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Abstract
In this note we mainly give iterative integer solutions (whenever one trivial solution
exists) to the following Pell equation x? — (w?(2"2p)? + 2"(2"2p))y? = c for
some w, p,c € Z*. The idea relies on elementary arguments for the equation x2 —
(w?p?+p)y? = c as a quadratic polynomial over the rationals and some 2 x 2 matrix

manipulations.

1. Introduction and Preliminaries

The classical Pell-Fermat equation asks to find all integer solutions (z,y) € N? to
2 — dy?> = 1 for d a non-square integer. The theory has a rich history and one
can read for example [1], [3], [4], [6] and [7]. The authors used mainly continued
fractions and elaborated techniques; we will give a completely different method for
the equation:

z? — (w? (2" ?p)* +2"(2" ?p))yt = ¢ (1)

using elementary properties of second degree polynomials. As one can notice, any
integer d > 1 can be written as wip + spo where all variables are in Z*, or d =
wo * *
(?)2(5170)2 + spo = w?p® +p, w e Q*, p € Z*.
Before going further we illustrate the infinite loop here:

= (Wp” +py =c, (2)

where all variables can be considered in Q*. We write x = wpy + u; then after
replacement we obtain a second degree polynomial in y:

—py? + 2wpyu + u? —c = 0.
Calculating its discriminant (which must be a perfect square) we obtain the follow-
ing
A = 4w*p*u® + 4pu? — 4pe = 2.
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With ¢ = 2pl and simplifying we arrive at the equation: u?(w?p+ 1) — ¢ — pl%? = 0.
Set [ = wu + v; then we get the polynomial in u: u? — 2pwuv — ¢ — pv? = 0. Lastly
A = 4p?w?v? + 4c + 4pv? = 4k2?, i.e., we have the similar equation:

k* — (w*p? +p)v? =c.

2. Main Result

Keeping with the same previous notations we have the following result.

Proposition 1. Let (zo,yo) be such that z3 — (w?*p® + p)y2 = c. Then

(2,9) = z = (2w?p + 1)z + 2w(w?p? + p)yo
’ y = 2wz + (2w’p + 1)yo

also verifies Equation (2).

Proof. Set (k,v) = (x0,yo), after replacement ug = wpyo+xo and Iy = wug+yo, we
get y = 2(w’pyo +wwo) +yo (or y = —yo) and = 2w’p*yo + 2wpro + 2wpyo + o
(or z = xp). O

_ (201 2u(up? +p) () _ ax
If we set A = ( 9w ow?p+ 1 y Xng1 = yr ) = AX, is an

iterative system of solutions starting from (xg,yo). It is readily seen that with

— 2w?p+1 2w(w?p®+p) Ty
R, Xy = (PrERrR ) ()

_(2w?p+1 —2w(w?p+p) 2w p+1 2w(w?p?+p) T — _( Tn-1
X"J'_l - ( 2w —2w?p—1 ) ( 2w 2w?p+1 ) (ynfi) - (_y"_l)
Remark 1. It is well known -see for example [2] and [5]- that for ¢ = 1 and
w,p € N* Equation (2) has the smallest positive integer solution (fundamental)
(20,70) = (2w?p + 1,2w). All other positive integer solutions are generated by

Remark 2. For [2w?p + 1| > 1 one can choose the signs of (i";") so that
n

Totst1| > |Tnes| and |ynts+1| > |ynes| for every non-negative s. With integer
|Zn+st1] |Zn+s] Yn+s+ Yn+ y g g
das d=w’p?+pord=(%)?2p)*+ 2p and w,wy € N*, p € Z*; the matrix
AEMQ(Z)

We have by direct computation:

43— 32w + 48wp? + 18w?p +1 32w p* + 64w’p® + 38wp? + 6wp
- 32w5p? + 32w3p + 6w 32wlp3 + 48wip? + 18w?p +1 /-
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Theorem 1. For n > 2, let d = ((32)%(22" ?po)? + 22" ?py) = w?p* + p. Set
Wo = 2272 pg with wo and py odd and i < n,
‘e My(Z); otherwise n =14, j = 0 and

without loss of generality w =

21 -
§>0. If2(n—i)+j—1>0, then A2
A3277Y e My (2).

Proof. Setting w = %¢ and p = 22"~ *Hip,:

L <22(ni)+j1w§po +1 224D =232 22("i>“wopo)>

w N
21'7*01 22(n—1)+3—1w%p0 +1

and forn =14, 7 =0

w6 3 32’[112 w7 4 19w3 2
T oPo 4 3wipt + 00 44 22 (4wip + 6wopo + 02190 + 20;00)
- wipd + 4wdpo + 3w wip} 32wipo
b+ OB L gy + S0
. . 3 a 2Fb
It is easy to see that if (a,b, f) € Z° and M = | ; a (k > 1), then we have
27
M?' e My(2). O

Example 1. For 22 —2021y? = ¢*, d = 452 — 4 = (%)242 — 4 so that B = A3 =
—4139590049 186097479480
92081880 —4139590049

X1 = <x"+1) — BX,, with X, = (g) .
Yn+1

) . An infinite family of integer solutions is given by
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