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Abstract

We present a new proof of the Kővári–Sós–Turán theorem that ex(n,Ks,t) =
O(n2−1/t) for s, t ≥ 2. We also obtain generalizations of the Kővári–Sós–Turán
theorem for d-uniform hypergraphs and d-dimensional 0-1 matrices, some of which
we show are sharp. For any d-uniform hypergraph H, let exd(n,H) be the maxi-
mum possible number of edges in an H-free d-uniform hypergraph on n vertices. Let
KH,t be the (d+ 1)-uniform hypergraph obtained from H by adding t new vertices
v1, . . . , vt and replacing every edge e in E(H) with t edges e∪ {v1} , . . . , e∪ {vt} in
E(KH,t). For example, if H is the 1-uniform hypergraph on s vertices with s edges,
then KH,t = Ks,t. We prove that exd+1(n,KH,t) = O(exd(n,H)1/tnd+1−d/t + tnd)
for any d-uniform hypergraph H with at least two edges such that exd(n,H) =
o(nd). This implies that exd+1(n,KH,t) = O(nd+1−1/t) for any d-uniform hy-
pergraph H with at least two edges such that exd(n,H) = O(nd−1), which im-
plies the Kővári–Sós–Turán theorem in the d = 1 case. This also implies that
exd+1(n,KH,t) = O(nd+1−1/t) when H is a d-uniform hypergraph with at least two
edges in which all edges are pairwise disjoint, which generalizes an upper bound of
Mubayi and Verstraëte. Our bounds for 0-1 matrix Turán problems are analogous,
though for 0-1 matrices we show that the bounds are sharp up to a constant factor
in some cases.

1. Introduction

The Kővári–Sós–Turán theorem is one of the most famous results in extremal com-

binatorics [16, 8, 10]. The theorem states that the maximum number of edges in

a Ks,t-free graph of order n is O(n2−1/t). There are multiple known proofs of this

theorem, including a standard double-counting proof that uses Jensen’s inequality,

as well as a proof that uses dependent random choice and Jensen’s inequality [2].

In this paper, we present a simple new method for proving the bound in the

Kővári–Sós–Turán theorem. The method is based on techniques used in Nivasch’s

bounds on Davenport–Schinzel sequences [19] and Alon et al.’s bounds on interval
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chains [1]. This new proof gives a simple way to teach the proof of the Kővári–

Sós–Turán theorem to students that are not familiar with convexity, and the same

method can be used to prove a generalization of the Kővári–Sós–Turán theorem for

uniform hypergraphs.

In [19], Nivasch found upper bounds on the maximum lengths of Davenport–

Schinzel sequences using two different methods. Both methods gave the same

bounds, but the first method was more like the proofs in past papers on Davenport–

Schinzel sequences, and the second method was similar to proofs about interval

chains in [1]. The second method in [19] was much simpler than the first for prov-

ing bounds on Davenport–Schinzel sequences, so we imitate the second method here

for graph, hypergraph, and 0-1 matrix Turán problems.

Let exd(n,H) denote the maximum number of edges in an H-free d-uniform

hypergraph on n vertices. Let KH,t be the (d + 1)-uniform hypergraph obtained

from H by adding t new vertices v1, . . . , vt and replacing every edge e in E(H) with

e ∪ {v1} , . . . , e ∪ {vt} in E(KH,t). For example, if H is the 1-uniform hypergraph

of order s with s edges, then KH,t = Ks,t. Mubayi and Verstraëte [18] proved that

ex3(n,KH,t) = O(n3−1/t) when H is a matching.

In Section 2, we prove that exd+1(n,KH,t) = O(exd(n,H)1/tnd+1−d/t + tnd) for

any d-uniform hypergraph H with at least two edges such that exd(n,H) = o(nd),

giving an alternative proof of the Kővári–Sós–Turán theorem when H is the 1-

uniform hypergraph of order s with s edges. As a corollary, this implies that

exd+1(n,KH,t) = O(nd+1−1/t) when H is a d-uniform hypergraph with at least

two edges in which all edges are pairwise disjoint, generalizing the upper bound of

Mubayi and Verstraëte from [18]. In Section 3, we discuss analogous results about

d-dimensional 0-1 matrices that can be proved with similar methods.

2. The Letter Method

In order to illustrate the idea of the letter method, we first reprove the Kővári–

Sós–Turán theorem using the letter method, and then we use the method to obtain

a generalization. We start by defining a lettered graph as the structure obtained

from labeling each edge of an ordered graph with a letter such that two edges can

be labeled with the same letter only if they have the same greatest vertex. Given

a graph H, we say that a lettered graph is H-free if its underlying graph is H-free.

For any graph H, let f(n, k,H) denote the maximum possible number of distinct

letters in an H-free lettered graph on n vertices in which every letter occurs at

least k times. The next lemma is analogous to inequalities in [19, 4, 11, 13] about

sequences and 0-1 matrices, and it is proved similarly.

Lemma 2.1. For all positive integers n, k and graphs H, we have ex(n,H) ≤
k(f(n, k,H) + n).
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Proof. Start with an H-free graph G of order n with ex(n,H) edges. Order the

vertices of G arbitrarily to create an ordered graph Q. For each vertex v in V (Q)

in order from greatest to least, label the unlabeled edges adjacent to v in any order

with letters v0, v1, . . . , only using each letter vi exactly k times and deleting up

to k − 1 remaining edges adjacent to v if k does not divide the total number of

edges in which v is the greatest vertex. Observe that the new lettered graph has at

most f(n, k,H) distinct letters with every letter occurring exactly k times, and it is

H-free. 2

When combined with Lemma 2.1, the next lemma will complete our proof of the

Kővári–Sós–Turán theorem using the letter method. We use Stirling’s bound in the

proof of the next lemma, but it is not actually necessary. We explain after the proof

how the use of Stirling’s bound can be replaced with an elementary argument.

Lemma 2.2. For s, t ≥ 2 and k = d2en1−1/t(s − 1)1/te, we have f(n, k,Ks,t) =

O(t(n
s )1/t).

Proof. Suppose for contradiction that there exists a Ks,t-free lettered graph Q on

n vertices with r = b te ( n
s−1 )1/tc distinct letters in which every letter occurs at least

k times. Suppose that n is sufficiently large so that r ≥ t
2e ( n

s−1 )1/t. Without loss

of generality, suppose that every letter in Q occurs exactly k times.

For each vertex z ∈ V (Q), define deg>(z) to be the number of edges in E(Q)

that contain z and a greater vertex in the ordering. Let p be the number of vertices

z of V (Q) with deg>(z) > 0. The number of t-tuples of edges in E(Q) that have the

same least vertex is equal to
∑

z:deg>(z)≥t
(
deg>(z)

t

)
, which is at most

(
r
t

)
(s− 1), or

else Q would contain a copy of Ks,t. This follows by the pigeonhole principle, since

every t-tuple of edges in E(Q) that have the same least vertex must have different

letters on each edge.

Then kr =
∑

z deg>(z) and we have the following inequality.

(t− 1)p ≥∑
z:deg>(z)<t

deg>(z) +
∑

z:deg>(z)≥t

(t− 1) =

∑
z:deg>(z)<t

deg>(z) +
∑

z:deg>(z)≥t

deg>(z)−
∑

z:deg>(z)≥t

(deg>(z)− t + 1) =

∑
z

deg>(z)−
∑

z:deg>(z)≥t

(deg>(z)− t + 1) =

kr −
∑

z:deg>(z)≥t

(deg>(z)− t + 1).
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In the following, we have already proved the first inequality. The second inequal-

ity follows since
(
x
t

)
=

∏t
i=1(x+1−i)∏t
i=1(t+1−i) ≥ x − t + 1 for x ≥ t, since the ith term in

the numerator is at least the ith term in the denominator for each i ≤ t − 1. The

third inequality was explained in the last full paragraph, and the fourth inequality

follows from the factorial definition of binomial coefficients. The fifth inequality

follows from the definition of r, which implies that rt(s−1)
t! ≤ ( t

e )
t

t! n, and the as-

sumption that n is sufficiently large so that r ≥ t
2e ( n

s−1 )1/t, which implies that

kr ≥ tn. The last inequality follows from Stirling’s bound.

(t− 1)p ≥

kr −
∑

z:deg>(z)≥t

(deg>(z)− t + 1) ≥

kr −
∑

z:deg>(z)≥t

(
deg>(z)

t

)
≥

kr −
(
r

t

)
(s− 1) ≥

kr − rt(s− 1)

t!
≥

tn−
( t
e )t

t!
n > (t− 1)n.

However p ≤ n, a contradiction. 2

Combining the last two lemmas gives the next theorem.

Theorem 2.3. For fixed s, t ≥ 2, we have ex(n,Ks,t) = O(s1/tn2−1/t + tn).

The use of Stirling’s bound in Lemma 2.5 may seem to make the proof non-

elementary, but it was unnecessary. All we need is that there exists some constant

c such that t! >
(
t
c

)t
for all t > 1, and then we can replace each e in the last

proof with c. It is simple to show this by induction, e.g., for c = 8. It is clearly

true for t ≤ 8, which covers the base case. For the inductive step, if we assume

that t! >
(
t
8

)t
, then we obtain the even case as follows. The first inequality follows

since
∏2t

i=t+1 i > tt. The second inequality follows since tt =
(
t
4

)t
4t and t! >

(
t
8

)t
by inductive hypothesis. The equality follows by cancellation and rearranging the

terms, and the final inequality follows because 2t > 1.
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(2t)! >

ttt! >(
t

4

)t

4t
(
t

8

)t

=(
t

4

)2t

2t >(
t

4

)2t

.

The odd case is obtained similarly. The first equality is immediate, and the first

inequality follows since we already proved in the even case that (2t)! >
(
t
4

)2t
2t.

The second inequality follows since 2t + 1 > 2t+1
8 and (1 + 1

2t )
2 < 2 for t > 1. The

final equality follows by cancellation and rearranging the terms.

(2t + 1)! =

(2t + 1)(2t)! >(
t

4

)2t

2t(2t + 1) >(
t

4

)2t(
1 +

1

2t

)2t(
2t + 1

8

)
=(

2t + 1

8

)2t+1

.

Thus the whole proof is elementary. Now we prove a generalization of the Kővári–

Sós–Turán theorem. An ordered d-uniform hypergraph is a d-uniform hypergraph

with a linear order on the vertices. We define a lettered d-uniform hypergraph as

the structure obtained from labeling each edge of an ordered d-uniform hypergraph

with a letter such that two edges can be labeled with the same letter only if they

have the same greatest vertex. Given a d-uniform hypergraph H, we say that a

lettered d-uniform hypergraph is H-free if its underlying d-uniform hypergraph is

H-free. For any d-uniform hypergraph H, let fd(n, k,H) denote the maximum

possible number of distinct letters in an H-free lettered d-uniform hypergraph on n

vertices in which every letter occurs at least k times.

Lemma 2.4. For all positive integers n, k and d-uniform hypergraphs H, we have

exd(n,H) ≤ k(fd(n, k,H) + n).

Proof. Start with a d-uniform H-free hypergraph Q of order n with exd(n,H) edges.

Order the vertices of Q arbitrarily. For each vertex v in V (Q) in order from greatest
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to least, label the unlabeled edges adjacent to v in any order with letters v0, v1, . . . ,

only using each letter vi exactly k times and deleting up to k − 1 remaining edges

adjacent to v if k does not divide the total number of edges in which v is the greatest

vertex. Observe that the new lettered hypergraph has at most fd(n, k,H) distinct

letters with every letter occurring exactly k times, and it is H-free. 2

Lemma 2.5. For t ≥ 2, H a d-uniform hypergraph with at least two edges such that

exd(n,H) = o(nd), and k = d2end(1−1/t) exd(n,H)1/te, we have fd+1(n, k,KH,t) =

O(t( nd

exd(n,H) )
1/t).

Proof. Suppose for contradiction that there exists a KH,t-free lettered (d + 1)-

uniform hypergraph Q on n vertices with r = b te ( nd

exd(n,H) )
1/tc distinct letters in

which every letter occurs at least k times. Suppose that n is sufficiently large

so that r ≥ t
2e ( nd

exd(n,H) )
1/t. The fact that there is such an n follows because

exd(n,H) = o(nd). Without loss of generality, suppose that every letter in Q oc-

curs exactly k times.

For each d-subset z of V (Q), define deg>(z) to be the number of edges in E(Q)

that contain all of the vertices in z and a greater vertex in the ordering. Let p be

the number of d-subsets z of V (Q) with deg>(z) > 0. The number of t-tuples of

edges in E(Q) that have the same d least vertices is equal to
∑

z:deg>(z)≥t
(
deg>(z)

t

)
,

which is at most
(
r
t

)
exd(n,H), or else Q would contain a copy of KH,t. This follows

by the pigeonhole principle, since every t-tuple of edges in E(Q) that have the same

d least vertices must have different letters on each edge.

Then kr =
∑

z deg>(z) and the following string of inequalities follows by an

analogous argument to the string of inequalities in Lemma 2.2.

(t− 1)p ≥

kr −
∑

z:deg>(z)≥t

(deg>(z)− t + 1) ≥

kr −
∑

z:deg>(z)≥t

(
deg>(z)

t

)
≥

kr −
(
r

t

)
exd(n,H) ≥

kr − rt exd(n,H)

t!
≥

tnd −
( t
e )t

t!
nd > (t− 1)nd.

However p ≤
(
n
d

)
, a contradiction. 2
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Theorem 2.6. For fixed t ≥ 2 and d-uniform hypergraph H with at least two edges

such that exd(n,H) = o(nd), we have exd+1(n,KH,t) = O(exd(n,H)1/tnd+1−d/t +

tnd).

Corollary 2.7. If H is a d-uniform hypergraph with at least two edges in which all

edges are pairwise disjoint, then exd+1(n,KH,t) = O(nd+1−1/t).

Proof. Any d-uniform hypergraph of order n with at least kd
(

n
d−1
)

edges must

have at least k disjoint edges, since there can be at most x
(

n
d−1
)

edges that in-

tersect any given set of x distinct vertices. Thus if H is a d-uniform hypergraph in

which all edges are pairwise disjoint, then exd(n,H) = O(nd−1). So the bound on

exd+1(n,KH,t) follows from Theorem 2.6. 2

The last corollary yields the bound of Mubayi and Verstraëte from [18] when

d = 2.

3. 0-1 Matrices

Using the same method, we can get similar bounds for Turán-type problems on

d-dimensional 0-1 matrices. In order to state these results, we introduce more

terminology. We say that d-dimensional 0-1 matrix A contains d-dimensional 0-1

matrix B if some submatrix of A can be turned into B by changing some nonnegative

number of ones to zeroes. Otherwise A avoids B. For any d-dimensional 0-1 matrix

Q, define ex(n,Q, d) to be the maximum number of ones in a d-dimensional 0-1

matrix of dimensions n× · · · × n that avoids Q.

As with the case of d-uniform hypergraphs, most of the past research on the topic

of d-dimensional 0-1 matrices has focused on the case d = 2. We mention several

results for d = 2 that have been generalized to higher values of d. For example,

Klazar and Marcus [15] proved that ex(n, P, d) = O(nd−1) for every d-dimensional

permutation matrix P , generalizing the result of Marcus and Tardos [17]. Geneson

and Tian [14] sharpened this bound by proving that ex(n, P, d) = 2O(k)nd−1 for d-

dimensional permutation matrices P of sidelength k, generalizing a result of Fox [6].

Geneson and Tian also proved that ex(n, P, d) = O(nd−1) for every d-dimensional

double permutation matrix P , generalizing the upper bound in [12].

In order to state the next result, we define QB,t to be the (d + 1)-dimensional

0-1 matrix obtained from the d-dimensional 0-1 matrix B by stacking t copies of B

with the same orientation in the direction of the new dimension. In other words,

entry (x1, . . . , xd, i) of QB,t is 1 if and only if entry (x1, . . . , xd) of B is 1 for each

1 ≤ i ≤ t. For example if B is the 1-dimensional matrix of length 4 with all entries

equal to 1, then QB,t is the 4× t matrix of all ones.
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Theorem 3.1. 1. For fixed t and d-dimensional 0-1 matrix B with at least two

ones, ex(n,QB,t, d + 1) = O(ex(n,B, d)1/tnd+1−d/t).

2. For any d-dimensional 0-1 matrix B with at least two ones such that ex(n,B, d) =

O(nd−1), we have ex(n,QB,t, d+1) = O(nd+1−1/t). In particular, ex(n,QB,2, d+

1) = Θ(nd+1/2) for any d-dimensional 0-1 matrix B with at least two ones

such that ex(n,B, d) = O(nd−1). Moreover, ex(n,QB,3, d + 1) = Θ(nd+2/3)

for any d-dimensional 0-1 matrix B with at least three ones differing in the

first coordinate such that ex(n,B, d) = O(nd−1).

Proof. The proof for the upper bounds is similar to the proof of Lemma 2.5. We

define a lettered d-dimensional 0-1 matrix as the structure obtained from labeling

each one of a d-dimensional 0-1 matrix with a letter such that two ones can be

labeled with the same letter only if they have the same last coordinate. Given a d-

dimensional 0-1 matrix B, we say that a lettered d-dimensional 0-1 matrix is B-free

if its underlying d-dimensional 0-1 matrix is B-free.

For any d-dimensional 0-1 matrix B, let f(n, k,B, d) denote the maximum pos-

sible number of distinct letters in a B-free lettered d-dimensional 0-1 matrix of

dimensions n× · · · × n in which every letter occurs at least k times. As in Lemma

2.4, we have ex(n,B, d) ≤ k(f(n, k,B, d) + n) for all positive integers n, k and d-

dimensional 0-1 matrices B. We can start with a B-free d-dimensional 0-1 matrix

A with ex(n,B, d) ones and dimensions n× · · ·×n. For each j = 1, . . . , n, label the

ones with last coordinate j in any order with letters j0, j1, . . . , only using each letter

ji exactly k times and deleting up to k − 1 remaining ones with last coordinate j

if k does not divide the total number of ones with last coordinate j. Observe that

the new lettered d-dimensional 0-1 matrix has at most f(n, k,B, d) distinct letters

with every letter occurring exactly k times, and it is B-free.

As in Lemma 2.5, we can show for t ≥ 2 that if B a d-dimensional 0-1 matrix with

at least two ones such that ex(n,B, d) = o(nd) and k = d2end(1−1/t) ex(n,B, d)1/te,
we have f(n, k,QB,t, d + 1) = O(t( nd

ex(n,B,d) )
1/t). Note that ex(n,B, d) = o(nd) for

all d-dimensional 0-1 matrices B [14]. With ex(n,QB,t, d + 1) ≤ k(f(n, k,QB,t, d +

1) + n), this will imply that ex(n,QB,t, d + 1) = O(ex(n,B, d)1/tnd+1−d/t + tnd).

Since ex(n,B, d) ≥ nd−1 for any d-dimensional 0-1 matrix B with at least two ones,

this will imply that ex(n,QB,t, d + 1) = O(ex(n,B, d)1/tnd+1−d/t).

Suppose for contradiction that there exists a QB,t-free lettered (d+1)-dimensional

0-1 matrix A of dimensions n × · · · × n with r = b te ( nd

ex(n,B,d) )
1/tc distinct letters

in which every letter occurs at least k times. Suppose that n is sufficiently large

so that r ≥ t
2e ( nd

ex(n,B,d) )
1/t. The fact that there is such an n follows because

ex(n,B, d) = o(nd) for all d-dimensional 0-1 matrices B [14]. Without loss of

generality, suppose that every letter in A occurs exactly k times.

For each d-tuple z ∈ [n]d, define deg>(z) to be the number of ones in A that

have first d coordinates equal to z. Let p be the number of d-tuples z ∈ [n]d with
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deg>(z) > 0. The number of t-tuples of ones in A that have the same first d

coordinates is equal to
∑

z:deg>(z)≥t
(
deg>(z)

t

)
, which is at most

(
r
t

)
ex(n,B, d), or

else A would contain a copy of QB,t. This follows by the pigeonhole principle, since

every t-tuple of ones in A that have the same first d coordinates must have different

letters on each one.

Then kr =
∑

z deg>(z) and again, the following string of inequalities follows by

an analogous argument to the string of inequalities in Lemma 2.2.

(t− 1)p ≥

kr −
∑

z:deg>(z)≥t

(deg>(z)− t + 1) ≥

kr −
∑

z:deg>(z)≥t

(
deg>(z)

t

)
≥

kr −
(
r

t

)
ex(n,B, d) ≥

kr − rt ex(n,B, d)

t!
≥

tnd −
( t
e )t

t!
nd > (t− 1)nd.

We get a contradiction from p ≤ nd. This gives the upper bounds.

For the lower bounds, let Js,t denote the s × t matrix of all ones. It is known

that ex(n, J2,2, 2) = Θ(n3/2) and ex(n, J3,3, 2) = Θ(n5/3) [3, 5, 9, 10]. Suppose

that Q is any 2-dimensional 0-1 matrix of dimensions r × s and R is any d-

dimensional 0-1 matrix with first and last dimensions of length r and s respectively

such that entry (i, j) of Q is 1 if and only if there exist x2, . . . , xd−1 such that entry

(i, x2, . . . , xd−1, j) of R is 1. It is easy to see that ex(n,R, d) ≥ nd−2 ex(n,Q, 2)

for any such 2-dimensional 0-1 matrix Q and d-dimensional 0-1 matrix R (for a

proof, see, e.g., [14]). So if B is a d-dimensional 0-1 matrix with at least two

ones with different first coordinates, then ex(n,QB,2, d + 1) ≥ nd−1 ex(n, J2,2) =

Ω(nd+1/2) since QB,2 contains a (d + 1)-dimensional 0-1 matrix R with four ones

having (first, last) coordinate pairs (1, 1), (1, 2), (2, 1), (2, 2). Similarly if B is a

d-dimensional 0-1 matrix with at least three ones differing in the first coordi-

nate, then ex(n,QB,3, d + 1) ≥ nd−1 ex(n, J3,3) = Ω(nd+2/3) since QB,3 contains

a (d + 1)-dimensional 0-1 matrix R′ with nine ones having (first, last) coordinate

pairs (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3). 2

Permutation matrices and double permutation matrices P with at least three ones

are some examples for which Theorem 3.1 gives sharp bounds on ex(n,QP,2, d + 1)

and ex(n,QP,3, d + 1) up to a constant factor [17, 12, 15, 14].



INTEGERS: 21 (2021) 10

4. Concluding Remarks

The standard double-counting method used to prove the Kővári–Sós–Turán theorem

can also be used to prove the bounds in Theorem 2.6 and 3.1. We did not include this

method since it uses convexity, and it gives the same bounds up to a constant factor

as the letter method. Dependent random choice can also be used to obtain the same

bounds for uniform hypergraphs up to a constant factor when exd(n,H) = O(nd−1),

and it can be applied to a larger family of hypergraphs that contains the family of

KH,t, but it gives a worse bound than the letter method when exd(n,H) = ω(nd−1).

The next lemma is a generalization of the dependent random choice lemma from

[2] and [7]. In the next lemma, we call a vertex v and a d-subset T of vertices of a

(d + 1)-uniform hypergraph G neighbors if v 6∈ T and there is some edge of G that

contains v and all of the vertices of T . For each vertex v, set of vertices S, and set

of d-subsets of vertices Q, we define N(v) to be the set of d-subsets of vertices that

are neighbors with v, we define N(S) to be the set of d-subsets of vertices that are

neighbors with every vertex in S, and we define N(Q) to be the set of vertices that

are neighbors with every d-subset in Q.

Lemma 4.1. Let G = (V,E) be a (d + 1)-uniform hypergraph with |V | = n ver-

tices and |E| = m edges. If there is a positive integer t such that n
(
n
d

)−t (m
n

)t −(
n
r

)(
x

(n
d)

)t

≥ a, then G contains a subset A of at least a vertices such that every r

vertices in A have at least x common neighbors among the d-subsets of V .

Proof. Pick a set T of d-subsets of vertices of V , choosing t d-subsets uniformly

at random with repetition. Let B = N(T ), and let X be the cardinality of B.

Then E[X] =
∑

v∈V

(
|N(v)|
(n
d)

)t

=
(
n
d

)−t∑
v∈V |N(v)|t ≥ n

(
n
d

)−t (∑
v∈V |N(v)|

n

)t
≥

n
(
n
d

)−t (m
n

)t
, where the second-to-last inequality used Jensen’s inequality.

Let Y be the random variable for the number of subsets S ⊂ B of size r with fewer

than x common neighbors among the d-subsets of vertices of V . The probability

that an arbitrary r-subset S is a subset of B is

(
|N(S)|

(n
d)

)t

, so E[Y ] ≤
(
n
r

)(
x

(n
d)

)t

.

Thus by linearity of expectation, E[X − Y ] ≥ n
(
n
d

)−t (m
n

)t − (nr)( x

(n
d)

)t

≥ a.

Thus there exists a choice of T for which the corresponding set B of cardinality X

satisfies X − Y ≥ a, so we can remove at most Y vertices from B (one for each

subset S ⊂ B of size r with fewer than x common neighbors among the d-subsets

of vertices of V ) to produce a new subset A so that all r-subsets of A have at least

x common neighbors among the d-subsets of V . 2

We can use Lemma 4.1 to get upper bounds for more general families of (d+ 1)-

uniform hypergraphs that contain the family KH,t. The next theorem describes one
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such family.

Theorem 4.2. For any d-uniform hypergraph H, let KH,t,s,r be the (d+1)-uniform

hypergraph obtained by starting with s vertices S = {v1, . . . , vs}, making r dis-

joint copies HT1
, . . . ,HTr

of H for each t-subset T of vertices of S, and replacing

each edge e in each HTi
with t edges of the form e ∪ {u} for each u ∈ T . Then

exd+1(n,KH,t,s,r) = O((exd(n,H) + nd−1)n2−1/t) for any d-uniform hypergraph H

with at least two edges and any integers s ≥ t ≥ 2 and r > 0. For any d-uniform hy-

pergraph H with at least two edges such that exd(n,H) = O(nd−1) and any integers

s ≥ t ≥ 2 and r > 0, we have exd+1(n,KH,t,s,r) = O(nd+1−1/t).

Proof. Suppose that H has order k. We use Lemma 4.1 with a = s, r = t, x =

s
(

n
d−1
)

+ exd(n,H) + 1 +
(
s
t

)
rk
(

n
d−1
)
, and m sufficiently large so that n

(
n
d

)−t (m
n

)t−(
n
r

)(
x

(n
d)

)t

≥ a. If G is a (d+ 1)-uniform hypergraph with n vertices and m edges,

then G contains a subset A of at least s vertices such that every t vertices in A have

at least s
(

n
d−1
)

+exd(n,H)+1+
(
s
t

)
rk
(

n
d−1
)

common neighbors among the d-subsets

of vertices of G. Using A, we form a copy of KH,t,s,r in G. We start by letting S = A,

so each t-subset T of vertices of S has at least s
(

n
d−1
)

+ exd(n,H) + 1 +
(
s
t

)
rk
(

n
d−1
)

common neighbors among the d-subsets of vertices of G. Going through the t-

subsets of S in any order, we form the copy of KH,t,s,r. Let T be the current

t-subset in the order as we form the copy of KH,t,s,r.

At most s
(

n
d−1
)

of the s
(

n
d−1
)

+ exd(n,H) + 1 +
(
s
t

)
rk
(

n
d−1
)

common neighbors of

T have nonempty intersection with S, since any given vertex can be an element of

at most
(

n
d−1
)
d-subsets of the vertices of G. Moreover H has k vertices and each

t-subset of S is combined with r copies of H in KH,t,s,r, so at most (
(
s
t

)
−1)rk

(
n

d−1
)

of the s
(

n
d−1
)

+ exd(n,H) + 1 +
(
s
t

)
rk
(

n
d−1
)

common neighbors of T have nonempty

intersection with any of the common neighbors of earlier t-subsets that were used

in the copy of KH,t,s,r. Thus T has at least exd(n,H) + rk
(

n
d−1
)

+ 1 common

neighbors that have no intersection with S or any of the common neighbors used to

form an edge in the copy of KH,t,s,r with an earlier t-subset of S. These exd(n,H)+

rk
(

n
d−1
)

+1 common neighbors of T that do not intersect S or any of the previously

used common neighbors must contain at least r disjoint copies HT1 , . . . ,HTr of H,

so we can form the edges e ∪ {u} for each u ∈ T and e in the edge set of HTi . 2

Note that KH,t,t,1 = KH,t, and that the letter method also works to show that

exd+1(n,KH,t,t,r) = O(nd+1−1/t) for any integers t ≥ 2, r > 0, and d-uniform hy-

pergraph H with at least two edges such that exd(n,H) = O(nd−1). It would be

interesting to see if the letter method is useful for other Turán-type problems, and

what else can be said about exd+1(n,KH,t) in general.
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[18] D. Mubayi and J. Verstraëte, A hypergraph extension of the bipartite Turán problem, J.
Combin. Theory Ser. A 106 (2004), 237–253.

[19] G. Nivasch, Improved bounds and new techniques for Davenport–Schinzel sequences and their
generalizations, J. ACM 57 (2010), #A17.

https://arxiv.org/abs/1310.8378
https://arxiv.org/abs/1310.8378

	Introduction
	The Letter Method
	0-1 Matrices
	Concluding Remarks

