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Abstract

We give a purely combinatorial proof of a special case of the Deuber-Hindman
theorem which is a two-fold generalization of Schur’s extension of van der Waerden’s
theorem and Hindman’s theorem. We also give a tower bound for a finite version
of it.

1. Introduction

In this paper, we will consider the pointwise finite sums of l-term arithmetic progres-

sions for a fixed l ≥ 3. In terms of this type of sum, we have the following pleasant

two-fold generalization of Hindman’s theorem ([4], Section 3.5) and Schur’s exten-

sion of van der Waerden’s theorem ([6], Section 2.4), which is in fact a special case

of the Deuber-Hindman theorem [1], and also can be deduced from Furstenberg’s

theorem ([5], Proposition 8.2.1).

For any positive integers c and l ≥ 3, if N is c-colored, then there exist a color γ,

and infinitely many l-term arithmetic progressions Qi, i ∈ N, such that all of their

finite sums (with no repetition) are monochromatic with the color γ, and all the

common differences of the above finite sums have also the color γ.

In Theorems 5, and 6, of this paper, we give a purely combinatorial proof of the

above statement, avoiding topological dynamics as well as the theory of ultrafilters.

It is interesting to see whether the method of the proof can be generalized to give

a combinatorial proof of the Deuber-Hindman theorem. We are also interested in

a finite version of the above theorem. It is well known that through a compactness

argument, we can have a finite version. For instance, we have the following special

case of Rodo’s theorem ([4], Section 3.3), which is a two-fold generalization of van
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der Waerden’s theorem and a finite version of Hindman’s theorem.

For positive integers c, n, and l ≥ 3, there is a positive integer m such that whenever

{1, 2, . . . ,m} is c-colored, there exist l-term arithmetic progressions P1, P2, . . . , Pn

⊂ {1, 2, . . . ,m} such that all finite sums of Pi (with no repetition) are monochro-

matic with the same color.

If we denote the least such m by f(l, n, c), then the proof given through the

compactness argument does not give us an upper bound for f(l, n, c). But it is not

hard to see that the proof given for Theorem 5, can be made finitary (which may

be regarded as an advantage of the proof over its counterparts using dynamical

system or ultrafilters) to give us a primitive recursive upper bound for f(l, n, c). To

do so, we use the finitary Hindman numbers Hind(n, c), which is a tower function

[2]. However, due to its iterated use of the function Hind(n, c), it gives us an upper

bound belonging to the class of WOW functions [4]. In Theorem 7, we do a better

job by giving a different proof which uses the function Hind(n, c) just one time, and

thus obtaining a tower bound for f(l, n, c). Also note that according to the Gowers

elementary bound for the van der Waerden theorem, we will not worry about the

van der Waerden part of the proof.

As the referee has pointed out, Theorem 7, follows from Rodo’s theorem ([4],

Chapter 3) and therefore, we can extract a primitive recursive upper bound for

f(l, n, c) according to the standard proof given there [4]. This is in fact based on

an iteration of Theorem 2, in Section 3.1 of [4], which is itself a combination of

Schur’s theorem and van der Waerden’s theorem. It is easily seen that the proof of

Theorem 2, gives a tower bound which consequently, it would imply a WOW upper

bound for f(l, n, c).

2. Preliminaries

Let l ≥ 3 be a positive integer and let P = {a1, . . . , al} be an l-term arithmetic

progression with a1 < · · · < al. We denote the sth term of P by P [s] = as. Now

letting P and Q be two l-term arithmetic progressions, we define their pointwise

sum (or briefly their sum) P � Q, as the l-term arithmetic progression with (P �
Q)[s] = P [s] + Q[s] for 1 ≤ s ≤ l. Hence for the l-term arithmetic progressions

P1, P2, . . . , Pm, their finite sum P1 � P2 � · · ·� Pm has unambiguous meaning. We

also denote the common difference of an arithmetic progression P , by addP . We

also use the following notation for finite sums of arithmetic progressions

�i∈BPi = P1 � P2 � · · ·� Pm,
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where B = {1, 2, . . . ,m}. Obviously we have

(�i∈BPi)[s] =
∑
i∈B

Pi[s].

We define a partial ordering between l-term arithmetic progressions by putting

P ≺ Q, whenever P [s] < Q[s] for all 1 ≤ s ≤ l.
We also fix some notation. For n a positive integer, put [n] = {1, 2, . . . , n}.

Letting S be an infinite set, we denote the collection of finite nonempty subsets of

S by Pf (S). For a finite set A, P+(A) denotes the collection of nonempty subsets

of A. Also FS(S) will denote the set of all finite sums of elements of S with no

repetition. Letting A,B ∈ Pf (N), by A < B we mean that maxA < minB.

Now let us state van der Waerden’s theorem and Schur’s extension of van der

Waerden’s theorem.

Theorem 1 ([4]). For positive integers c and l ≥ 3, there is a positive integer

n such that whenever [n] is c-colored, there is a monochromatic l-term arithmetic

progression P ⊆ [n]. We denote the least such n by W (l, c).

Theorem 2 ([6]). For positive integers c and l ≥ 3, there is a positive integer n

such that whenever c is a c-coloring of [n], there are d, a, a + d, . . . , a + (l − 1)d in

{1, 2, . . . , n} such that

c(d) = c(a) = c(a+ d) = · · · = c(a+ (l − 1)d).

We denote the least such n by SB(l, c) (See [6] for historical remarks).

We will use the following strong version of Hindman’s theorem.

Theorem 3 ([7]). Let a1 < a2 < · · · < am < . . . be an infinite strictly increasing

sequence of positive integers. Let c be a positive integer and FS({a1, a2, . . . }) be

c-colored. Then there are B1 < B2 < B3 < . . . in Pf (N) such that, if

b1 =
∑
i∈B1

ai, b2 =
∑
i∈B2

ai, . . . , bm =
∑
i∈Bm

ai, . . . ,

then FS({b1, b2, . . . }) is monochromatic.

We say that the two positive integers a, b are power-disjoint if the powers occur-

ring in the expansions of a, b in base 2, are disjoint sets. More precisely, if we write

a = 2k1 + · · · + 2km and b = 2l1 + · · · + 2ln , then the two sets {k1, . . . , km} and

{l1, . . . , ln} are disjoint. We denote the set {k1, . . . , km} by pow2(a). We will use

the following finitary version of Hindman’s theorem [2], which strengthens the Dis-

joint Unions Theorem. First we introduce a notation. If T is a collection of pairwise

disjoint sets, then NU(T ) will denote the set of non-empty unions of elements of T .



INTEGERS: 21 (2021) 4

Theorem 4 ([2]). For positive integers n, c, there is a positive integer m such that

for any m-element set A = {a1, . . . , am} of pairwise power-disjoint positive integers,

whenever c is a c-coloring of FS(A), there exist γ ∈ [c] and B1, . . . , Bn in P+([m])

such that B1 < · · · < Bn, and for all C ∈ NU{B1, . . . , Bn}, we have

c
(∑
i∈C

ai
)

= γ.

Moreover, if Hind(n, c) denotes the least such m, then Hind(n, c) is a tower func-

tion.

3. Purely Combinatorial Proofs

In the following theorem, we give a purely combinatorial proof of the two-fold

generalization of van der Waerden’s theorem and Hindman’s theorem, mentioned

in the introduction. We will start with a suitable sequence of n-term arithmetic

progressions P 0
1 , P

0
2 , P

0
3 , . . . such that n is large enough to use the van der Waerden

theorem later. Then by using a strong version of Hindman’s theorem, we construct

a sequence of n-term arithmetic progressions P 1
1 , P

1
2 , P

1
3 , . . . such that each P 1

i is

a finite sum of P 0
i ’s, and the positive integers P 1

1 [1], P 1
2 [1], P 1

3 [1], . . . have the same

color. We iterate this process n times until we get a sequence of n-term arithmetic

progressions Pn
1 , P

n
2 , P

n
3 , . . . such that each Pn

i is a finite sum of Pn−1
i , and also for

each s ∈ {1, 2, . . . , n}, the positive integers Pn
1 [s], Pn

2 [s], Pn
3 [s], . . . have the same

color. Now by uniformity of the construction, it will suffice to choose one arithmetic

progression from {Pn
i ; i ∈ N}, say Pn

1 , and apply van der Waerden’s theorem inside

Pn
1 to obtain a monochromatic l-term arithmetic progression Q1 ⊂ Pn

1 . In fact all

other Qi will occupy the same places in Pn
i as Q1 does in Pn

1 .

Theorem 5. Let c and l ≥ 3 be positive integers. Let c be a c-coloring of N, then

there are l-term arithmetic progressions Q1, Q2, Q3, . . . such that

(i) Q1 ≺ Q2 ≺ Q3 ≺ · · · ,

(ii) there is γ ∈ [c] such that for all C ∈ Pf (N), and all s ∈ {1, . . . , l}, we have

c
(
(�i∈CQi)[s]

)
= γ.

Proof. Let n = W (l, c), and let a1 < a2 < · · · < am < · · · be a strictly increasing

sequence of positive integers with am+1 > a1 + · · ·+ am +mn. For i ∈ N we put

P 0
i = {ai, ai + 1, . . . , ai + (n− 1)}.

Obviously P 0
i is an n-term arithmetic progression and we have

P 0
1 ≺ P 0

2 ≺ P 0
3 ≺ · · · .
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In fact it is easily seen that for any C1 < C2 in Pf (N), we have

�i∈C1 P
0
i ≺ �i∈C2P

0
i . (1)

Now for 1 ≤ k ≤ n, we inductively define the n-term arithmetic progressions

P k
1 , P

k
2 , P

k
3 , . . . so that there are αk

1 , α
k
2 , . . . , α

k
k ∈ [c], such that the following two

conditions are satisfied

(a) for all C ∈ Pf (N) and all s ∈ {1, . . . , k}, we have

c
(
(�i∈CP

k
i )[s]

)
= αk

s ,

(b) for all C1 < C2 in Pf (N), we have

�i∈C1
P k
i ≺ �i∈C2

P k
i .

Suppose we have defined P k
1 , P

k
2 , P

k
3 , . . . with the above properties. We do the job

for k + 1. The second condition implies that

P k
1 [k + 1] < P k

2 [k + 1] < · · · < P k
m[k + 1] < · · · · .

Now by Hindman’s theorem, there are B1 < B2 < · · · < Bm < · · · in Pf (N) such

that, if we put

b1 =
∑
i∈B1

P k
i [k + 1], b2 =

∑
i∈B2

P k
i [k + 1], . . . , bm =

∑
i∈Bm

P k
i [k + 1], . . . ,

then c has a constant value on FS({b1, b2, . . . }) which we denote it by α. Now we

set

P k+1
1 = �i∈B1P

k
i , P

k+1
2 = �i∈B2P

k
i , . . . , P

k+1
m = �i∈BmP

k
i , . . . ,

as well as we set

αk+1
1 = αk

1 , α
k+1
2 = αk

2 , . . . , α
k+1
k = αk

k, α
k+1
k+1 = α.

We check the conditions (a) and (b) for k + 1. Let C ∈ Pf (N) and 1 ≤ s ≤ k + 1,

hence we have

(�i∈CP
k+1
i )[s] = (�i∈C �j∈Bi

P k
j )[s] = (�i∈DP

k
i )[s],

where D =
⋃

i∈C Bi. Suppose 1 ≤ s ≤ k; then from the induction hypothesis, it

follows that

c
(
(�i∈DP

k
i )[s]

)
= αk

s = αk+1
s . (2)

Also for s = k + 1, we have

(�i∈C �j∈BiP
k
j )[k + 1] =

∑
i∈C

∑
j∈Bi

P k
j [k + 1] =

∑
i∈C

bi ∈ FS({b1, b2, . . . }),



INTEGERS: 21 (2021) 6

which implies that

c
(
(�i∈C �j∈Bi

P k
j )[k + 1]

)
= c
(∑
i∈C

bi
)

= α = αk+1
k+1. (3)

Now putting the equations (2) and (3) together, we deduce

c
(
(�i∈CP

k+1
i )[s]

)
= αk+1

s

for 1 ≤ s ≤ k + 1. This finishes the proof of the condition (a). Now we turn to

checking (b). Let C1 < C2 be in Pf (N). We must show that

�i∈C1
P k+1
i ≺ �i∈C2

P k+1
i ,

which is equivalent to

�i∈C1 �j∈BiP
k
j ≺ �i∈C2 �j∈BiP

k
j . (4)

Letting D1 =
⋃

i∈C1
Bi, D2 =

⋃
i∈C2

Bi, we get D1 < D2, and the relation (4)

becomes

�i∈D1
P k
i ≺ �i∈D2

P k
i ,

which is exactly our induction hypothesis. This proves the condition (b).

Now consider Pn
1 [1], Pn

1 [2], . . . , Pn
1 [n] and recall that n = W (l, c). By construc-

tion, we have

c(Pn
1 [1]) = αn

1 , . . . , c(Pn
1 [n]) = αn

n.

Through induced coloring, it follows from van der Waerden’s theorem that there

exist γ ∈ [c] and positive integers a, d such that

αn
a = αn

a+d = · · · = αn
a+(l−1)d = γ.

We define the desire arithmetic progressions Qi, i ∈ N as follows

Qi =
{
Pn
i [a], Pn

i [a+ d], . . . , Pn
i [a+ (l − 1)d]

}
.

It is easily seen by condition (b) that Q1 ≺ Q2 ≺ Q3 ≺ · · · ·. Also for all C ∈ Pf (N)

and all 1 ≤ s ≤ l, we have

c
(
(�i∈CQi)[s]

)
= c
(∑
i∈C

Qi[s]
)

= c
(∑
i∈C

Pn
i [a+ (s− 1)d]

)
= αn

a+(s−1)d = γ.

This finishes the proof of Theorem 5.

Now we turn to the two-fold generalization of Schur’s extension of van der Waer-

den’s theorem and Hindman’s theorem. To simplify the description of the proof, we

make a convention. We say that an arithmetic progression P is homogenous if the
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common difference of P equals P [1]. The proof of Theorem 6 proceeds similar to

the proof of Theorem 5 with the exception that for the starting step, we arrange the

sequence of n-term arithmetic progressions P 0
1 , P

0
2 , P

0
3 , . . . in such a way that they

become homogenous. This will imply that all the sequences P k
i , 1 ≤ k ≤ n, i ∈ N,

constructed in the next steps, and also their finite sums, become homogenous. Then

as in the proof of Theorem 5, we choose Pn
1 but this time we use Schur’s extension

of van der Waerden’s theorem inside Pn
1 , and then we show that the proof works.

It is worth mentioning that what essentially makes the proof working, is the simple

fact that, if Q is an arithmetic progression which is a subset of a homogenous P ,

then the common difference of Q is a term of P . We use this fact in a uniform way.

Theorem 6. Let c and l ≥ 3 be positive integers. Let c be a c-coloring of N, then

there are l-term arithmetic progressions Q1, Q2, Q3, . . . such that

(i) Q1 ≺ Q2 ≺ Q3 ≺ · · · ,

(ii) there is γ ∈ [c] such that for all C ∈ Pf (N) and all s ∈ {1, . . . , l}, we have

c
(
(�i∈CQi)[s]

)
= c
(

add(�i∈CQi)
)

= γ.

Proof. We start with n = SB(l, c), and a strictly increasing sequence of positive

integers a1 < a2 < · · · < am < · · · with am+1 > n(a1 + · · · + am). For i ∈ N, we

put P 0
i = {ai, ai + ai, . . . , ai + (n − 1)ai}. In this case for all 1 ≤ k ≤ n and all

C ∈ Pf (N), we will have

add(�i∈CP
k
i ) = (�i∈CP

k
i )[1]. (5)

We prove the equation (5) by induction on k. First observe that

add(�i∈CP
0
i ) = (�i∈CP

0
i )[2]− (�i∈CP

0
i )[1] =

∑
i∈C

P 0
i [2]−

∑
i∈C

P 0
i [1]

=
∑
i∈C

(ai + ai)−
∑
i∈C

ai

=
∑
i∈C

ai =
∑
i∈C

P 0
i [1]

= (�i∈CP
0
i )[1].

Also for k + 1, recall the subsets Bi in definition of the arithmetic progressions

P k+1
i , so we have

add(�i∈CP
k+1
i ) = add(�i∈C �j∈Bi P

k
j ) = add(�i∈DP

k
i )

= (�i∈DP
k
i )[1] = (�i∈CP

k+1
i )[1],

where D =
⋃

i∈C Bi. This proves the equation (5). The proof now proceeds as

in the proof of Theorem 5, in particular, the relation (1) can be proved easily for
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these new P 0
i . Now recall Pn

1 [1], Pn
1 [2], . . . , Pn

1 [n] so that for s ∈ {1, . . . , n} and

C ∈ Pf (N), we have

c
(
(�i∈CP

n
i )[s]

)
= αn

s .

Through induced coloring, and this time using = SB(l, c), we obtain γ ∈ [c] and

positive integers a, d such that

αn
d = αn

a = αn
a+d = · · · = αn

a+(l−1)d = γ.

Again, define the desire arithmetic progressions Qi, i ∈ N by

Qi =
{
Pn
i [a], Pn

i [a+ d], . . . , Pn
i [a+ (l − 1)d]

}
.

Thus for all C ∈ Pf (N), we have

add(�i∈CQi) = (�i∈CQi)[2]− (�i∈CQi)[1] =
∑
i∈C

Qi[2]−
∑
i∈C

Qi[1]

=
∑
i∈C

Pn
i [a+ d]−

∑
i∈C

Pn
i [a] =

∑
i∈C

(
Pi[a+ d]− Pi[a]

)
=

∑
i∈C

d∑
t=1

(
Pn
i [a+ t]− Pn

i [a+ (t− 1)]
)

=
∑
i∈C

d∑
t=1

addPn
i

=
∑
i∈C

d. addPn
i = d

∑
i∈C

addPn
i = d. add(�i∈CP

n
i )

= (�i∈CP
n
i )[1] + (d− 1) add(�i∈CP

n
i ) = (�i∈CP

n
i )[d].

Note that in the second and third equations from the end, we have respectively

used the equation (5), and the easily checked fact
∑
i∈C

addPn
i = add(�i∈CP

n
i ). So

we conclude that

c
(

add(�i∈CQi)
)

= c
(
(�i∈CP

n
i )[d]

)
= αn

d = γ,

and the rest of the proof is the same as the proof of Theorem 5.

4. Tower Bound for the Finite Case

In this section, we prove

Theorem 7. For positive integers n, c and l ≥ 3, let f(n, l, c) be the least positive

integer p such that whenever c is a c-coloring of [p], there are l-term arithmetic

progressions Q1, Q2, . . . , Qn such that

(i) Q1 ≺ · · · ≺ Qn,
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(ii) max(Q1 � · · ·�Qn) ≤ p,

(iii) there is γ ∈ [c] such that for all C ∈ P+([n]) and all s ∈ {1, . . . , l}, we have

c
(
(�i∈CQi)[s]

)
= γ.

Then f(n, l, c) is a tower function.

Proof. Let q = W (l, c2
Hind(n,c)

). We will show that f(n, l, c) ≤ 2q
3

. So from Gower’s

elementary bounds for the van der Waerden numbers [3] and Theorem 4, it follows

that f(n, l, c) is a tower function. Suppose that p ≥ 2q
3

and c is a c-coloring of [p].

We show that p satisfies the requirements of the theorem. Put m = Hind(n, c). Let

hi, 1 ≤ i ≤ m be positive integers defined by hi = (m+ i) + (i−1)q. For 1 ≤ i ≤ m,

we define the q-term arithmetic progressions Pi as follows

Pi = {2i, 2i + 2hi , 2i + 2.2hi , . . . , 2i + (q − 1)2hi}.

Clearly P1 ≺ P2 ≺ · · · ≺ Pm. We claim that for each 1 ≤ s ≤ q, the positive integers

P1[s], P2[s], . . . , Pm[s] are pairwise power-disjoint. Let 1 ≤ s ≤ q, 2u ≤ q−1 < 2u+1

and s − 1 = 2u1 + · · · + 2uk with u1 < u2 < · · · < uk, so uk ≤ u ≤ q − 1. Since

i ≤ m < h1 ≤ hi, and

Pi[s] = 2i + (s− 1)2hi = 2i + 2u1+hi + · · ·+ 2uk+hi ,

we have that

pow2(Pi[s]) ⊆ {i, hi, hi + 1, . . . , hi + (q − 1)} =: Ai

for 1 ≤ i ≤ m. Now to prove the claim, it would be enough to show that A1, . . . , Am

are pairwise disjoint. In fact we show that

{1, 2, . . . ,m} < A1 − {1} < A2 − {2} < · · · < Am − {m},

which easily implies the disjointness of A1, . . . , Am. First observe that

min(A1 − {1}) = h1 = m+ 1 > m.

Also for 1 ≤ i ≤ m− 1, we have

min(Ai+1 − {i+ 1}) = hi+1 = (m+ i+ 1) + iq

> (m+ i) + (i− 1)q + (q − 1)

= hi + (q − 1)

= max(Ai − {i}),
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thus the claim is proved. Also we have

max(�i∈[m]Pi) = (�i∈[m]Pi)[q] =
∑
i∈[m]

Pi[q] ≤ m2m +m(q − 1)2hm

≤ q.2q + q2.22m+(m−1)q

≤ 22q + q2.22q+q2

≤ 22q + 2q.22q
2

≤ 2q+1.22q
2

≤ 2q
3

≤ p.

Now we define a coloring c∗ on [q] as follows. For u, v ∈ [q], we put c∗(u) = c∗(v)

if for all B ∈ P+([m]) we have

c
(
(�i∈BPi)[u]

)
= c
(
(�i∈BPi)[v]

)
.

Obviously the number of colors is c2
m−1, so from q = W (l, c2

m

) it follows that there

are a, a+ d, . . . , a+ (l − 1)d in {1, 2, . . . , q} such that

c∗(a) = c∗(a+ d) = · · · = c∗(a+ (l − 1)d),

which means that for all B ∈ P+([m]) and all k1, k2 ∈ {0, . . . , l − 1}, we have

c
(
(�i∈BPi)[a+ k1d]

)
= c
(
(�i∈BPi)[a+ k2d]

)
.

We denote the above color by π(B). So we have the well-defined function

π : P+([m]) −→ [c].

Now consider the following m-element set of power-disjoint (due to the claim) pos-

itive integers {
P1[a], P2[a], . . . , Pm[a]

}
.

From m = Hind(n, c), we infer that there exist B1 < B2 < · · · < Bn in P+([m])

and γ ∈ [c] so that for all C ∈ NU{B1, . . . , Bn}, we have

π(C) = c
(∑
i∈C

Pi[a]
)

= γ.

The desired arithmetic progressions Q1, . . . , Qn are defined as follows. For 1 ≤ i ≤
n, we set

Qi =
{

(�j∈Bi
Pj)[a], (�j∈Bi

Pj)[a+ d], . . . , (�j∈Bi
Pj)[a+ (l − 1)d]

}
.

Obviously Q1 ≺ Q2 ≺ · · · ≺ Qn and from B1 < B2 < · · · < Bn, it is easily seen

that

max(Q1 � · · ·�Qn) ≤ max(P1 � · · ·� Pm) ≤ p.
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Now for C ∈ P+([n]) and 1 ≤ s ≤ l, we have

c
(
(�i∈CQi)[s]

)
= c
(∑
i∈C

Qi[s]
)

= c
(∑
i∈C

(�j∈BiPj)[a+ (s− 1)d]
)

= c
(∑
i∈C

∑
j∈Bi

Pj [a+ (s− 1)d]
)

= c
(∑
i∈D

Pi[a+ (s− 1)d]
)

= π(D) = γ,

where D =
⋃

i∈C Bi ∈ NU{B1, . . . , Bn}. This finishes the proof of the theorem.
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