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Abstract

In this note we mainly give iterative integer solutions (whenever one trivial solution

exists) to the following Pell equation x2 − (w2(2n−2p)2 + 2n(2n−2p))y2 = c for

some w, p, c ∈ Z∗. The idea relies on elementary arguments for the equation x2 −
(w2p2+p)y2 = c as a quadratic polynomial over the rationals and some 2×2 matrix

manipulations.

1. Introduction and Preliminaries

The classical Pell-Fermat equation asks to find all integer solutions (x, y) ∈ N2 to

x2 − dy2 = 1 for d a non-square integer. The theory has a rich history and one

can read for example [1], [3], [4], [6] and [7]. The authors used mainly continued

fractions and elaborated techniques; we will give a completely different method for

the equation:

x2 − (w2(2n−2p)2 + 2n(2n−2p))y2 = c (1)

using elementary properties of second degree polynomials. As one can notice, any

integer d > 1 can be written as w2
0p

2
0 + sp0 where all variables are in Z∗, or d =

(
w0

s
)2(sp0)2 + sp0 = w2p2 + p, w ∈ Q∗, p ∈ Z∗.

Before going further we illustrate the infinite loop here:

x2 − (w2p2 + p)y2 = c, (2)

where all variables can be considered in Q∗. We write x = wpy + u; then after

replacement we obtain a second degree polynomial in y:

−py2 + 2wpyu + u2 − c = 0.

Calculating its discriminant (which must be a perfect square) we obtain the follow-

ing

∆ = 4w2p2u2 + 4pu2 − 4pc = t2.
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With t = 2pl and simplifying we arrive at the equation: u2(w2p + 1)− c− pl2 = 0.

Set l = wu + v; then we get the polynomial in u: u2 − 2pwuv − c− pv2 = 0. Lastly

∆ = 4p2w2v2 + 4c + 4pv2 = 4k2, i.e., we have the similar equation:

k2 − (w2p2 + p)v2 = c.

2. Main Result

Keeping with the same previous notations we have the following result.

Proposition 1. Let (x0, y0) be such that x2
0 − (w2p2 + p)y20 = c. Then

(x, y) =

{
x = (2w2p + 1)x0 + 2w(w2p2 + p)y0

y = 2wx0 + (2w2p + 1)y0

also verifies Equation (2).

Proof. Set (k, v) = (x0, y0), after replacement u0 = wpy0+x0 and l0 = wu0+y0, we

get y = 2(w2py0 +wx0) + y0 (or y = −y0) and x = 2w3p2y0 + 2w2px0 + 2wpy0 +x0

(or x = x0).

If we set A :=

(
2w2p + 1 2w(w2p2 + p)

2w 2w2p + 1

)
, Xn+1 =

(
xn+1

yn+1

)
= AXn is an

iterative system of solutions starting from (x0, y0). It is readily seen that with

n ≥ 1, Xn+1 =
(

2w2p+1 2w(w2p2+p)

2w 2w2p+1

) ( xn
−yn

)
Xn+1 =

(
2w2p+1 −2w(w2p2+p)

2w −2w2p−1

)(
2w2p+1 2w(w2p2+p)

2w 2w2p+1

) ( xn−1
yn−1

)
=
( xn−1

−yn−1

)
.

Remark 1. It is well known -see for example [2] and [5]- that for c = 1 and

w, p ∈ N∗, Equation (2) has the smallest positive integer solution (fundamental)

(x0, y0) = (2w2p + 1, 2w). All other positive integer solutions are generated by

Xn+1 =

(
xn+1

yn+1

)
= AXn, n ≥ 0.

Remark 2. For |2w2p + 1| > 1 one can choose the signs of

(
±xn

±yn

)
so that

|xn+s+1| > |xn+s| and |yn+s+1| > |yn+s| for every non-negative s. With integer

d as d = w2p2 + p or d = (w0

2 )2(2p)2 + 2p and w,w0 ∈ N∗, p ∈ Z∗; the matrix

A ∈M2(Z).

We have by direct computation:

A3 =

(
32w6p3 + 48w4p2 + 18w2p + 1 32w7p4 + 64w5p3 + 38w3p2 + 6wp

32w5p2 + 32w3p + 6w 32w6p3 + 48w4p2 + 18w2p + 1

)
.
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Theorem 1. For n ≥ 2, let d = ((w0

2n )2(22n−2p0)2 + 22n−2p0) = w2p2 + p. Set

without loss of generality w = w0

2i , p = 22n−2+jp0 with w0 and p0 odd and i ≤ n,

j ≥ 0. If 2(n − i) + j − 1 ≥ 0, then A2(i−1) ∈ M2(Z); otherwise n = i, j = 0 and

A3·2(n−2) ∈M2(Z).

Proof. Setting w = w0

2i and p = 22n−2+jp0:

A =

(
22(n−i)+j−1w2

0p0 + 1 2i−1(24(n−i)+2j−2w3
0p

2
0 + 22(n−i)+jw0p0)

w0

2i−1
22(n−i)+j−1w2

0p0 + 1

)
and for n = i, j = 0

A3 =

w6
0p

3
0

2
+ 3w4

0p
2
0 +

32w2
0p0

2
+ 1 2n−2(4w5

0p
3
0 + 6w0p0 +

w7
0p

4
0

2
+

19w3
0p

2
0

2
)

w5
0p

2
0 + 4w3

0p0 + 3w0

2n−1

w6
0p

3
0

2
+ 3w4

0p
2
0 +

32w2
0p0

2
+ 1

 .

It is easy to see that if (a, b, f) ∈ Z3 and M =

(
a 2kb
f
2l

a

)
(k ≥ l), then we have

M2l ∈M2(Z).

Example 1. For x2 − 2021y2 = c2, d = 452 − 4 = ( 45
4 )242 − 4 so that B = A3 =(

−4139590049 186097479480
92081880 −4139590049

)
. An infinite family of integer solutions is given by

Xn+1 =

(
xn+1

yn+1

)
= BXn with X0 =

(
c
0

)
.
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