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Abstract
We give a purely combinatorial proof of a special case of the Deuber-Hindman
theorem which is a two-fold generalization of Schur’s extension of van der Waerden’s
theorem and Hindman’s theorem. We also give a tower bound for a finite version
of it.

1. Introduction

In this paper, we will consider the pointwise finite sums of I-term arithmetic progres-
sions for a fixed [ > 3. In terms of this type of sum, we have the following pleasant
two-fold generalization of Hindman’s theorem ([4], Section 3.5) and Schur’s exten-
sion of van der Waerden’s theorem ([6], Section 2.4), which is in fact a special case
of the Deuber-Hindman theorem [1], and also can be deduced from Furstenberg’s
theorem ([5], Proposition 8.2.1).

For any positive integers ¢ and | > 3, if N is c-colored, then there exist a color v,
and infinitely many l-term arithmetic progressions Q;, i € N, such that all of their
finite sums (with no repetition) are monochromatic with the color v, and all the
common differences of the above finite sums have also the color ~.

In Theorems 5, and 6, of this paper, we give a purely combinatorial proof of the
above statement, avoiding topological dynamics as well as the theory of ultrafilters.
It is interesting to see whether the method of the proof can be generalized to give
a combinatorial proof of the Deuber-Hindman theorem. We are also interested in
a finite version of the above theorem. It is well known that through a compactness
argument, we can have a finite version. For instance, we have the following special
case of Rodo’s theorem ([4], Section 3.3), which is a two-fold generalization of van
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der Waerden’s theorem and a finite version of Hindman’s theorem.

For positive integers c,n, and l > 3, there is a positive integer m such that whenever
{1,2,...,m} is c-colored, there exist l-term arithmetic progressions Py, Py, ..., P,
C {1,2,...,m} such that all finite sums of P; (with no repetition) are monochro-
matic with the same color.

If we denote the least such m by f(I,n,c), then the proof given through the
compactness argument does not give us an upper bound for f(I,n,c¢). But it is not
hard to see that the proof given for Theorem 5, can be made finitary (which may
be regarded as an advantage of the proof over its counterparts using dynamical
system or ultrafilters) to give us a primitive recursive upper bound for f(I,n,c). To
do so, we use the finitary Hindman numbers Hind(n, ¢), which is a tower function
[2]. However, due to its iterated use of the function Hind(n, ¢), it gives us an upper
bound belonging to the class of WOW functions [4]. In Theorem 7, we do a better
job by giving a different proof which uses the function Hind(n, ¢) just one time, and
thus obtaining a tower bound for f(I,n,c). Also note that according to the Gowers
elementary bound for the van der Waerden theorem, we will not worry about the
van der Waerden part of the proof.

As the referee has pointed out, Theorem 7, follows from Rodo’s theorem ([4],
Chapter 3) and therefore, we can extract a primitive recursive upper bound for
f(l,n,c) according to the standard proof given there [4]. This is in fact based on
an iteration of Theorem 2, in Section 3.1 of [4], which is itself a combination of
Schur’s theorem and van der Waerden’s theorem. It is easily seen that the proof of
Theorem 2, gives a tower bound which consequently, it would imply a WOW upper
bound for f(I,n,c).

2. Preliminaries

Let [ > 3 be a positive integer and let P = {a,...,qa;} be an [-term arithmetic
progression with a; < --- < a;. We denote the sth term of P by P[s] = as. Now
letting P and @) be two [-term arithmetic progressions, we define their pointwise
sum (or briefly their sum) P B @, as the [-term arithmetic progression with (P H
Q)[s] = P[s] + Q[s] for 1 < s < I. Hence for the [-term arithmetic progressions
P, P, ..., P,, their finite sum P, B P, H---H P,, has unambiguous meaning. We
also denote the common difference of an arithmetic progression P, by add P. We
also use the following notation for finite sums of arithmetic progressions

BicpPi =P BHPH---HP,,
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where B = {1,2,...,m}. Obviously we have

(BicnP)[s] = Pils].

i€B

We define a partial ordering between [-term arithmetic progressions by putting
P < @, whenever P[s] < Q[s] for all 1 < s <.

We also fix some notation. For n a positive integer, put [n] = {1,2,...,n}.
Letting S be an infinite set, we denote the collection of finite nonempty subsets of
S by P#(S). For a finite set A, PT(A) denotes the collection of nonempty subsets
of A. Also F'S(S) will denote the set of all finite sums of elements of S with no
repetition. Letting A, B € P,(N), by A < B we mean that max A < min B.

Now let us state van der Waerden’s theorem and Schur’s extension of van der
Waerden’s theorem.

Theorem 1 ([4]). For positive integers ¢ and | > 3, there is a positive integer
n such that whenever [n] is c-colored, there is a monochromatic I-term arithmetic
progression P C [n]. We denote the least such n by W (i, c).

Theorem 2 ([6]). For positive integers ¢ and [ > 3, there is a positive integer n
such that whenever c is a c-coloring of [n], there are d,a,a +d,...,a+ (I —1)d in
{1,2,...,n} such that

c(d)=c(a)=cla+d)=---=c(a+ (I —1)d).
We denote the least such n by SB(l,c) (See [6] for historical remarks).

We will use the following strong version of Hindman’s theorem.

Theorem 3 ([7]). Let a1 < az < -+ < @y, < ... be an infinite strictly increasing
sequence of positive integers. Let ¢ be a positive integer and FS({a1,as,...}) be
c-colored. Then there are By < By < Bs < ... in P¢(N) such that, if

b1: Zai,bgz Zai7...7bm: Z Ajyevny

i€By i€Bs i€Bm
then FS({b1,bs,...}) is monochromatic.

We say that the two positive integers a, b are power-disjoint if the powers occur-
ring in the expansions of a, b in base 2, are disjoint sets. More precisely, if we write
a=2M 4 ... 42 and b = 2i+ + ... 4 2= then the two sets {ki,...,k,} and
{l1,...,1,} are disjoint. We denote the set {ki,...,ky} by pows(a). We will use
the following finitary version of Hindman’s theorem [2], which strengthens the Dis-
joint Unions Theorem. First we introduce a notation. If 7" is a collection of pairwise
disjoint sets, then NU(T') will denote the set of non-empty unions of elements of 7.
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Theorem 4 ([2]). For positive integers n, ¢, there is a positive integer m such that
for any m-element set A = {ay, ..., a;} of pairwise power-disjoint positive integers,
whenever c is a c-coloring of F\S(A), there exist v € [c] and By, ..., B, in PT([m])
such that B; < --- < B, and for all C € NU{B4y,...,B,}, we have

C( Z ai) =.
ieC
Moreover, if Hind(n,c) denotes the least such m, then Hind(n,c) is a tower func-
tion.

3. Purely Combinatorial Proofs

In the following theorem, we give a purely combinatorial proof of the two-fold
generalization of van der Waerden’s theorem and Hindman’s theorem, mentioned
in the introduction. We will start with a suitable sequence of n-term arithmetic
progressions PP, PY, P9 ... such that n is large enough to use the van der Waerden
theorem later. Then by using a strong version of Hindman’s theorem, we construct
a sequence of n-term arithmetic progressions P, Py, P4, ... such that each P} is
a finite sum of P{’s, and the positive integers Pl[1], P}[1], P#[1],... have the same
color. We iterate this process n times until we get a sequence of n-term arithmetic
progressions P{*, Py, Pg', ... such that each P;* is a finite sum of Pl-’kl, and also for
each s € {1,2,...,n}, the positive integers P;*[s], P3'[s], Pi[s],... have the same
color. Now by uniformity of the construction, it will suffice to choose one arithmetic
progression from {P/*;i € N}, say P, and apply van der Waerden’s theorem inside
P[" to obtain a monochromatic [-term arithmetic progression @); C P{*. In fact all
other ); will occupy the same places in P as () does in P’.

Theorem 5. Let c and [ > 3 be positive integers. Let ¢ be a c-coloring of N, then
there are [-term arithmetic progressions Q1, @2, @3, ... such that

(1) @1 <Q2=<Q5<---,
(ii) there is «y € [c] such that for all C' € P;(N), and all s € {1,...,1}, we have
c((Bicc@i)[s]) =~

Proof. Let n = W(l,¢c), and let a1 < ag < -+ < ap, < -+- be a strictly increasing
sequence of positive integers with a,,41 > a1 + -+ + a,, + mn. For i € N we put

P? ={aj,a; +1,...,a; + (n—1)}.
Obviously P? is an n-term arithmetic progression and we have

P)<P)<P)<---.
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In fact it is easily seen that for any C; < Cy in P¢(N), we have

BaieCﬁ Pio = BaiECEPiO' (1)
Now for 1 < k < n, we inductively define the n-term arithmetic progressions
PF, Py PE, ... so that there are of,ak, ... af € [c], such that the following two

conditions are satisfied

(a) for all C € Py(N) and all s € {1,...,k}, we have
c((BiecPl)ls]) = o,
(b) for all C; < C3 in P¢(N), we have

k k
Hicc, P;* < Hice, Py

Suppose we have defined Pf, P¥, P¥. ... with the above properties. We do the job
for k + 1. The second condition implies that

PPk+1] < Pik+1)<---<PrE+1] <

Now by Hindman’s theorem, there are By < By < --+ < By, < --- in Py(N) such
that, if we put

=Y Pik+1,by= Y Pflk+1],....bm= > PFk+1],

1€B1 1€ Ba 1€Bpm,

then ¢ has a constant value on FS({b1,bs,...}) which we denote it by a. Now we

set
PFY —@cp PF PYTY =B, PF, ... P =B, PF,

m

as well as we set

k+1 k k+1 k k+1 k k+1
a)’ = ag, 0y =@y, Q)T = o, 0 = Q.

We check the conditions (a) and (b) for k+1. Let C € Py(N) and 1 < s <k +1,
hence we have

(Biec P )[s] = (Biec Bjen, Fy)ls] = @ienP)ls],

where D = (J,cc Bi- Suppose 1 < s < k; then from the induction hypothesis, it
follows that
c((BiepPP)ls]) = af = o™ (2)

Also for s = k + 1, we have

(Bicc Bjep, Pk +1] =Y > PFlk+11=> b € FS({b1,ba,... }),

i€C jEB; eC
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which implies that

c((icc Bjep, PF)[k c() b)) =a=a;l]. (3)
eC

Now putting the equations (2) and (3) together, we deduce
o((BiccPI)[s]) = of"!

for 1 < s < k+ 1. This finishes the proof of the condition (a). Now we turn to
checking (b). Let C; < C3 be in Py(N). We must show that

Bicc, Pik+1 = BaieczpikJrla
which is equivalent to
BﬂiECl BajGBink = Bai€C2 EE‘J'€B1‘ ij (4)

Letting D1 = U
becomes

Bi, Dy = |J,., Bi, we get D1 < Ds, and the relation (4)

i€Cy 1€Cy

k k
Hiep, P;° < Biep, P,

which is exactly our induction hypothesis. This proves the condition (b).
Now consider P{*[1], P{*[2],..., P{*[n] and recall that n = W(l,c). By construc-
tion, we have

c(P'1]) = af,...,c(P{'[n]) = aj.
Through induced coloring, it follows from van der Waerden’s theorem that there
exist v € [c] and positive integers a, d such that

Mg =Qqg=""= a:zl+(lfl)d =7

We define the desire arithmetic progressions @;,7 € N as follows

Qi = {Pa), P'a+d),...,P'a+ (I —1)d}.

It is easily seen by condition (b) that Q1 < Q2 < Q3 < --- -. Also for all C' € P¢(N)
and all 1 < s <[, we have
(( zECQz Z Q =cC an a+ (S - 1)d]) aZ«F(sfl)d =7.
ieC ieC
This finishes the proof of Theorem 5. O

Now we turn to the two-fold generalization of Schur’s extension of van der Waer-
den’s theorem and Hindman’s theorem. To simplify the description of the proof, we
make a convention. We say that an arithmetic progression P is homogenous if the
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common difference of P equals P[1]. The proof of Theorem 6 proceeds similar to
the proof of Theorem 5 with the exception that for the starting step, we arrange the
sequence of n-term arithmetic progressions P, PY, PY, ... in such a way that they
become homogenous. This will imply that all the sequences Pf ,1<k<n,ieN,
constructed in the next steps, and also their finite sums, become homogenous. Then
as in the proof of Theorem 5, we choose P[* but this time we use Schur’s extension
of van der Waerden’s theorem inside P*, and then we show that the proof works.
It is worth mentioning that what essentially makes the proof working, is the simple
fact that, if @ is an arithmetic progression which is a subset of a homogenous P,
then the common difference of ) is a term of P. We use this fact in a uniform way.

Theorem 6. Let c and [ > 3 be positive integers. Let ¢ be a c-coloring of N, then
there are [-term arithmetic progressions @1, @2, @3, ... such that

(1) @ <Q2=<Qs <",
(ii) there is v € [c] such that for all C' € P;(N) and all s € {1,...,1}, we have

c((BiecQi)[s]) = c(add(BiecQi)) = 7.

Proof. We start with n = SB(l,c), and a strictly increasing sequence of positive
integers a; < ag < -+ < @y < -+ With apy1 > n(a; + -+ ay). Fori € N, we
put P = {a;,a; + a;,...,a; + (n — 1)a;}. In this case for all 1 < k < n and all
C € Ps(N), we will have

add(Biec P) = Biec P1)[1]. (5)

We prove the equation (5) by induction on k. First observe that

add(BiccP)) = (Bicc P)[2] — Bicc PP)[1] = ZPPP] - Z P[]
ieC ieC
= Z(ai +ai) — Zai
ieC ieC
= Y a;=)» P[]
ieC ieC

= (BiecP))[1]-

Also for k + 1, recall the subsets B; in definition of the arithmetic progressions
Pf“, so we have

add(@iecP ") = add(Biec Bjep, Pf) = add(BiepP)
= (BiepPP)[1] = Bicc P[],

where D = J;c Bi. This proves the equation (5). The proof now proceeds as
in the proof of Theorem 5, in particular, the relation (1) can be proved easily for
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these new P?. Now recall PP[1], PP*[2],..., P*[n] so that for s € {1,...,n} and

(3

C € Ps(N), we have
o((@iecP?)ls) = o

Through induced coloring, and this time using = SB(l, ¢), we obtain v € [¢] and
positive integers a, d such that

A =0 =Qqpqg=-"= O‘Z+(l—1)d =7
Again, define the desire arithmetic progressions @;,7 € N by
Qi ={P![a),P'a+d],...,P'la+ (I —1)d]}.
Thus for all C' € P(N), we have

add(BiccQi) = ([BiccQi)[2] - BiccQi)[1] =Y Qi2] =) Qi[1]

ieC ieC
= Y P'la+d|—> Prla]=)_(Pia+d - Pia])
ieC ieC ieC
d
= D> D (Prla+t]—Pa+(t—1)] ZZaddP"
ieC t=1 ieC t=1
= Y daddP'=d) addP]'=d.add(B;ccP}")

ieC ieC
= (BiecPM[A] + (d — 1) add(Biec P") = (Biec ') d].

Note that in the second and third equations from the end, we have respectively

used the equation (5), and the easily checked fact Z add P* = add(BiccP}"). So
ieC

we conclude that

c(add(HiecQs)) = c((BiccP")[d]) = aff =,

and the rest of the proof is the same as the proof of Theorem 5. O

4. Tower Bound for the Finite Case

In this section, we prove

Theorem 7. For positive integers n,c and | > 3, let f(n,l, c) be the least positive
integer p such that whenever ¢ is a c-coloring of [p], there are I-term arithmetic
progressions @1, Q2, ..., H, such that

(i) Q1<+ < Qn,
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(i) max(Q, B---BQ,) <p,

(iii) there is v € [c] such that for all C € P*([n]) and all s € {1,...,1}, we have
c((BiccQi)[s]) = -

Then f(n,l,c) is a tower function.

Hind(n,c)
C2

Proof. Let ¢ = W(I, ). We will show that f(n,l,¢) < 2¢°. So from Gower’s

elementary bounds for the van der Waerden numbers [3] and Theorem 4, it follows
: . 3 . .

that f(n,l, c) is a tower function. Suppose that p > 27 and c is a c-coloring of [p].

We show that p satisfies the requirements of the theorem. Put m = Hind(n, ¢). Let

hi,1 <1 < m be positive integers defined by h; = (m+1i)+ (i —1)q. For 1 <i <m,

we define the ¢g-term arithmetic progressions P; as follows

Py = {2021 4 2hi 2t 4 9.9hi 2t 4 (g —1)2M ).

Clearly P < P, < --- < P,,. We claim that for each 1 < s < ¢, the positive integers
Py[s], Py[s], ..., Pm|s] are pairwise power-disjoint. Let 1 < s < ¢, 2% < g—1 < 2v*H!
and s — 1 = 2% 4 -+« 4+ 2% with uy < ug < -+ < ug, so ux < u < g— 1. Since
1 <m < hy <h;, and

Pi[S] = 21 + (S — 1)2h1 — 21 +2ur‘rh,; 4ot 2Uk+hi’
we have that
pows(P;[s]) C {i,hi,hi +1,... hi + (¢ — 1)} = 4,

for 1 < i < m. Now to prove the claim, it would be enough to show that Ay,..., A,
are pairwise disjoint. In fact we show that

{1,2,...,m} <A —{1} < Ay — {2} < --- < A, — {m},
which easily implies the disjointness of A1, ..., A,,. First observe that
min(4; —{1}) =h; =m+1>m.
Also for 1 <i<m — 1, we have

(m+i+1)+iq

> (m+i)+(@—-1)g+(¢—1)
= hi+(¢-1)
max(4; — {i}),

min(AiH — {Z + 1}) =hi1
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thus the claim is proved. Also we have

max(Biem Pr) = Bicpm P)lal = D> Pl < m2™ +m(q—1)2"
i€[m]
S q.2q +q2.22m+(m71)q
< 22q+q2_22q+q2
< 2% 4 90 92"
2 3
< 20t 9207 < 90 <

Now we define a coloring c¢* on [g] as follows. For u,v € [q], we put ¢*(u) = c*(v)
if for all B € P*([m]) we have

c((BiepP)u]) = c((BiepPi)[v]).

Obviously the number of colors is ¢ ~1, so from ¢ = w (i, sz) it follows that there
are a,a+d,...,a+ (I —1)d in {1,2,...,q} such that

c*(a)=c’(a+d)=--=c"(a+ (I —1)d),
which means that for all B € P*([m]) and all k1, ks € {0,...,l — 1}, we have
c((BicpPi)la+ kid]) = c((BicpP;)[a + kod)).
We denote the above color by w(B). So we have the well-defined function
m: PT([m]) — [d].

Now consider the following m-element set of power-disjoint (due to the claim) pos-
itive integers

{Pl[aLPZ[aL s 7Pm[a]}'
From m = Hind(n, c), we infer that there exist By < By < -+ < By, in P*(|m])
and v € [¢] so that for all C € NU{By,..., B,}, we have

7(C) =c(d_ Pilal) = 1.
ieC

The desired arithmetic progressions @1, ..., Q, are defined as follows. For 1 < i <
n, we set

Qi = {Bjen.B))lal, Bjep, Pla+dl, ..., Bjep Py)la+ (1 - 1)d]}.

Obviously Q1 < Q2 < -++ < Q, and from By < By < --- < B,, it is easily seen
that
max(Q1 B B Q,) <max(P B ---BP,) <p.
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Now for C' € P*([n]) and 1 < s <, we have

((BiecQi)[s]) =c(Q_Qilsl) = <(D_(Bjen Py)la+ (s —1)d))

ieC 1eC
- C(Z Z Pjla+ (s — l)d])
i€C jEB;
= ¢()_Pla+(s-1)d]) =n(D) =7,
i€D

where D = |, Bi € NU{Bu,...,B,}. This finishes the proof of the theorem. [
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