|x_1 x_2| < 1$ and $|x_1| + |x_2| < 2$.

We shall examine different cases concerning the integer tr β .

2.1. Case tr $\beta < 0$: this is impossible. If tr $\beta = x_1 + x_2 + \beta < 0$, as it belongs to \mathbb{Z} , $x_1 + x_2 + \beta \leq -1$ and we should have $x_1 + x_2 \leq -1 - \beta < -2$.

2.2. Case tr $\beta = 0$: if tr $\beta = 0$ then $x_1 + x_2 = -\beta < -1$, so x_1 and x_2 are both negative or complex conjugates with negative real parts and $|x_1| + |x_2| < 2$ so β is less than 2. Then $\sigma_3 = x_1 x_2 \beta$ is positive and $\sigma_3 \leq \beta < 2$, so $\sigma_3 = 1$. As

 $\beta(x_1+x_2) = -\beta^2 < -1$ and $x_1x_2 \leq 1, \sigma_2$ is less than 0. Then β is a root of equation $X^3 = |\sigma_2|X + 1$, and the companion matrix $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & |\sigma_2| \\ 0 & 1 & 0 \end{bmatrix}$ is primitive.

2.3. Case tr $\beta = 1$: x_1 and x_2 cannot both be positive or have positive real parts since $\operatorname{tr} \beta$ would be greater than 1.

2.3.1. Case tr $\beta = 1$ and x_1 and x_2 are negative or have negative real parts: σ_3 is positive and as $\beta > \frac{1+\sqrt{5}}{2}$, $\beta(\beta-1) > 1$, then $\sigma_2 = \beta(1-\beta) + x_1x_2 < -1 + 1 < 0$. So the equation $\beta^3 = \beta^2 + |\sigma_2| x + \sigma_3$ gives a nonnegative primitive companion matrix. 2.3.2. Case tr $\beta = 1$ and x_1 is negative and x_2 positive: as $1 = x_1 + x_2 + \beta$, $x_1 + x_2$ is negative and $\beta < 2$; σ_2 is the sum of two strictly negative terms so it is strictly negative, and $|\sigma_2| \geq 1$; σ_3 is also negative, β is at most 2 so $\sigma_3 = -1$. We have $\beta^3 = \beta^2 + |\sigma_2|\beta - 1.$

Apply Lemma 3 with b = 1 to this equation to obtain

$$1 = \frac{0}{\beta} + \frac{|\sigma_2|}{\beta^2} + \frac{|\sigma_2| - 1}{\beta^3} + \frac{|\sigma_2| - 1}{\beta^4} + \cdots$$

This series with $a_1 = 0$, $a_2 = |\sigma_2|$, $a = |\sigma_2| - 1$ and b = 1 give us a primitive matrix

with order 3 $\begin{bmatrix} 1 & 0 & (|\sigma_2| - 1) \\ 1 & 0 & |\sigma_2| \\ 0 & 1 & 0 \end{bmatrix}$ (Lemma 1). Note that $\sigma_2 - 1 \neq 0$, otherwise the degree of β would not be 3.

2.4. Case tr $\beta > 2$.

2.4.1. Case tr $\beta \geq 2$ and tr $\beta < \beta$: then $x_1 + x_2 = (\sigma_2 - \beta) < 0$, x_1 and x_2 cannot both be positive or have positive real parts.

2.4.1.1. Case tr $\beta \geq 2$, tr $\beta < \beta$ and both x_i are less than 0 or have negative real *part*: σ_3 is greater than 0; $\sigma_2 = \beta (x_1 + x_2) + x_1 x_2$ is an integer and is the sum of a positive term $x_1x_2 < 1$ and a negative term: σ_2 is less than or equal to 0 so $\beta^3 = \sigma_1 \beta^2 + |\sigma_2|\beta + \sigma_3$. All coefficients are positive and we can apply Lemma 2 to obtain the result.

2.4.1.2 Case tr $\beta \ge 2$, tr $\beta < \beta$ and $x_1 < 0$, $x_2 > 0$: then $x_1 x_2 < 0$ and $x_1 + x_2 < 0$; hence $\sigma_2 < 0$ and $\sigma_3 < 0$. Apply the method of Lemma 3 with b = 1, $c_1 = \sigma_1$, $c_2 =$ $|\sigma_2|, c_3 = \sigma_3$: we need only to prove that $a_1 = \sigma_1 - 1, a_2 = |\sigma_2| + \sigma_1 - 1, a_3 =$ $\sigma_3 + |\sigma_2| + \sigma_1 - 1$ are all greater than or equal to 0 and that a_3 is greater than 0. It is clear that a_1, a_2 are nonnegative; $a_3 = \beta x_1 x_2 + \beta |x_1 + x_2| + \beta - x_1 - x_2$; as the x_i have modulus less than 1, $\beta x_1 x_2 + \beta$ is greater than 0 and $\beta |x_1 + x_2| - x_1 - x_2$ is positive since $\beta > 1$ so $a_3 > 0$.

2.4.2. Case tr $\beta > 2$ and tr $\beta > \beta$: the x_i are not both less than 0.

2.4.2.1. Case tr $\beta \geq 2$, tr $\beta > \beta$, $x_1 > 0$ and $x_2 < 0$: then $\sigma_3 < 0$ and $|\sigma_3| < \beta$; the function $f(x) = x^3 - \sigma_1 x^2 + \sigma_2 x - \sigma_3$ has to be negative for x = 1, so $1 - \sigma_1 + \sigma_2 - \sigma_3 < \sigma_3$ 0 and $1 + \sigma_2 + |\sigma_3| < \sigma_1$: apply Lemma 2 with $b = \sigma_2 + \sigma_3$ to the equation $x^3 = \sigma_1 x^2 - \sigma_2 x + \sigma_3$ to obtain positive a_i and conclude using Lemma 1.

2.4.2.2. Case tr $\beta \geq 2$, tr $\beta > \beta$ and the x_i are both greater than 0: then $\sigma_3 > 0$. We are looking for an integer b > 0 such that $a_1 = \sigma_1 - b > 0$, and $a_2 = b(\sigma_1 - b) - \sigma_2 \geq 0$ (so necessarily $a_3 = b^2(\sigma_1 - b)) - b\sigma_2 + \sigma_3 > 0$. We shall examine the two possibilities: $x_1 + x_2 < 1$ and $x_1 + x_2 > 1$.

2.4.2.2.1. If $0 < x_1 + x_2 < 1$, $\sigma_1 = \lfloor \beta \rfloor + 1$, σ_3 is positive and $\sigma_2 = \beta (x_1 + x_2) + x_1 x_2$ is the sum of a term smaller than β and a term smaller than 1, so $\sigma_2 \leq \lfloor \beta \rfloor + 1 = \sigma_1$.

If $\sigma_1 \ge \sigma_2 + 1$ apply Lemma 2 to the equation $\lambda^3 = \sigma_1 \lambda^2 - \sigma_2 \lambda + \sigma_3$ with b = 1 to obtain the result.

If $\sigma_1 = \sigma_2$, $\sigma_2 = \beta (x_1 + x_2) + x_1 x_2 = \beta + x_1 + x_2$. As $x_1 + x_2 < 1$ this means that $x_1 x_2 > x_1 + x_2$; if x_1 and x_2 are real, setting $a = x_1 + x_2$ we obtain $x_1(a - x_1) > a$, which is impossible with a > 1 and positive x_i . If they are complex numbers the discriminant of the derivative gives $\sigma_1 < 3$ so $\sigma_1 = 1$ (impossible since $\sigma_1 > \beta$) or $\sigma_1 = 2$, hence $\sigma_3 = 1$. But 1 is a root of the polynomial $X^3 - 2X^2 + 2X - 1$, which is not the irreducible polynomial of a Pisot number of degree 3.

2.4.2.2.2 Case $x_1 + x_2 > 1$: as we suppose that $\beta > \frac{1+\sqrt{5}}{2}$, if $x_1 + x_2 > 1$, then $\beta + 1 > 2$ and $\sigma_1 \ge 3$.

Case $\sigma_1 = 3$: $\beta \in \left[\frac{1+\sqrt{5}}{2}, 2\right]$, $x_1 + x_2 < 3 - \frac{1+\sqrt{5}}{2}$ which is at most 1.4; then $\sigma_2 \leq \beta(1.4) + x_1 x_2 \leq 3.8$ and $\sigma_2 \leq 3$; but $\sigma_2 = \beta(x_1 + x_2) + x_1 x_2 \geq 2$.

As $\beta < 2$, σ_3 is less than 2, it is equal to 1.

If $\sigma_2 = 3$ the equation is $X^3 - 3X^2 + 3X - 1$; this is impossible because the polynomial is not irreducible.

If $\sigma_2 = 3$ the equation becomes $X^3 - 3X^2 + 2X - 1$, and we apply Lemma 3 with b = 1.

If $\sigma_1 \geq 4$, $\beta > 2$ and $x_1 + x_2 = 1 + a$ where a < 1; $\sigma_1 = \beta + 1 + a$ and $\sigma_2 = \beta (1+a) + x_1 x_2$; $2(\sigma_1 - 2) = 2\beta + 2a - 2$; $2(\sigma_1 - 2) - \sigma_2 = \beta (1-a) - 2(1-a) - x_1 x_2$. As $\beta > 2$, $\beta (1-a) - 2(1-a)$ is positive, the other term is negative, so $2(\sigma_1 - 2) > \sigma_2$, and we apply Lemma 3 with b = 2.

Proof of Assertion (3). All powers of a Pisot number of degree d are Pisot numbers of the same degree d and for each $d \ge 2$ there exists a Pisot number φ of degree d [2]. Let $d > 2 \in \mathbb{N}$; consider a power φ^n of φ and an integer a such that $\varphi^n - a > a + 1$ and $\varphi^n - da + d < 0$ ($a \in]\varphi^n/d - 1, \varphi^n/2 + 1[$). Then the d - 1 conjugates α_i of φ^n have modulus < 1, so the trace $\varphi^n + \sum \alpha_i - ad$ of $\varphi^n - a$ is negative and $\varphi^n - a > |\alpha_i - a|$, hence $\varphi^n - a$ is a Perron number with negative trace and degree d.

Example 6. The Tribonacci number φ , root of $X^3 - X^2 - X - 1$, is approximately 1.8393 and has degree 3; φ^5 is almost 38.7 and has two conjugates α and β of modulus less than 1, hence $\alpha - 14$ and $\beta - 14$ have modulus less than 15 and since $|varphi^5 - 14| > 15$, $\xi = \varphi^5 - 14$ is a Perron number, its trace is $\xi + \alpha + \beta - 3.14$ which is < 38.7 + 2 - 42, and is negative.

5. About Parry numbers

Given a real number $\beta > 1$, we know that 1 admits a so-called β -expansion: $1 = \sum_{k\geq 1} \frac{d_k}{\beta^k}$ where $d_k \leq \lfloor \beta \rfloor$ for all k, all the d_k are nonnegative integers and for every $h \geq 1$ we have $\frac{d_h}{\beta^h} + \frac{d_{h+1}}{\beta^{h+1}} + \cdots < \frac{1}{\beta^{h-1}}$; in all cases $d_1 = \lfloor \beta \rfloor$ [14]. If the sequence $(d_k)_{k\geq 1}$ is ultimately periodic β is called a *Parry number*, and if the sequence ends by some zeroes β is a simple *Parry number* and we say that the expansion of 1 is finite. The Parry numbers are Perron numbers.

Example 7. The expansion of $\frac{3+\sqrt{5}}{2}$ is $21111\cdots$, $\frac{3+\sqrt{5}}{2}$ is a Parry number. The plastic number γ (*i.e.*, the greatest zero of $X^3 - X - 1$ and smallest Pisot number) admits the expansion 10001 and is a simple Parry number.

We define the Parry polynomial of a simple Parry number with finite expansion $d_1 \cdots d_r$ as $X^r - d_1 X^{r-1} - \cdots - d_r$. Given a Parry number β with expansion $(d_k)_{k\geq 1} = d_1 \cdots d_s b_1 \cdots b_t b_1 \cdots b_t$, let s be the length of the preperiod, and let t be the length of the period. The polynomial $X^{s+t} - d_1 X^{s+t-1} - \cdots - d_s X^t - b_1 X^{t-1} - \cdots - b_t - (X^s - d_1 X^{s-1} - \cdots - d_s)$ is called the Parry polynomial of β ; β is a zero of the Parry polynomial. If the minimal polynomial of β is equal to the Parry polynomial, we say that β has no complementary (or pirate) value, if the degree of the Parry polynomial is greater than the degree of the minimal polynomial we say that β has pirate values (or complementary values).

Example 8. The plastic number has the expansion 10001, r = 5 and its minimal polynomial is $(X^3 - X - 1)$, its Parry polynomial is $X^5 - X^4 - 1 = (X^3 - X - 1)(X^2 - X + 1)$, the roots of $(X^2 - X + 1)$ are pirate values. If $\beta = \frac{3+\sqrt{5}}{2}$ the expansion is 211111... (s = t = 1), the Parry polynomial is equal to the minimal polynomial, there are no pirate values.

Given a Parry number β the β -expansion $(d_k)_{k\geq 0}$ of 1 provides a primitive integer matrix M_{β} whose spectrum contains β , its conjugates and the pirate values if there are any (see [3]).

Looking at the second term of the Parry polynomial and using the equality $d_1 = \lfloor \beta \rfloor$ we obtain the following result.

Lemma 5. Let β be a Parry number, $(d_k)_{k\geq 1}$ the β -expansion of 1, $P(X) = X^l - m_1 X^{l-1} - \cdots - m_l$ the Parry polynomial of β . Suppose that the β -expansion is finite or admits a period of length t > 1; then the term m_1 of the Parry polynomial is equal to d_1 , i.e., to $|\beta|$.

Suppose that the expansion admits a period of length t = 1; then $m_1 = d_1 + 1 = \lfloor \beta \rfloor + 1$ (in this case the β expansion of 1 take the form $d_1 \cdots d_s bbbb \cdots$).

Looking at the roots of the Parry polynomial we obtain the following result.

Lemma 6. Let β a Parry number of degree d, let $\alpha_2, \dots, \alpha_d$ be its algebraic conjugates and let $\gamma_1, \dots, \gamma_n$ be the pirate conjugates if there are any. Then $\beta + \alpha_2 + \dots + \alpha_d + \gamma_1 + \dots + \gamma_n = \lfloor \beta \rfloor$ except in the case t = 1 where it is equal to $\lfloor \beta \rfloor + 1$.

Lemmas 5 and 6 immediately imply Proposition 2.

Proposition 2. Let β be a Parry number, let $(d_k)_{k\geq 1} = d_1 \cdots d_s b_1 \cdots b_t b_1 \cdots b_t \cdots$ be his expansion, $\alpha_2, \cdots, \alpha_d$ be its algebraic conjugates and $\gamma_1, \cdots, \gamma_r$ be its pirate values if there are some.

(1) If β is a simple Parry number without pirate values, then tr $\beta = \lfloor \beta \rfloor < \beta$, and $\alpha_2 + \cdots + \alpha_d$ is negative and belongs to $\lfloor -1, 0 \rfloor$.

If β is simple and if there are pirate values then $\alpha_2 + \cdots + \alpha_d + \gamma_1 + \cdots + \gamma_r \in [-1, 0[$.

(2) If β is a nonsimple Parry number without pirate values, and if the period t is at least 2, then tr $\beta = \lfloor \beta \rfloor < \beta$ and $\alpha_2 + \cdots + \alpha_d \in]-1, 0[$; if the period t is 1, tr $\beta = \lfloor \beta \rfloor + 1 > \beta$, and $\alpha_2 + \cdots + \alpha_d \in]0, 1[$.

If β is a nonsimple Parry number with some pirate values and if the period is $t \geq 2$ then $\alpha_2 + \cdots + \alpha_d + \gamma_1 + \cdots + \gamma_r \in [-1,0[$, if the period is 1 then $\alpha_2 + \cdots + \alpha_d + \gamma_1 + \cdots + \gamma_r \in [0,1[$.

(3) A Parry number such that $|\alpha_2 + \cdots + \alpha_d| > 1$ has always pirate values.

Proposition 3. Let β be a Parry number and let $\alpha_2, \dots, \alpha_d$ be its algebraic conjugates.

(1) If β is not a Pisot number, the set of integers n such that β^n has pirate values has positive density.

(2) Let β be a Pisot number of degree d, and let H be the set of integers n such that $\alpha_2^n + \cdots + \alpha_d^n \in [0, 1]$. Then the set H has a positive density.

If $n \in H$ and if β^n does not have pirate value, then β^n is not simple. The period t is equal to 1 and the β^n expansion of 1 looks like $d_1 \cdots d_{d-1}bbbbb \cdots$.

If $n \in H$ and if β^n has pirate values and is simple, then the sum of the pirate values is equal to -1.

If $n \in H$ and if β^n has pirate values and is not simple, then the sum of the pirate values is 0 if the period is t = 1 and -1 if the period is $t \ge 2$.

In [3] one can find more details concerning totally real Pisot numbers.

Proof of Assertion (1). Let β be a Perron number of degree d, let $\alpha_2, \dots, \alpha_d$ be its conjugates, $\theta_2, \dots, \theta_d$ their arguments, and $\theta_2^{(n)}, \dots, \theta_d^{(n)}$ the arguments of $\alpha_2^n, \dots, \alpha_d^n$, all represented by numbers in $[-\pi, \pi[$. For $\varepsilon > 0$, the set H_{ε} such that $\theta_2^{(n)}, \dots, \theta_d^{(n)}$ all belong to the interval $[-\varepsilon, \varepsilon]$ has positive density ([7], Th.201). Choosing a small ε , all $\alpha_2^n, \dots, \alpha_d^n$ shall have positive real parts. If one of the $|\alpha_{i_0}|$ is greater than or equal to 1, taking a small ε , there are arbitrarily large $n \in H_{\varepsilon}$ such that tr $\beta^n = \beta^n + \alpha_{i_0}^n + \sum_{i \neq i_0} \alpha_i^n > [\beta^n] + 1$; because of Assertion (3) of Proposition 2, β^n admits pirate values. If all the $|\alpha_i|$ are less than or equal to 1, either β is a Pisot number, or it is a Salem number (that is, one of the α_i is $\frac{1}{\beta}$ and the others conjugates are complex numbers of modulus exactly one). But if β is a Salem number for large enough *n* belonging to H_{ε} , tr $\beta^n > [\beta^n] + 1$. As H_{ε} has positive density Assertion (1) is true.

Proof of Assertion (2). Take for H the set $\{n \in H_{\varepsilon}; \alpha_{2}^{n}, \cdots, \alpha_{d}^{n} < 1\}$; then H and H_{ε} have the same density. Now use Proposition 2: suppose that $n \in H$, the sum $\alpha_{2}^{n} + \cdots + \alpha_{d}^{n}$ is positive and smaller than 1 so we have tr $\beta^{n} > \beta^{n}$, hence tr $\beta^{n} = \lfloor \beta^{n} \rfloor + 1$ and (2.1) implies that β^{n} cannot be simple without pirate values. If β^{n} is simple with pirate values let $\gamma_{1}^{(n)}, \cdots, \gamma_{r}^{(n)}$ denote the pirate values of β^{n} ; from 2.1 we know that $\alpha_{2}^{n} + \cdots + \alpha_{d}^{n} + \gamma_{1}^{(n)} + \cdots + \gamma_{r}^{(n)}$ belongs to]-1,0[hence as $\gamma_{1}^{(n)} + \cdots + \gamma_{r}^{(n)}$ is an integer and $\alpha_{2}^{n} + \cdots + \alpha_{d}^{n}$ is smaller than 1, $\gamma_{1}^{(n)} + \cdots + \gamma_{r}^{(n)} = -1$. If β^{n} is not simple and do not admit pirate values 2.2 gives the period t = 1, the expansion of 1 in the base β^{n} looks like $d_{1} \cdots d_{d-1}bbbbb \cdots$. If β^{n} is not simple and admits pirate values, in the case where t = 1, we get $\alpha_{2}^{n} + \cdots + \alpha_{d}^{n} + \gamma_{1}^{(n)} + \cdots + \gamma_{r}^{(n)} \in]0, 1[$; as $\gamma_{1}^{(n)} + \cdots + \gamma_{d}^{(n)}$ is an integer and $\alpha_{2}^{n} + \cdots + \alpha_{d}^{n}$ is smaller than 1, we get $\gamma_{1}^{(n)} + \cdots + \gamma_{r}^{(n)} = 0$. In the case where $t \geq 2$, $\alpha_{2}^{n} + \cdots + \alpha_{d}^{n} + \gamma_{1}^{(n)} + \cdots + \gamma_{r}^{(n)}$ belongs to]-1, 0[and $\gamma_{1}^{(n)} + \cdots + \gamma_{r}^{(n)} = -1$.

Acknowledgement. We thank the referee and the editor for many useful remarks.

References

- J.-P. Allouche and J. O. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press (2003).
- [2] M.-J. Bertin, A. Decomps, M. Grandet, M. Pathiaux and J.-P. Schreiber, Pisot and Salem Numbers, Birkhäuser, Bâle (1992).
- [3] A. Bertrand-Mathis, Nombres de Pisot, matrices primitives et bêta-conjugués, J. Théor. Nombres Bordeaux 24 (2012), 57-72.
- [4] A. Bertrand-Mathis, Nombres de Perron et questions de rationalité, Journées Arithmétiques 1989, Astérisque 198-200 (1991), 67-76.
- [5] J. Berstel and C. Reutenauer, Les séries rationnelles et leurs langages, Masson, Paris (1984).
- [6] M. Boyle and D. Handelman, The spectra of nonnegative matrices via symbolic dynamics, Ann. of Math. 133 (1991), 249-316.
- [7] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford (1938).
- [8] K. H. Kim, N. S. Ormes and F. W. Roush, The spectra of nonnegative integer matrices via formal power series, J. Amer. Math. Soc. 13 (2000), 773-806.

- [9] D. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), 283-300.
- [10] J. F. McKee, Families of Pisot numbers with negative trace, Acta Arith. 93 (2000), 373-385.
- [11] J. F. McKee and C. J. Smyth, Salem numbers and Pisot numbers via interlacing, Canad. J. Math. 64 (2012), 345-367.
- [12] J. F. McKee, P. Rowlinson and C. J. Smyth, Salem numbers and Pisot numbers from stars, in *Number Theory in Progress* Vol. 1, De Gruyter, Berlin (1999), 309-319.
- [13] C. Mauduit, Caractérisation des ensembles normaux substitutifs, Invent. Math. 95 (1999), 133-147.
- [14] W. Parry, On the β -expansion of real numbers, Acta Math. Acad. Sci. Hungar. 8 (1960), 401-416.