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Abstract

We give a new characterization of the set C of Carmichael numbers in the context of
p-adic theory, independently of the classical results of Korselt and Carmichael. The
characterization originates from a surprising link to the denominators of the Ber-
noulli polynomials via the sum-of-base-p-digits function. More precisely, we show
that such a denominator obeys a triple-product identity, where one factor is con-
nected with a p-adically defined subset S of the squarefree integers that contains C.
This leads to the definition of a new subset C′ of C, called the “primary Carmichael
numbers”. Subsequently, we establish that every Carmichael number equals an ex-
plicitly determined polygonal number. Finally, the set S is covered by modular
subsets Sd (d ≥ 1) that are related to the Knödel numbers, where C = S1 is a
special case.

1. Introduction

A composite positive integer m is called a Carmichael number if the congruence

am−1 ≡ 1 (mod m) (1.1)

holds for all integers a coprime to m (see [11, Sec. A13], [24, Chap. 2, Sec. IX]).

Clearly, if m were a prime, then this congruence would be valid by Fermat’s little

theorem.

Let “number” mean “positive integer” unless otherwise specified, and let p always

denote a prime. A first result on Carmichael numbers is the following criterion (for

a proof, see [6] or [8, p. 134]).
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Theorem 1.1 (Korselt’s criterion [20] (1899)). A composite number m is a Car-

michael number if and only if m is squarefree and every prime divisor p of m satisfies

p− 1 | m− 1.

Korselt did not give any examples of such numbers, while Carmichael succeeded

in determining the first ones, e.g.,

561 = 3 · 11 · 17, 1105 = 5 · 13 · 17, and 1729 = 7 · 13 · 19.

Apparently unaware of Korselt’s result, Carmichael showed the following properties.

Theorem 1.2 (Carmichael [3,4] (1910,1912)). Every Carmichael number m is odd

and squarefree and has at least three prime factors. If p and q are prime divisors

of m, then

(i) p− 1 | m− 1, (ii) p− 1 | m
p
− 1, (iii) p - q − 1.

An easy consequence of part (ii) is that (see [6])

p <
√
m. (1.2)

Denote the set of Carmichael numbers by

C = {561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, . . . } .

In 1994 Alford, Granville, and Pomerance [1] proved that C is infinite, i.e., in-

finitely many Carmichael numbers exist. More precisely, they showed that if C(x)

denotes the number of Carmichael numbers less than x, then C(x) > x2/7 for suffi-

ciently large x. This was improved by Harman [13] in 2008 to

C(x) > x1/3 for all large x.

In the other direction, Erdős [9] in 1956 improved a result of Knödel [19] to show

that

C(x) < x1−c log log log x/ log log x for all large x,

where c > 0 is a constant. For which estimate is closer to the true asymptotic

for C(x), see Granville and Pomerance’s discussion in [10] (see also [24, Chap. 4,

Sec. VIII]).

The purpose of the present paper is to give a new characterization of the Car-

michael numbers in the context of p-adic theory, independently of the results of

Korselt and Carmichael in Theorems 1.1 and 1.2. The characterization originates

from a surprising link to the denominators of the Bernoulli polynomials via the

sum-of-base-p-digits function sp.



INTEGERS: 21 (2021) 3

The link is introduced in Sections 2 and 3. Section 2 also introduces a p-adically

defined set of squarefree integers S ⊃ C, and the subset of “primary Carmichael

numbers” C ′ ⊂ C. Section 4 establishes that every Carmichael number equals an

explicitly determined polygonal number.

Subsequently, Sections 5, 6, and 7 contain the postponed proofs of the results in

Sections 2, 3, and 4, respectively.

Finally, in Section 8 the set S is covered by modular subsets Sd for d = 1, 2, 3, . . . ,

providing a modular generalization of C = S1. It turns out that each Sd is contained

in a certain superset K̂d of the so-called d-Knödel numbers Kd.

2. Carmichael Numbers and Squarefree Integers

Define S to be the set of squarefree integers greater than 1:

S = {2, 3, 5, 6, 7, 10, . . . } .

Denoting by sp(n) the sum of the base-p digits of n, we further define two subsets

of S, namely,

S := {m ∈ S : p | m =⇒ sp(m) ≥ p}
and

C ′ := {m ∈ S : p | m =⇒ sp(m) = p} .

Note that C ′ is a subset of S. One computes that

S = {231, 561, 1001, 1045, 1105, 1122, 1155, 1729, 2002, . . . }
and

C ′ = {1729, 2821, 29341, 46657, 252601, 294409, 399001, . . . } .

We will show that C ′ ⊂ C (see Theorem 2.1). If m ∈ C ′, then sp(m) = p for all

primes p | m, so we call m a primary Carmichael number (hence the notation C ′,
meaning “C prime”). The first one is 1729, Ramanujan’s famous “taxicab” number,

defined by him as “the smallest number expressible as the sum of two [positive]

cubes in two different ways” (see [12, p. 12]). The first primary Carmichael number

not congruent to 1 modulo 4 is

1152271 ≡ 3 (mod 4),

while the first element of C ′ with more than three prime factors is

10606681 = 31 · 43 · 73 · 109.

We can now state our first main results. The following one extends parts of

Theorem 1.2 to a larger set.
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Theorem 2.1. There are the strict inclusions

C ′ ⊂ C ⊂ S ⊂ S.

Moreover, for any m ∈ S each prime factor p satisfies the property (1.2) that

p <
√
m. In particular, m must have at least three (respectively, four) prime factors,

if m is odd (respectively, even).

Theorem 2.1 leads to a new criterion for the Carmichael numbers.

Theorem 2.2. We have the characterization

C = {m ∈ S : p | m =⇒ sp(m) ≡ 1 (mod p− 1)} .

In other words, an integer m > 1 is a Carmichael number if and only if m is

squarefree and each of its prime divisors p satisfies both

sp(m) ≥ p and sp(m) ≡ 1 (mod p− 1).

From this characterization it follows directly that m is odd and has at least three

prime factors, each less than
√
m.

Unlike the criterion of Korselt, that in Theorem 2.2 does not assume composite-

ness. Indeed, all results of Theorems 2.1 and 2.2 are deduced only from properties of

the function sp. In this vein, we can even sharpen the consequence of Theorems 2.1

and 2.2 that p <
√
m if p | m.

Theorem 2.3. For certain subsets T ⊆ S, we have the sharp estimate

p ≤ αT
√
m (m ∈ T , p | m)

with

αT = 1
/√

2− 1

q
=

 0.7237 . . ., q = 11, if T = S,
0.7177 . . ., q = 17, if T = C,
0.7071 . . ., q = 66337, if T = C ′,

and

αT = 1
/√

3− 1

q
= 0.5789 . . . , q = 61, if T = Seven,

where Seven := {m ∈ S : m is even}.

Interestingly, to achieve the nontrivial bounds in Theorem 2.3, in each of the

sets S, C, and C ′ we find certain polygonal numbers, as discussed in Section 4 and

Table 4.1.

It is not obvious from its definition that the set S is infinite. However, that is an

immediate corollary of Theorem 2.1 and the existence of infinitely many Carmichael

numbers. An independent proof showing directly that S is infinite, without involving

the set C, would certainly be of interest.
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Corollary 2.4. The set S is infinite.

If one could show that C ′ is infinite, this would give not only a new proof of the

infinitude of Carmichael numbers, but also another proof that S is infinite.

Let C ′(x) and S(x) count the numbers of elements of C ′ and S less than x,

respectively. Table 2.1 reports the slow but steady increase in size of C ′(x) compared

to C(x) and S(x).

x C ′(x) C(x) S(x)

103 0 1 2
104 2 7 57
105 4 16 636
106 9 43 7048
107 19 105 75150
108 51 255 801931
109 107 646 8350039
1010 219 1547 86361487

Table 2.1: Distributions of C ′(x), C(x), and S(x).

For the values of C(10n) up to n = 16 and n = 21, as well as a more detailed

analysis of their distribution, see [10] and Pinch [22], respectively. The primary Car-

michael numbers with more than three prime factors seem to occur rarely. Indeed,

up to 1010 there are only five elements of C ′ with four (but not more) prime factors.

Granville and Pomerance [10] gave a precise conjecture that Carmichael numbers

with exactly three prime factors should satisfy

C3(x) = O(x1/3/ log3 x).

Heath-Brown [14] showed the upper bound C3(x) = O(x7/20+ε) for any fixed ε > 0.

3. Bernoulli Numbers and Polynomials

The Bernoulli polynomials are defined by the generating function

text

et − 1
=
∑
n≥0

Bn(x)
tn

n!
(|t| < 2π)

where

Bn(x) =

n∑
k=0

(
n

k

)
Bk x

n−k (n ≥ 0)

and Bk = Bk(0) ∈ Q is the kth Bernoulli number.
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For n ≥ 1 denote by Dn,Dn, and Dn the denominators (see [17])

Dn := denom(Bn) = 2, 6, 1, 30, 1, 42, 1, 30, 1, 66, . . . ,

Dn := denom
(
Bn(x)−Bn

)
= 1, 1, 2, 1, 6, 2, 6, 3, 10, 2, . . . ,

Dn := denom
(
Bn(x)

)
= 2, 6, 2, 30, 6, 42, 6, 30, 10, 66, . . . .

The denominators of the Bernoulli numbers are well known by the von Staudt–

Clausen theorem of 1840 (see [5, 26]) to be

Dn =


2, if n = 1,
1, if n ≥ 3 is odd,∏

p−1 |n
p, if n ≥ 2 is even.

(3.1)

The initial connection between the Carmichael numbers and the denominators

of the Bernoulli numbers and polynomials results from the known relations

m ∈ C =⇒ m | Dm−1 | Dm−1. (3.2)

The first relation, m ∈ C ⇒ m | Dm−1, actually holds as an equivalence: An odd

composite number m is a Carmichael number if and only if m divides Dm−1 (see

Pomerance, Selfridge, and Wagstaff [23, p. 1006]). The equivalence follows easily

from Korselt’s criterion and the von Staudt–Clausen theorem. The second relation,

Dm−1 | Dm−1, is easily seen, since even

Dn = lcm(Dn,Dn) (3.3)

holds for all n ≥ 1 (cf. [16, Thm. 4]). Now the sum-of-base-p-digits function sp comes

into play, as follows.

The authors [15–17] have recently shown that the denominators of the Bernoulli

polynomials Bn(x)−Bn (which have no constant term) are given by the remarkable

formula

Dn =
∏

sp(n)≥ p

p (3.4)

in which the product is finite since sp(n) = n if p > n. Moreover, the following

relation, supplementary to (3.3), holds for n ≥ 1 (see [17]):

Dn = lcm
(
Dn+1, rad(n+ 1)

)
(3.5)

where rad(n) :=
∏
p |n p.

In particular, Dn, Dn, and Dn are squarefree. Furthermore, these denominators

obey the following properties (see [17]):

Dn = lcm
(
Dn+1, rad(n+ 1)

)
, if n ≥ 3 is odd, (3.6)

Dn = lcm
(
Dn+1, rad(n+ 1)

)
, if n ≥ 2 is even, (3.7)
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and (see [15])

rad(n+ 1) | Dn, if n+ 1 is composite. (3.8)

To substantiate the relationship between the Carmichael numbers and the Ber-

noulli polynomials, we introduce for n ≥ 1 the decomposition

Dn = D>n · D⊥n (3.9)

where

D>n :=
∏
p |n

sp(n)≥ p

p and D⊥n :=
∏
p -n

sp(n)≥ p

p. (3.10)

Additionally, we define the complementary number to D>n for n ≥ 1 as

D>
?

n :=
∏
p |n

sp(n)<p

p, (3.11)

which satisfies the relation

rad(n) = D>n · D>
?

n . (3.12)

As an application of these definitions, the next theorem gives a complete descrip-

tion of the structure of the denominator Dn of the Bernoulli polynomial Bn(x) in

terms of a decomposition of Dn into three factors. (The result may be compared

to the von Staudt–Clausen theorem in (3.1), which describes the structure of the

denominator of the Bernoulli number Bn.) Furthermore, we obtain for all squarefree

numbers m > 1 a generalization of (3.2), when omitting its middle term Dm−1.

Theorem 3.1. For n ≥ 1 the denominator Dn of the Bernoulli polynomial Bn(x)

splits into the triple product

Dn = D⊥n+1 · D>n+1 · D>
?

n+1.

Moreover,

m ∈ S ⇐⇒ m | Dm−1.

The interplay of the three factors of Dn instantly yields the two relations

Dn = D⊥n+1 · rad(n+ 1) = Dn+1 · D>
?

n+1. (3.13)

Explicit product formulas for Dn, in the contexts of (3.3) and (3.13), are given

in [16, Thm. 4] and [17, Cor. 1], respectively.

We can now state our second main result. It establishes a fundamental relation-

ship between the Bernoulli polynomials and the Carmichael numbers, since C ⊂ S
by Theorem 2.1.
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Theorem 3.2. The following claims are true:

(i) The sequence (D>n )n≥1 contains all elements of S. More precisely,

m ∈ S ∪ {1} ⇐⇒ m = D>m ⇐⇒ m | Dm.

(ii) If m+ 1 is composite, then rad(m+ 1) | D⊥m.

Corollary 3.3. The sequence (D>n )n≥1 contains all the Carmichael numbers. More

precisely,

m ∈ C =⇒ m = D>m, m | Dm, m | D⊥m−1, and m | Dm−1,

but the converse does not hold.

Remark 3.4. The sequence (D⊥n)n≥1 very rarely intersects the Carmichael num-

bers. Indeed, the only example below 106 is D⊥198 = 2465 ∈ C.

Remark 3.5. Comparing the definitions of the complementary numbers D>?n and

the set S, one immediately observes that the sequence (D>?n )n≥1 cannot contain

any elements of S, and thus none of the Carmichael numbers. Interestingly, it turns

out that (D>?n )n≥1 is connected with the quotients Dn/Dn+1 and Dn/Dn+1 (as

introduced in [17]), which are integral for odd and even indices n by (3.6) and (3.7),

respectively.

Remark 3.6. It was actually the observation of the unexpected relationship

m ∈ C =⇒ m = D>m,

as stated in Corollary 3.3, which led to the new characterization of the Carmichael

numbers via the sum-of-base-p-digits function sp, given in Theorem 2.2.

4. Polygonal Numbers

Surprisingly, the polygonal numbers (see [2, Chap. XVIII] and [7, pp. 38–42]) are

connected with the Carmichael numbers and the set S.

Initially, we consider the following polygonal numbers for n ≥ 1:

Pn = n(3n− 1)/2, Hn = n(2n− 1), On = n(3n− 2),

which are the nth pentagonal, hexagonal, and octagonal numbers, respectively. They

satisfy an important property when n = p is an odd prime:

sp(Hp) = sp(Op) = p and sp(2Pp) = p+ 1.
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To establish a connection between the set S and the polygonal numbers, we first

introduce some definitions. Define P (n) to be the greatest prime factor of n if n ≥ 2,

and set P (1) := 1. Also, denote the (double-shifted) p-adic value of n by

`(n) :=

⌊
n

P (n)2

⌋
= min

p |n

⌊
n

p2

⌋
.

We shall use the abbreviation ` = `(n) later on, if there is no ambiguity in context.

Finally, we need Legendre’s formula (see [25, Sec. 5.3, p. 241]), which gives the p-adic

valuation vp of a factorial by

vp(n!) =
n− sp(n)

p− 1
. (4.1)

For simplicity, twice a polygonal number will be called a quasi polygonal number.

The next theorem shows the special cases when m ∈ S equals a (quasi) polygonal

number Hp, Op, or 2Pp with p = P (m), the classification being determined by the

parameter `(m).

Theorem 4.1. Let m ∈ S, and set p = P (m) and ` = `(m). Then the following

statements hold:

(i) We have ` ≥ 1.

(ii) There is the equivalence

` = 1 ⇐⇒ m = Hp is a hexagonal number.

(iii) There is the equivalence

` = 2 ⇐⇒ m =

{
Op, if sp(m) = p,

2Pp, if sp(m) > p.

In particular, for m ∈ C ′ we have ` = 2 if and only if m = Op is an octagonal

number.

As needed later, Table 4.1 reports the first occurrences of the polygonal numbers

Hp and Op in each of the sets S, C, and C ′, as well as the first occurrence of 2Pp
in S. In contrast to the relatively small values in Table 4.1, the exceptionally large

number 8801128801, which is indeed the least hexagonal number in C ′, could be

found only by a computer search.
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set m factors p = P (m) `(m) number

S 231 3 · 7 · 11 11 1 H11

C 561 3 · 11 · 17 17 1 H17

C ′ 8801128801 181 · 733 · 66337 66337 1 H66337

S 1045 5 · 11 · 19 19 2 O19

C 2465 5 · 17 · 29 29 2 O29

C ′ 2821 7 · 13 · 31 31 2 O31

S 11102 2 · 7 · 13 · 61 61 2 2P61

Table 4.1: First occurrences of (quasi) polygonal numbers
Hp and Op in S, C, and C ′, as well as 2Pp in S.

To generalize the results, we further consider the polygonal numbers of rank

r ≥ 3, also called r-gonal numbers, namely,

Gr
n =

1

2
(n2(r − 2)− n(r − 4)),

where Pn = G5
n, Hn = G6

n, and On = G8
n. Note though that an r-gonal number

can also be an r′-gonal number with r 6= r′; for instance, G6
n = G3

2n−1 for n ≥ 1.

Note also that Gr
1 = 1 and Gr

2 = r cover for r ≥ 3 all positive integers except 2.

For that reason, our results on polygonal numbers Gr
n will implicitly involve only

those with n ≥ 3. Clearly, for fixed n ≥ 3 the sequence of such numbers (Gr
n)r≥3 is

strictly increasing.

To extend the results of Theorem 4.1, one may ask which m ∈ S are equal to a

(quasi) polygonal number Gr
p or 2Gr

p for p = P (m) and some r ≥ 3. The example

m = 2145 = H33 = 3 · 5 · 11 · 13 ∈ S \ C

shows that m is indeed a polygonal number, but m is not of the form Gr
p with

p = P (m) = 13, as verified by the consecutive values

G29
13 = 2119 < m = 2145 < 2197 = G30

13.

The next theorem clarifies this situation by showing that an element m ∈ S
equals a (quasi) polygonal number Gr

p or 2Gr
p with p = P (m) if and only if sp(m)

satisfies certain conditions.

Theorem 4.2. Let m ∈ S, and set p = P (m) and ` = `(m). Further define the

integers η ≥ 1 and 0 ≤ µ < p− 1 satisfying

sp(m) = η(p− 1) + µ. (4.2)

The number m equals a (quasi) polygonal number Gr
p or 2Gr

p for some r ≥ 3 if and

only if µ can be written as

µ = d+ e
p− 1

2
with (d, e) ∈ {(1, 0), (1, 1), (2, 0)} . (4.3)
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Then in these cases we have that

m = d ·Gr
p with r =

2

d
(`+ vp(`!) + η + d) + e. (4.4)

As an application we obtain the following corollary for the Carmichael numbers.

Corollary 4.3. All Carmichael numbers are polygonal numbers. More precisely,

if m ∈ C, p = P (m), and ` = `(m), then

m = Gr
p with r = 2(`+ vp(`!) + η + 1), (4.5)

where η ≥ 1 is the integer satisfying sp(m) = η(p − 1) + 1. In particular, relation

(4.5) holds with η = 1 for all primary Carmichael numbers m ∈ C ′.

The first few numbers satisfying the conditions of Theorem 4.1 are listed in

Table 4.2. Additional numbers below 7000 satisfying the conditions of Theorem 4.2,

but not covered by Theorem 4.1, are listed in Table 4.3. As a special case, the

taxicab number 1729 equals the 12–gonal number G12
19. Regarding Corollary 4.3,

the first element of C with η = 2 is

1050985 = 5 · 13 · 19 · 23 · 37 = G1580
37 .

m p = P (m) sp(m) `(m) number

231 ∈ S 11 11 1 H11

561 ∈ C 17 17 1 H17

1045 ∈ S 19 19 2 O19

2465 ∈ C 29 29 2 O29

2821 ∈ C ′ 31 31 2 O31

3655 ∈ S 43 43 1 H43

5565 ∈ S 53 53 1 H53

8911 ∈ C 67 67 1 H67

10585 ∈ C 73 73 1 H73

11102 ∈ S 61 62 2 2P61

Table 4.2: The first (quasi) polygonal numbers
Hp, Op, and 2Pp in S.
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m p = P (m) sp(m) `(m) number

1105 ∈ C 17 17 3 G10
17

1122 ∈ S 17 18 3 2H17

1729 ∈ C ′ 19 19 4 G12
19

3458 ∈ S 19 20 9 2G12
19

3570 ∈ S 17 18 12 2G15
17

5005 ∈ S 13 13 29 G66
13

5642 ∈ S 31 32 5 2O31

6118 ∈ S 23 24 11 2G14
23

6545 ∈ S 17 17 22 G50
17

6601 ∈ C 41 41 3 G10
41

6734 ∈ S 37 38 4 2G7
37

Table 4.3: Additional (quasi) polygonal numbers
Gr

p and 2Gr
p in S below 7000.

5. Proofs of Theorems 2.1, 2.2, and 2.3

Recall the definitions and notation of Section 4. From Legendre’s formula (4.1) one

easily sees that

n ≡ sp(n) (mod p− 1). (5.1)

Proof of Theorem 2.1. By the definitions and the computed examples, we immedi-

ately obtain the strict inclusions C ′ ⊂ S ⊂ S.

Given m ∈ S, we first show that p | m implies p <
√
m. As m is squarefree, we

can write
m

p
= a0 + a1 p (5.2)

with 1 ≤ a0 ≤ p− 1 and a1 ≥ 0. Since

a0 + sp(a1) = sp(m/p) = sp(m) ≥ p, (5.3)

we infer that a1 ≥ 1. Consequently, we obtain a0 +a1 p > p, implying that
√
m > p.

As a result, m must have at least three prime factors.

Now let m be even. Suppose to the contrary that in this case m has only three

prime factors. Hence we have

m = 2qp with p > q, (5.4)

where p and q are odd primes. By sp(2q) = sp(m) ≥ p, we infer that 2q ≥ p.

Together with (5.4) we then obtain that 2p > 2q > p. Using (5.2), we conclude
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that m/p = 2q = a0 + a1 p with a1 = 1. Since a0 = 2q − p < p − 1, it follows that

sp(m) < p, giving a contradiction. Thus, if m is even, then m must have at least

four prime factors.

Next, we show that C is equal to the set

S̃ := {m ∈ S : p | m =⇒ sp(m) ≡ 1 (mod p− 1)} .

Resolving the definition of S, for m ∈ S̃ we have the condition

p | m =⇒ sp(m) ≥ p and sp(m) ≡ 1 (mod p− 1). (5.5)

Moreover, applying (5.1) then yields

m ≡ sp(m) ≡ 1 (mod p− 1). (5.6)

For any n ∈ S, we have n > 1 is squarefree, so

sp(n) = 1 ⇐⇒ n = p. (5.7)

By (5.6) and (5.7), condition (5.5) implies that

m is composite, and p | m =⇒ p− 1 | m− 1. (5.8)

Thus m satisfies Korselt’s criterion. Hence, we conclude that S̃ ⊆ C.
Conversely, any m ∈ C satisfies (5.8). In view of (5.1), we then have sp(m) ≡ 1

(mod p−1). Since m is squarefree and composite, from (5.7) we deduce that sp(m) ≥
p. This implies that (5.5) holds, so m ∈ S̃ and consequently C ⊆ S̃, proving that

C = S̃.

Now, if m ∈ C ′, then (5.5) holds, so m ∈ C. Considering the computed examples

again, we finally deduce that C ′ ⊂ C ⊂ S ⊂ S. This completes the proof of the

theorem.

Proof of Theorem 2.2. The first statement is the equality C = S̃, established in the

proof of Theorem 2.1. Since m ∈ S̃ if and only if (5.5) holds, the second statement

then follows.

Moreover, Theorem 2.1 also implies by C ⊂ S that any m ∈ C has at least three

prime factors, each satisfying p <
√
m. As m is composite and squarefree, an odd

prime p divides m. Using (5.1), we then get relation (5.6), so p− 1 | m− 1, whence

m is odd.

Proof of Theorem 2.3. Consider a non-empty subset T ⊆ S and define

αT := sup
m∈T

P (m)√
m

,
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where αT ≤ 1 by Theorem 2.1. Clearly, this definition includes for any m ∈ T that

p | m =⇒ p ≤ αT
√
m, (5.9)

but it suffices to study the case where p = P (m) is the greatest prime divisor of

m. To show that the estimate in (5.9) is sharp, we further have to find an explicit

m′ ∈ T such that αT = P (m′)/
√
m′ holds.

Now, let m ∈ T . In view of (5.2) and (5.3), we obtain by (5.9) that

1

α2
T
≤ m

P (m)2
=

a0
P (m)

+ a1 (5.10)

with 1 ≤ a0 ≤ P (m) − 1 and a1 ≥ 1. Thus, we are interested in finding firstly

a minimal number a1, and secondly a minimal fraction a0/P (m) ∈ (0, 1). If they

exist, then αT is determined.

Next, we assume that there exists an element m ∈ T with a1 = 1. (This is true

for the sets of interest T = S, C, C ′.) From now on, let p = P (m). Since m ∈ S, we

have the condition sp(m) = a0 + a1 ≥ p, so a0 = p− 1. Then (5.10) becomes

1

α2
T
≤ m

p2
=
p− 1

p
+ 1 = 2− 1

p
. (5.11)

Hence, to determine a minimal αT , we also have to determine a minimal p satisfying

(5.11). Since p = P (m) and m = p(2p − 1), the factor p strictly increases with m.

As a consequence, we can identify the aforementioned element m′ as the minimal

element m′ ∈ T for which a1 = 1. Finally, we achieve that

αT = 1
/√

2− 1

P (m′)
.

Now we use a link to the polygonal numbers. Since

m′ = p(2p− 1) = Hp, (5.12)

we have to find the least hexagonal number Hp in each of the sets T = S, C, C ′.
This is done in Table 4.1, providing the solutions

P (m′) = 11, 17, 66337 for T = S, C, C ′,

respectively.

There remains the case when m ∈ Seven. For this purpose, let T = Seven with

m ∈ T and p = P (m). Note that p is odd, since m is composite. We adapt and

reuse the arguments that lead to (5.10) and (5.11). By (5.10) we have to find again

a minimal a1 ≥ 1. The case a1 = 1 implies (5.12) and so an odd m = Hp for odd p.

Therefore, we show that case a1 = 2 works, as follows. By sp(m) = a0 + a1 ≥ p,
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we obtain two solutions a0 = p − 2 and a0 = p − 1. Since a0 = p − 2 implies

m = p(3p− 2) = Op, being odd for odd p, there remains the case a0 = p− 1. Then

we get m = p(3p − 1) = 2Pp, which is always even. Similar to (5.11), we deduce

that
1

α2
T
≤ m

p2
=
p− 1

p
+ 2 = 3− 1

p
.

To find the minimal element m′ ∈ T with a1 = 2, we have to find the least

quasi pentagonal number 2Pp in T . Table 4.1 shows that P (m′) = 61. With that

we finally obtain

αT = 1
/√

3− 1

P (m′)
.

This completes the proof of the theorem.

6. Proofs of Theorems 3.1 and 3.2 and Corollary 3.3

Proof of Theorem 3.1. From relations (3.5) and (3.12) we get

Dn = lcm
(
Dn+1,D>n+1 · D>

?

n+1

)
,

and the decomposition (3.9) gives Dn+1 = D>n+1 · D⊥n+1. Since D>n+1, D⊥n+1, and

D>?n+1 are pairwise coprime by the definitions in (3.10) and (3.11), the desired triple

product formula follows.

If m ∈ S, then m = rad(m) > 1. By relation (3.5), we then have m | Dm−1.

Conversely, if m | Dm−1, then m > 1 is squarefree, so m ∈ S. This proves the

required equivalence and completes the proof of the theorem.

Proof of Theorem 3.2. We have to show two parts.

(i). It suffices to prove the second statement. The definitions of S and D>n yield

immediately that m ∈ S ∪ {1} if and only if D>m = m. Since D>n | Dn by (3.9), we

have that D>m = m implies m | Dm. Conversely, if m | Dm, then D>m = m by (3.4)

and (3.9). This proves (i).

(ii). If m+ 1 is composite, then we have by (3.8) and (3.9) that

rad(m+ 1) | Dm = D>m · D⊥m.

Since gcd(m,m+ 1) = 1, we infer by (3.10) that rad(m+ 1) | D⊥m, proving (ii).

Proof of Corollary 3.3. The implication follows from Theorem 3.2 parts (i) and (ii),

using the strict inclusion C ⊂ S and the compositeness of Carmichael numbers. The

converse does not hold, by Theorem 3.2 part (i) and considering S \ C.



INTEGERS: 21 (2021) 16

7. Proofs of Theorems 4.1 and 4.2 and Corollary 4.3

Proof of Theorem 4.1. Fix m ∈ S and set p = P (m) and ` = `(m). We have to

show three parts.

(i). As m is squarefree, we obtain

m

p
= a0 + a1 p = a0 + ` p, (7.1)

where 1 ≤ a0 ≤ p− 1 and a1 ≥ 0. The case a1 = 0 would imply sp(m) = sp(m/p) =

a0 < p. Since sp(m) ≥ p by m ∈ S, we must have ` = a1 ≥ 1. We shall use (7.1)

implicitly in the remaining parts.

(ii). If ` = 1, then sp(m) = a0 +1 ≥ p, since m ∈ S. But a0 ≤ p−1, so a0 = p−1.

Thus m = p(p− 1 + p) = Hp. Conversely, if m = Hp, then ` = a1 = 1.

(iii). Assume that sp(m) = p. If ` = 2, then a0 + 2 = sp(m) = p, so a0 = p − 2

and m = p(p− 2 + 2p) = Op. Conversely, if m = Op, then ` = a1 = 2.

In particular, it then follows for m ∈ C ′ that ` = 2 if and only if m = Op, since

sp(m) = p by the definition of C ′.
Assume now that sp(m) > p. If ` = 2, then a0 + 2 = sp(m) > p, so a0 > p − 2.

But a0 ≤ p−1, so a0 = p−1 and m = p(p−1+2p) = 2Pp. Conversely, if m = 2Pp,

then ` = a1 = 2. This proves the theorem.

Proof of Theorem 4.2. Fix m ∈ S and set p = P (m) and ` = `(m). Since sp(m) ≥ p,
we can determine the integers η ≥ 1 and 0 ≤ µ < p − 1 satisfying (4.2). Again, as

in (7.1) we have m/p = a0 + ` p, where 1 ≤ a0 ≤ p − 1 and ` ≥ 1. Using (4.2) we

then obtain
m

p
= η(p− 1) + µ− sp(`) + ` p.

Now let d ∈ {1, 2}. Resolving the desired equality

d ·Gr
p = m

yields the equation

d

2
(p2(r − 2)− p(r − 4)) = p (η(p− 1) + µ− sp(`) + ` p)

with solution

r =
2

d

(
`+

`− sp(`)
p− 1

+ η + d+
µ− d
p− 1

)
. (7.2)

By Legendre’s formula (4.1) we have

`− sp(`)
p− 1

= vp(`!). (7.3)

Since d | 2 and r ∈ Z, formulas (7.2) and (7.3) imply the condition

ẽ :=
2

d
· µ− d
p− 1

∈ Z. (7.4)
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Since m ∈ S has at least three prime factors by Theorem 2.1, we have p =

P (m) ≥ 5. This and the fact that 0 ≤ µ < p − 1 allow us to continue deriving

solutions of (7.4) for µ, as follows.

In case d = 2, we infer that µ = 2 and ẽ = 0. In case d = 1, we get the solutions

µ = 1 and ẽ = 0, as well as µ = 1 + (p−1)/2 and ẽ = 1. One easily observes that all

solutions of (7.4) for µ, d, and ẽ coincide with condition (4.3) when taking e = ẽ.

Finally, relation (4.4) with e = ẽ follows from (7.2) by considering (7.3) and (7.4).

This completes the proof of the theorem.

Proof of Corollary 4.3. If m ∈ C, then sp(m) = η(p − 1) + 1 with η ≥ 1 by Theo-

rem 2.2. In particular, if m ∈ C ′, then η = 1 by definition of the set C ′. Since C ⊂ S
by Theorem 2.1, relation (4.5) follows by applying Theorem 4.2 with parameters

(d, e) = (1, 0).

8. Modular Properties of the Set S

Define for a positive integer d the subset Sd of S by

Sd := {m ∈ S : p | m =⇒ sp(m) ≡ d (mod p− 1)} .

Theorem 2.2 shows that S1 = C. Thus the sets Sd can be viewed as a generalization,

with the Carmichael numbers as a special case. The first terms of the sets Sd for

d = 1, 2, 3 are (compare Table 8.1)

S1 = {561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, . . . } ,
S2 = {1122, 3458, 5642, 6734, 11102, 13202, 17390, 17822, . . . } ,
S3 = {3003, 3315, 5187, 7395, 8463, 14763, 19803, 26733, . . . } .

Let ϕ denote Euler’s totient function. The Carmichael function λ (see [3]) is

defined for m = pe11 · · · p
ek
k with p1 < · · · < pk by

λ(m) = lcm(λ(pe11 ), . . . , λ(pekk )),

where λ(pe) = δ ϕ(pe) with δ = 1
2 if p = 2 and e ≥ 3, otherwise δ = 1.

For positive integers m the Carmichael function λ has the property that

aλ(m) ≡ 1 (mod m) (8.1)

holds for all integers a coprime to m, where λ(m) is the smallest possible positive

exponent. Since (8.1) generalizes the Euler–Fermat congruence, it follows that λ(m)

divides ϕ(m). Moreover, for m ∈ S we have the relation

λ(m) = lcm(p1 − 1, . . . , pk − 1), (8.2)
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where

m = p1 · · · pk ≥ 231 and k ≥ 3. (8.3)

Define the function ρ for positive integers m by

ρ(1) = 0, ρ(2) = 1,

and

ρ(m) ≡ m (mod λ(m)) (m ≥ 3), (8.4)

being the least positive residue.

In view of (8.1) and (8.4) the Fermat congruence (1.1) can be restated for m ≥ 1

in the form

am−ρ(m) ≡ 1 (mod m),

holding for all integers a coprime to m. As a special case, one has

ρ(m) = 1 ⇐⇒ m is prime or m ∈ C,

which Carmichael proved with m ≡ 1 (mod λ(m)) in place of ρ(m) = 1.

Moreover, since λ(m) is even for m ≥ 3 by construction, we have the parity

relation

ρ(m) ≡ m (mod 2) (m ≥ 3). (8.5)

m 231 561 1001 1045 1105 1122 1155 1729 2002
ρ(m) 21 1 41 145 1 2 15 1 22
λ(m) 30 80 60 180 48 80 60 36 60

Table 8.1: First values of ρ(m) and λ(m) for m ∈ S.

Theorem 8.1. If m ∈ S, then ρ(m) equals the least positive index d < λ(m) such

that m ∈ Sd. Moreover, we have

m ∈ Sd+ j λ(m) (j ∈ Z≥0).

Proof. Given m ∈ S, factor m = p1 · · · pk and consider by (8.3) and (8.4) the

congruences

d ≡ m ≡ ρ(m) (mod λ(m)).

From (5.1) and (8.2), we further deduce the system of congruences

d ≡ m ≡ spν (m) (mod pν − 1) (ν = 1, . . . , k).

Thus, d = ρ(m) < λ(m) is the least positive index such that m ∈ Sd. Moreover, it

also follows that m ∈ Sd+ j λ(m) for j ≥ 1.
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Define the d-Knödel numbers Kd (see [18]) to be the set of composite integers

m > d such that

am−d ≡ 1 (mod m) (8.6)

holds for all integers a coprime to m. (Note that the usual but equivalent definition

is further restricted to 1 < a < m.) For example, the 1-Knödel numbers are the

Carmichael numbers: K1 = C. For d = 2, 3 the d-Knödel numbers are

K2 = {4, 6, 8, 10, 12, 14, 22, 24, 26, 30, 34, 38, 46, 56, 58, 62, 74, . . . } ,
K3 = {9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, . . . } .

Makowski [21] showed that each of the sets Kd for d ≥ 2 is infinite. More precisely,

for given d ≥ 2 he proved the existence of infinitely many primes p > d such that

(see [24, pp. 125–126])

dp ∈ Kd. (8.7)

Our final theorem shows properties of the sets Sd, as well as a connection with

generalizations of the sets Kd. Avoiding the restriction m > d on numbers m ∈ Kd,
we define the superset K̂d of Kd to be all composites m > 1 satisfying (8.6) for all

a coprime to m. Note that K1 = K̂1 and, in case d is composite, d ∈ K̂d.

Theorem 8.2. The following statements hold:

(i) We have S1 = K1 = C and Sd ⊂ K̂d for d ≥ 2.

(ii) All elements of Sd have the same parity as d for d ≥ 1.

(iii) A cover of the set S is

S =
⋃
d≥ 1

Sd.

Proof. We have to show three parts:

(i). We have S1 = K1 = C by definition. Fix d ≥ 2. If m ∈ Sd, then Theorem 8.1

implies that d ≡ ρ(m) (mod λ(m)). By (8.3) and (8.4) this translates to d ≡ m

(mod λ(m)). Finally, (8.1) and (8.6) imply that m ∈ K̂d. This shows that Sd ⊆ K̂d.
By (8.7) there exists a prime p > d such that m′ = dp ∈ Kd ⊆ K̂d. Since

sp(m
′) = d < p, it follows that m′ /∈ S. This implies that Sd 6= K̂d, and finally

Sd ⊂ K̂d.
(ii). Fix d ≥ 1 and m ∈ Sd. As in part (i) we have d ≡ ρ(m) ≡ m (mod λ(m)).

By (8.5) the result follows.

(iii). Set U =
⋃
d≥ 1 Sd. Since Sd ⊂ S for d ≥ 1, it follows that U ⊆ S. By

Theorem 8.1 we obtain for any m ∈ S an index d = ρ(m) such that m ∈ Sd. As a

consequence, S ⊆ U and finally S = U .
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