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Abstract

This paper records some apparently new results for the partitioning of integer in-
tervals [1, n] into weakly sum-free subsets. These were produced using a method
closely related to that used by Schur in 1917. Weak Schur partitions of unlim-
ited size can be produced in this way, and hence we can deduce new lower bounds
for the corresponding weak Schur numbers WS(r). The asymptotic growth rate
of the lower bounds, as the number of subsets increases, cannot be less than the
same growth rate for strongly sum-free partitions, and so exceeds 3.27. Specific re-
sults arising from partitions into a ‘small’ number of subsets include WS(6) ≥ 642,
WS(7) ≥ 2146, WS(8) ≥ 6976, WS(9) ≥ 21848, and WS(10) ≥ 70778.

– I dedicate this paper to the memory of my very good friend and colleague,

the late Paul A. Stanway, former Exhibitioner of St. John’s College, Cambridge.

1. Introduction

If an integer interval S = [1, n] can be partitioned into r disjoint non-empty subsets

Si for i = 1, 2, . . . , r, where no subset contains three (distinct) integers a, b, c, such

that a + b = c, then each such subset is (weakly) sum-free and that partition is a

(weak) Schur (r-)partition. The order of the set S is clearly n, and is also referred

to as the order of the partition. An (r-)partition p of [1, n] into r subsets may be

denoted by p(r;n).

For any r, S(r) is the maximum value of n such that a Schur partition p(r;n)

exists, and WS(r) is the maximum value of n such that a weak Schur partition

q(r;n) exists. S(r) is known as the Schur number, and WS(r) is known as the weak

Schur number : and the existence of both is established by Ramsey’s Theorem.

This paper concerns itself with the construction of weak Schur partitions. In that

context it is natural to ask how the most successful methods used to color linear

triangle-free graphs (or equivalently, to construct strong Schur partitions) might be

modified so as to permit the construction of larger weak Schur partitions.
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The author’s previous experience indicates that the most successful constructions

for ‘small’ triangle-free graphs can be characterized as special cases having partic-

ular unique attributes. Smaller graphs have typically been derived by a range of

exhaustive or partial search strategies: and have then been combined or extended

by methods involving various forms of ‘compounding’. Compound graphs may

be derived using periodically repetitive structures (translations) and/or reflections.

These techniques usually succeed by vastly reducing the size of the difference sets

derived from the subsets comprised in the coloring.

Any strong Schur partition is also a weak Schur partition, so both the size of

any maximal weak partitions into r subsets, and their ultimate growth rate as r

increases, cannot be less than in the strong case. Previous papers, including [3],

have demonstrated that the ultimate growth rate for strong Schur partitions, as the

number of colors r increases, exceeds 3.27. This author has seen evidence that some

constructions become much more difficult when the ratio approaches (3 +
√

13)/2,

which is a little over 3.3.

One immediate observation, when attempting to construct weak Schur partitions,

is that translations or reflections are much less useful. A pair of positive integers

(x, 2x) may be referred to as a weak pair. If such a weak pair exists in a single

subset Si in a weak Schur partition, it is clearly not possible in general to feature

either of the pairs (x+ a, 2x+ a) or (a−x, a− 2x) in the same subset, since in each

case the difference is x, and x ∈ Si.

Some recent work of this topic has succeeded in increasing the known lower

bounds by sidestepping these constraints using various algorithms and search con-

straints - see, for instance, [2]. So far, however, it has apparently not proved possi-

ble to demonstrate in this way an infinite sequence of weak Schur partitions with a

growth rate above 3, which does not consist simply of strong partitions.

This paper now provides two such sequences. Although one might rightly say

that the partitions in these sequences are ‘almost’ strong partitions, that may simply

indicate that there is room for more imaginative constructions.

In Section 2, it is proved that, starting from a single specific partition, a series

of partitions can be constructed, giving improved values for WS(r) applicable for

all r ≥ 6. Numerical lower bounds are shown for 1 ≤ r ≤ 10.

In Section 3, some brief conclusions are drawn.

2. Construction of Weak Schur Partitions

Theorem 1. (Construction Theorem). If there is a strong Schur partition of the

integers [1,m] into r subsets, then there is a weak Schur partition of [1, 4m+2] into

r + 1 subsets; and a weak Schur partition of [1, 13m+ 8] into r + 2 subsets.

The theorem depends on two very simple constructions, which are closely related
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to that used by Schur in [4].

Proof. As stated above, the repetition or reflection of weak pairs (x, 2x) within a

prototype partition, into a compound partition, is not useful in the general case.

The first construction minimizes this problem by relying on a sequence of partitions,

each of which has only the single weak pair (1, 2) in one of its subsets. No other

weak pairs are involved.

The first construction takes as its starting point the following weak Schur 2-

partition of order 6:

S1 = {1, 2, 6}, S2 = [3, 5].

We assume the existence of a strong Schur partition q(r;m) into subsets Qi for

i = 1, 2, . . . , r.

Next we define Ur+1 = {1, 2} ∪ {4i + 2 | i ∈ [1,m]}. It is simple to verify that,

excluding the weak pair (1, 2), the difference between any two members of Ur+1 is

equivalent to either 0 or 1 mod 4, and greater than 3, and so cannot be a member

of the same subset.

Then we construct m ‘translates’ of the set S2, such that

Ti = [4i− 1, 4i+ 1], for i ∈ [1,m].

It can be seen that within any one of these subsets Ti, the absolute differences

are either 1 or 2 and so are members of Ur+1. Therefore each subset Ti is sum-free.

We then form the remaining subsets of the new partition by taking the unions of

all the subsets Ti whose indices are in the same subset Qk in the strong r-partition,

such that

Uk =
⋃

i∈Qk
Ti for k = 1, 2, . . . , r.

Let us assume that two distinct subsets Ti, Tj (with i < j) are included in the

same subset of the new weak Schur partition. If so, any difference between a member

of Tj and a member of Ti must be in the interval [4(j − i) − 2, 4(j − i) + 2]. Any

number in this range is always either (a) a member of the subset Tj−i; or (b) a

member of Ur+1.

Case (a) is the only case we need concern ourselves with. In that case, the

partition q(r;m) would not be sum-free if the subset containing (j − i) were the

same as that containing both i and j. Therefore, every subset in the new partition

which was formed by taking the union of the Ti is also strongly sum-free. Clearly,

there are r such subsets in the new partition. Therefore, including Ur+1, we have

r + 1 subsets in the new partition.

Lastly we observe that Ur+1 is weakly sum-free, that the order of the new par-

tition is 4m+ 2, and that it is a complete partition of [1, 4m+ 2].

The second construction used in the theorem partitions the set [1, 13m + 8]. It

follows very similar lines to the above, but starts from the following weak Schur

3-partition of [1, 21]:

S1 = {1, 2, 4, 8, 21}, S2 = {3, 5, 6, 7, 18, 19, 20}, S3 = [9, 17].
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We begin by defining

Ur+1 = {1, 2, 4, 8} ∪ {13i+ 8 | i ∈ [1,m]} and

Ur+2 = {3, 5, 6, 7} ∪ {13i+ j | i ∈ [1,m], j ∈ {5, 6, 7}}.
It is again necessary to verify that, excluding the weak pairs (1, 2), (2, 4) and

(4, 8), the difference between any two members of Ur+1 is equivalent to either 0, 3,

6, or 7 mod 13, and so cannot be a member of the same subset. Excluding the weak

pair (3, 6), the difference between any two members of Ur+2 is equivalent to either

0, 1, 2, 4, 11 or 12 mod 13, and so again cannot be a member of the same subset.

The sets Ti are derived in this case by translation of S3, such that

Ti = [13i− 4, 13i+ 4], for i ∈ [1,m].

In this case, if two distinct subsets Ti, Tj (with i < j) are included in the same

subset of the new weak Schur partition, then any difference between a member of

Tj and a member of Ti must be in the interval [13(j − i) − 8, 13(j − i) + 8]. Any

number in this range is always either (a) a member of the subset Tj−i; or (b) a

member of Ur+1 ∪ Ur+2.

Once again, Uk =
⋃

i∈Qk
Ti for k = 1, 2, . . . , r.

The proof follows immediately as before, noting that in this second case, each

partition contains exactly four weak pairs.

It is now simple to deduce that if there is an infinite sequence of strong partitions

into r colors, whose orders increase with an ultimate growth rate of (say) γ as r

increases, then there is a corresponding sequence of weak partitions with the same

ultimate growth rate.

The orders now available for some ‘small’ partitions are shown in Table 1 below.

The history and derivation of the smaller weak Schur partitions is well covered in

[1], and orders of weak partitions shown for 1 ≤ r ≤ 5 are from that source. All are

believed to be the largest currently available, and the first four have been shown to

be maximal.

The orders of weak partitions for 6 ≤ r ≤ 10 are produced by the construction

above and believed to exceed the highest values previously published. The orders

of the strong partitions, on which the constructions are based, derive from [3].

r = 1 2 3 4 5 6 7 8 9 10

Weak Schur Partition 2 8 23 66 196 642 2146 6976 21848 70778

Strong Schur Partition 1 4 13 44 160 536 1680 5286 17694 60320

Ratio of Orders 2.00 2.00 1.77 1.50 1.23 1.20 1.28 1.32 1.23 1.17

Table 1 - Orders of largest available weak and strong Schur partitions
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3. Conclusions

The construction described here is simple and effective, although it has some limi-

tations.

All the partitions demonstrated above have very few weak pairs and so may be

said to be only ‘trivially weak’, with order broadly equal to a fixed multiple of a

known strong partition. As a result, we have not shown that the limiting growth

rate in the weak case exceeds that in the strong case. Although there is room for a

lot more work, this author believes that the limiting growth rates may well be finite

and equal, and further are quite likely to be bounded by a number well below 4.

Nor does this paper provide a sequence in which every partition certainly exceeds

the maximum possible strong partition: although it might do so if the ultimate

growth rate in the strong case can later be shown to be less than 4. For the

moment, though, many of the ‘small’ partitions represent significant improvements

over previously demonstrated lower bounds on WS(r).

Despite its limitations, the construction demonstrated in this paper sets a new

baseline for constructing infinite sequences of weak Schur partitions in a way that

consistently exceeds what is possible in the strong case.
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